Physiological and behaviour changes in common lizards parasitized by haemogregarines | Parasitology | Cambridge Core (original) (raw)

Article contents

Summary

The effect of haemoparasites on the physiology and behaviour traits of their hosts was examined using Haemogregarina sp., a parasite of the common lizard, Lacerta vivipara, from the south of France. Infection with haemogregarines was associated with a reduced haemoglobin concentration and an increased number of immature red blood cells. Parasitized individuals also showed a reduced oxygen consumption at rest and a lower locomotor speed. We also found that the multiplication rate of the parasite depended on the temperature at which the lizard was maintained. Between 21 and 28 °C the multiplication rate of the parasite was significantly lower than between 29 and 35 °C. This suggests that the parasites may suffer reproductive costs when hosts reduce their body temperature.

Keywords

Type

Research Article

Copyright

Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avery, R. A. (1971). Estimates of food consumption by the lizard Lacerta vivipara Jacquin. Journal of Animal Ecology 40, 351–365.CrossRefGoogle Scholar

Avery, R. A., Bedford, J. D. & Newcombe, C. P. (1982). The role of thermoregulation in lizard biology: predatory efficiency in a temperate diurnal basker. Behavioral Ecology and Sociobiology 11, 261–267.CrossRefGoogle Scholar

Bennett, A. F. (1983). Ecological consequences of activity metabolism. In Lizard Ecology: Studies of a Model Organism (ed. Huey, R. B., Pianka, E. R. & Schoener, T. W.), pp. 11–24. Harvard University Press. Cambridge, Massachusetts and London.CrossRefGoogle Scholar

Blankespoor, H. D., Babiker, S. M. & Blankespoor, C. L. (1989). Influence of temperature on the development of Schistosoma haematobium in Bulinus truncatus. Journal of Medical and Applied Malacology 1, 123–131.Google Scholar

Combes, C. (1995). Interactions Durables, Écologie et Évolution du Parasitisme, pp. 286–191. Masson, Paris.Google Scholar

Dawkins, R. (1990). Parasites, desiderata lists and the paradox of the organism. Parasitology 100 (Suppl.), S63–S73.CrossRefGoogle ScholarPubMed

Delahay, R. J., Speakman, J. R. & Moss, R. (1995). The energetic consequences of parasitism: effects of a developing infection of Trichostrongylus tenuis (Nematoda) on red grouse (Lagopus lagopus scotius) energy balance, body weight and condition. Parasitology 110, 473–482.CrossRefGoogle Scholar

Dial, B. E. & Fitzpatrick, L. C. (1984). Predator escape success in tailed versus tailless Scincella lateralis (Sauria: Scincidae). Animal Behaviour 32, 301–302.CrossRefGoogle Scholar

Dobson, A. P. (1988). The population biology of parasite-induced changes in host behaviour. Quarterly Review of Biology 63, 139–365.CrossRefGoogle Scholar

Fiahlo, R. F. & Schall, J. J. (1995). Thermal ecology of malarial parasite and its insect vector: consequences for the parasite's transmission success. Journal of Animal Ecology 64, 553–562.Google Scholar

Garland, T. Jr. & Losos, J. B. (1994). Ecological morphology of locomotor performance in squamate reptiles. In Ecological Morphology: Integrative Organismal Biology (ed. Wainwright, P. C. & Reilly, S. M.), pp. 240–302. University of Chicago Press, Chicago.Google Scholar

Holmes, J. C. & Zohar, S. (1990). Pathology and host behaviour. In Parasitism and Host Behaviour (ed. Barnard, C. J. & Behnke, J. M.), pp. 34–64. Taylor and Francis, London.Google Scholar

John-Alder, H. B. & Bennett, A. F. (1981). Thermal dependence of endurance, oxygen consumption, and cost of locomotion in a lizard. American Journal of Physiology 241, 342–349.Google Scholar

Kleiber, M. (1961). The Fire of Life: An Introduction to Animal Energetics. Wiley, New York.Google Scholar

Kramer, G. (1934). Der Ruheumsatz von Eidechsen und seine quantitative Beziehung zur Individuengrösse. Zeitschrift fur vergleichende Physiologic 20, 600–616.CrossRefGoogle Scholar

Lefcort, H. & Bayne, C. J. (1991). Thermal preferences of resistant and susceptible strains of Biomphalaria glabrata (Gastropoda) exposed to Schistosoma mansoni (Trematoda). Parasitology 103, 357–362.CrossRefGoogle ScholarPubMed

Manwell, R. D. (1977). Gregarines and haemogregarines. In Parasitic Protozoa, vol III, Gregarines, Haemogregarines, Coccidia, Plasmodia, and Haemoproteids, (ed. Kreier, J.), pp. 16–31. Academic Press, New York, San Francisco, London.Google Scholar

Moberly, W. R. (1968). The metabolic responses of the common iguana, Iguana iguana, to walking and diving. Comparative Biochemistry and Physiology 27, 21–32.CrossRefGoogle Scholar

Pilorge, T. (1987). Density, size structure, and reproductive characteristics of three populations of Lacerta vivipara (Sauria: Lacertidae). Herpetologica 43, 345–356.Google Scholar

Poinar, G. O. Jr. (1991). Hairworm (Nematomorpha: Gordioidea) parasites of New Zealand wetas (Orthoptera: Stenopelmatidae). Canadian Journal of Zoology 69, 1592–1599.CrossRefGoogle Scholar

Schall, J. J. (1983). Lizard malaria: cost to vertebrate host's reproductive success. Parasitology 87, 1–6.CrossRefGoogle Scholar

Schall, J. J. (1986). Prevalence and virulence of a haemogregarine parasite of the aruban whiptail lizard, Cnemidophorus arubensis. Journal of Herpetology 20, 318–324.CrossRefGoogle Scholar

Schall, J. J. (1990 b). Virulence of lizard malaria: the evolutionary ecology of an ancient parasite–host association. Parasitology 100, 35–52.CrossRefGoogle ScholarPubMed

Schall, J. J., Bennet, A. F. & Putnam, R. W. (1982). Lizards infected with malaria: physiological and behavioral consequences. Science 217, 1057–1059.CrossRefGoogle ScholarPubMed

Sorci, G. & Clobert, J. (1996). Effects of maternal parasite load on offspring life-history traits in the common lizard (Lacerta vivipara). Journal of Evolutionary Biology (in the Press.)Google Scholar

Sorci, G., Clobert, J. & Michalakis, Y. (1996). Cost of reproduction and cost of parasitism in the common lizard (Lacerta vivipara). Oikos (in the Press.)CrossRefGoogle Scholar

Sorci, G., Massot, M. & Clobert, J. (1994). Maternal parasite load predicts offspring spring speed in the philopatric sex. The American Naturalist 144, 153–164.CrossRefGoogle Scholar

Sorci, G., Swallow, J. G., Garland, T. Jr. & Clobert, J. (1995). Quantitative genetics of locomotor speed and endurance in the lizard Lacerta vivipara. Physiological Zoology 68, 698–720.CrossRefGoogle Scholar

Stirewalt, M. A. (1954). Effect of maintenance of temperatures on development of Schistosoma mansoni. Experimental Parasitology 3, 504–516.CrossRefGoogle ScholarPubMed

Sveegaard, B. & Hansen, I. L. (1976). Temperature regulation in lizards (Lacerta vivipara, L. agilis and L. pityusensis). Norwegian Journal of Zoology 24, 232.Google Scholar

Thompson, S. N. & Kavaliers, M. (1994). Physiological bases for parasite-induced alterations of host behaviour. Parasitology 109, 119–138.CrossRefGoogle ScholarPubMed

Tromp, W. I. & Avery, R. A. (1977). A temperature-dependent shift in the metabolism of the lizard Lacerta vivipara. Journal of Thermal Biology 2, 53–54.CrossRefGoogle Scholar

Van Damme, R., Bauwens, D. & Verheyen, R. (1990). Evolutionary rigidity of thermal physiology: the case of the cool temperate lizard Lacerta vivipara. Oikos 57, 61–67.CrossRefGoogle Scholar

Webbe, G. & James, C. (1972). Host–parasite relationships of Bulinus globosus and B. truncatus with strains of Schistosoma haematobium. Journal of Helminthology 46, 185–199.CrossRefGoogle Scholar

Wilkinson, L. (1981). SYSTAT: the System for Statistics. SYSTAT, Evanston, Illinois.Google Scholar