Foreword: Towards markers for anthelmintic resistance in helminths of importance in animal and human health | Parasitology | Cambridge Core (original) (raw)

Summary

Anthelmintic resistance is a serious problem in veterinary medicine and appears to be developing in some helminths of importance to human health. Anthelmintic drugs remain the principal means of control of helminth infections in animals and humans and the continued dependence on these pharmaceuticals will continue to impose selection pressure for resistance development. Our ability to detect anthelmintic resistance before control breaks down and to monitor the spread of anthelmintic resistance is quite limited. We are currently dependent on biological methods which are not sufficiently sensitive to detect low levels of drug resistance and are particularly difficult to perform on helminth parasites of humans. There is a serious need for new molecular markers for detecting and monitoring for anthelmintic resistance. The problem of anthelmintic resistance is already very serious in nematode parasites of livestock. In addition, there should be great concern about possible anthelmintic resistance development and the lack of tools and efforts for monitoring it as part of the major worldwide programmes to control helminth parasites in people. An international Consortium has been formed to develop Anthelmintic Resistance Single nucleotide polymorphism markers (CARS). Discussions within the Consortium have addressed the need for such markers, the current state of knowledge about them, possible mechanisms of anthelmintic resistance and approaches and constraints to the development of markers. Summaries of the state of the art in these areas are presented in a series of papers in this Special Issue of Parasitology.

References

Albonico, M., Bickle, Q., Ramsan, M., Montresor, A., Savioli, L. and Taylor, M. (2003). Efficacy of mebendazole and levamisole alone or in combination against intestinal nematode infections after repeated targeted mebendazole treatment in Zanzibar. Bulletin of the World Health Organization, 81, 343–352.Google ScholarPubMed

Albonico, M., Engels, D. and Savioli, L. (2004). Monitoring drug efficacy and early detection of drug resistance in human soil-transmitted nematodes: a pressing public health agenda for helminth control. International Journal for Parasitology 34, 1205–1210.CrossRefGoogle ScholarPubMed

Brennan, G.P, Fairweather, I., Trudgett, A., Hoey, E., McCoy, S. W., McConville, M., Meaney, M., Robinson, M., McFerran, N., Ryan, L., Lanusse, C., Mottier, L., Alvarez, L., Solana, H., Virkel, G. and Brophy, P. M. (2007). Understanding triclabendazole resistance. Experimental and Molecular Pathology 82, 104–109.CrossRefGoogle ScholarPubMed

Coles, G. C., Jackson, F., Pomroy, W. E., Prichard, R. K., von Samson-Himmelstjerna, G., Silvestre, A., Taylor, M. A. and Vercruysse, J. (2006). The detection of anthelmintic resistance in nematodes of veterinary importance. Veterinary Parasitology 136, 167–185.CrossRefGoogle ScholarPubMed

De Clercq, D., Sacko, M., Behnke, J., Gilbert, F., Dorny, P. and Vercruysse, J. (1997). Failure of mebendazole in treatment of human hookworm infections in the southern region of Mali. American Journal of Tropical Medicine and Hygiene, 57, 25–30.CrossRefGoogle ScholarPubMed

Fenwick, A. and Webster, J. P. (2006). Schistosomiasis: challenges for control, treatment and drug resistance. Current Opinions in Infectious Diseases 19, 577–582.CrossRefGoogle ScholarPubMed

Kaplan, R. M. (2004). Drug resistance in nematodes of veterinary importance: a status report. Trends in Parasitology 20, 477–481.CrossRefGoogle ScholarPubMed

Osei-Atweneboana, M. Y., Eng, J. K. L., Boakye, D. A., Gyapong, J. O. and Prichard, R. K. (2007). Prevalence and intensity of Onchocerca volvulus infection and efficacy of ivermectin in endemic communities in Ghana: a two phase epidemiological study. Lancet (in press).CrossRefGoogle Scholar

Prichard, R. K. (2001). Genetic variability following selection of Haemonchus contortus with anthelmintics. Trends in Parasitology 17, 445–453.CrossRefGoogle ScholarPubMed

von Samson-Himmelstjerna, G. and Blackhall, W. (2005). Will technology provide solutions for drug resistance in veterinary helminths? Veterinary Parasitology 132, 223–239.CrossRefGoogle ScholarPubMed

Wolstenholme, A. J., Fairweather, I., Prichard, R., von Samson-Himmelstjerna, G. and Sangster, N. C. (2004). Drug resistance in veterinary helminths. Trends in Parasitology 20, 469–476.CrossRefGoogle ScholarPubMed