Localization of Diploptera punctata allatostatin-like immunoreactivity in helminths: an immunocytochemical study | Parasitology | Cambridge Core (original) (raw)

Extract

The nervous systems of helminths are predominantly peptidergic in nature, although it is likely that the full range of regulatory peptides used by these organisms has yet to be elucidated. Attempts to identify novel helminth neuropeptides are being made using immunocytochemistry with antisera raised against peptides isolated originally from insects. One of these antisera was raised against allatostatin III, a peptide isolated originally from the cockroach, Diploptera punctata, and a member of a family of related peptides found in insects. Allatostatin immunoreactivity was found throughout the nervous systems of Mesocestoides corti tetrathyridia, and adult Moniezia expansa, Diclidophora merlangi, Fasciola hepatica, Schistosoma mansoni, Ascaris suum and Panagrellus redivivus. Immunostaining was observed in the nerve cords and anterior ganglia of all the helminths. It was also apparent in the subtegumental nerves and around the reproductive apparatus of the flatworms, in neurones in the pharynx of D. merlangi, F. hepatica, A. suum and P. redivivus, and in fibres innervating the anterior sense organs in the nematodes. Immunostaining in all species was both reproducible and specific in that it could be abolished by pre-absorption of the antiserum with allatostatins I–IV. These results suggest that molecules related to the D. punctata allatostatins are important components in the nervous systems of a number of helminth parasites, and a free-living nematode. Their distribution within the nervous system suggests they function as neurotransmitters/neuromodulators with roles in locomotion, feeding, reproduction and sensory perception.

References

Angstadt, J. D., Donmoyer, J. E. & Stretton, A. O. W. (1989). Retrovesicular ganglion of the nematode Ascaris. Journal of Comparative Neurology 284, 374–88.CrossRefGoogle ScholarPubMed

Barnes, R. S. K., Calow, P. & Olive, P. J. W. (1993). The Invertebrates: a New Synthesis. Oxford: Blackwell Scientific Publications.Google Scholar

Barrett, J. & Butterworth, P. E. (1984). Acetaldehyde formation by mitochondria from the free-living nematode Panagrellus redivivus. The Biochemical Journal 221, 535–40.CrossRefGoogle ScholarPubMed

Cowden, C., Sithigorngul, P., Brackley, P., Guastella, J. & Stretton, A. O. W. (1993). Localisation and differential expression of FMR Farnide-like immunoreactivity in the nematode Ascaris suum. Journal of Comparative Neurology 333, 455–68.CrossRefGoogle Scholar

Duve, H., Johnsen, A. H., Scott, A. G., Yu, C. G., Yagi, K. J., Tobe, S. S. & Thorpe, A. (1993). Callatostatins–neuropeptides from the blowfly Calliphora vomitoria with sequence homology to cockroach allatostatins. Proceedings of the National Academy of Sciences, USA 90, 2456–60.CrossRefGoogle ScholarPubMed

Geary, T. G., Klein, R. D., Vanover, L., Bowman, J. W. & Thompson, D. P. (1992). The nervous systems of helminths as targets for drugs. Journal of Parasitology 78, 15–230.CrossRefGoogle ScholarPubMed

Halton, D. W., Shaw, C., Maule, A. G., Johnston, C. F. & Fairweather, I. (1992). Peptidergic messengers: A new perspective of the nervous system of parasitic platyhelminths. Journal of Parasitology 78, 179–93.CrossRefGoogle ScholarPubMed

Halton, D. W., Shaw, C., Maule, A. G. & Smart, D. (1994). Regulatory peptides in helminth parasites. Advances in Parasitology 34 (in the Press).CrossRefGoogle ScholarPubMed

Hrcková, G., Halton, D. W., Maule, A. G., Brennan, G. P., Shaw, C. & Johnston, C. F. (1993). Neuropeptide F-immunoreactivity in the tetrathyridium of Mesocestoides corti (Cestoda: Cyclophyllidea). Parasitology Research 79, 690–5.CrossRefGoogle ScholarPubMed

Johnston, C. F., Shaw, C., Halton, D. W. & Fairweather, I. (1990). Confocal scanning laser microscopy and helminth neuroanatomy. Parasitology Today 6, 305–8.CrossRefGoogle ScholarPubMed

Kramer, S. J., Toschi, A., Miller, C. A., Kataoka, H., Quistad, G. B., Li, J. P., Carney, R. L. & Schooley, D. A. (1991). Identification of an allatostatin from the tobacco hornworm, Manduca sexta. Proceedings of the National Academy of Sciences, USA 88, 9458–62.CrossRefGoogle ScholarPubMed

Magee, R. M., Fairweather, I., Johnston, C. F., Halton, D. W. & Shaw, C. (1989). Immunocytochemical demonstration of neuropeptides in the nervous system of the liver fluke, Fasciola hepatica (Trematoda, Digenea). Parasitology 98, 227–38.CrossRefGoogle ScholarPubMed

Maule, A. G., Brennan, G. P., Halton, D. W., Shaw, C., Johnston, C. F. & Moore, S. (1992). Neuropeptide F-immunoreactivity in the monogenean parasite Diclidophora merlangi. Parasitology Research 78, 655–60.CrossRefGoogle ScholarPubMed

Maule, A. G., Halton, D. W., Johnston, C. F., Shaw, C. & Fairweather, I. (1990 a). The serotoninergic, cholinergic and peptidergic components of the nervous system in the monogenean parasite, Diclidophora merlangi: a cytochemical study. Parasitology 100, 255–73.CrossRefGoogle ScholarPubMed

Maule, A. G., Halton, D. W., Johnston, C. F., Shaw, C. & Fairweather, I. (1990 b). A cytochemical study of the serotoninergic, cholinergic and peptidergic components of the reproductive system of the monogenean parasite, Diclidophora merlangi. Parasitology Research 76, 409–19.CrossRefGoogle ScholarPubMed

Maule, A. G., Shaw, C., Halton, D. W., Thim, L., Johnston, C. F., Fairweather, I. & Buchanan, K. D. (1991). Neuropeptide F: a novel parasitic flatworm regulatory peptide from Moniezia expansa (Cestoda: Cyclophyllidea). Parasitology 102, 309–16.CrossRefGoogle Scholar

Maule, A. G., Halton, D. W., Shaw, C. & Johnston, C. F. (1993 a). The cholinergic, serotoninergic and peptidergic components of the nervous system of Moniezia expansa (Cestoda, Cyclophyllidea). Parasitology 106, 429–40.CrossRefGoogle ScholarPubMed

Maule, A. G., Shaw, C., Halton, D. W. & Thim, L.(1993 b). GNFFRFamide: a novel FMRFamide-immunoreactive peptide isolated from the sheep tapeworm, Moniezia expansa. Biochemical and Biophysical Research Communications 193, 1054–60.CrossRefGoogle ScholarPubMed

Pratt, G. E., Farnsworth, D. E., Fok, K. F., Siegel, N. R., McCormack, A. L., Shabanowitz, J., Hunt, D. F. & Feyereisen, R. (1991). Identity of a second type of allatostatin from cockroach brains: An octadecapeptide amide with a tyrosine-rich address sequence. Proceedings of the National Academy of Sciences, USA 88, 2412–16.CrossRefGoogle ScholarPubMed

Sithigorngul, P., Stretton, A. O. W. & Cowden, C. (1990). Neuropeptide diversity in Ascaris: An immunocytochemical study. Journal of Comparative Neurology 294, 362–76.CrossRefGoogle ScholarPubMed

Skuce, P. J., Johnston, C. F., Fairweather, I., Halton, D. W., Shaw, C. & Buchanan, K. D. (1990). Immunoreactivity to the pancreatic polypeptide family in the nervous system of the adult human blood fluke, Schistosoma mansoni. Cell and Tissue Research 261, 573–81.CrossRefGoogle Scholar

Smart, D., Johnston, C. F., Curry, W. J., Shaw, C., Halton, D. W., Fairweather, I. & Buchanan, K. D. (1992). Immunoreactivity to two specific regions of chromogranin A in the nervous system of Ascaris suum: An immunocytochemical study. Parasitology Research 78, 329–35.CrossRefGoogle ScholarPubMed

Smart, D., Johnston, C. F., Curry, W. J., Williamson, R., Maule, A. G., Skuce, P. J., Shaw, C., Halton, D. W. & Buchanan, K. D. (1994). Peptides related to the Diploptera punctata allatostatins in non-arthropod invertebrates: An immunocytochemical survey. Journal of Comparative Neurology (in the Press).CrossRefGoogle Scholar

Smart, D., Johnston, C. F., Shaw, C., Halton, D. W. & Buchanan, K. D. (1993). Use of specific antisera for the localisation and quantitation of leucokinin immunoreactivity in the nematode, Ascaris suum. Comparative Biochemistry and Physiology 106C, 517–22.Google ScholarPubMed

Stretton, A. O. W., Cowden, C., Sithigorngul, P. & Davis, R. E. (1991). Neuropeptides in the nematode Ascaris suum. Parasitology 102, S107–S116.CrossRefGoogle ScholarPubMed

Weaver, R. J., Freeman, Z. A., Pickering, M. G. & Edwards, J. P. (1994). Identification of two allatostatins from the CNS of Periplaneta americana: novel members of a family of neuropeptide inhibitors of insect juvenile hormone biosynthesis. Comparative Biochemistry and Physiology 107C, 119–27.Google Scholar

White, J. G., Southgate, E., Thomson, J. N. & Brenner, S. (1986). The structure of the nervous system of the nematode Caenorhabditis elegans. Philosophical Transactions of the Royal Society of London, Series B 314, 1–340.Google ScholarPubMed

Woodhead, A. P., Stay, B., Seidel, S. L., Khan, M. A. & Tobe, S. S. (1989). Primary structure of four allatostatins: Neuropeptide inhibitors of juvenile hormone synthesis. Proceedings of the National Academy of Sciences, USA 86, 5997–6001.CrossRefGoogle ScholarPubMed

Woodhead, A. P., Stoltzman, C. A. & Stay, B. (1992). Allatostatins in the nerves of the antennal pulsatile organ muscle of the cockroach, Diploptera punctata. Archives of Insect Biochemistry and Physiology 20, 253–63.CrossRefGoogle ScholarPubMed