The pathophysiology of extrapyramidal side-effects of neuroleptic drugs | Psychological Medicine | Cambridge Core (original) (raw)

References

Aghajanian, G. K. & Bunney, B. S. (1974). Pre- and post- synaptic feedback mechanisms in central dopaminergic neurons. In Frontiers of Neurology and Neuroscience Research (ed Seeman, P. and Brown, G. M.), pp. 4–11. University of Toronto Press: Toronto.Google Scholar

Aghajanian, G. K. & Bunney, B. S. (1977). Dopamine autoreceptors: pharmacological characterization by microiontophoretic single cell recording studies. Naunyn-Schmiedebergs Archiy für Pharmakologie 297, 1–8.CrossRefGoogle ScholarPubMed

Ahlenius, S. & Engel, J. (1971). Effects of small doses of haloperidol on turning behaviour. Journal of Pharmacy and Pharmacology 23, 301–302.CrossRefGoogle Scholar

Andén, N. E. (1972). Dopamine turnover in the corpus striatum and the limbic system after treatment with neuroleptic and anti-acetylcholine drugs. Journal of Pharmacy and Pharmacology 24, 905–906.CrossRefGoogle ScholarPubMed

Andén, N. E., Carlsson, A. & Haggendal, J. (1969). Adrenergic mechanisms. Annual Reviews of Pharmacology 9, 119–134.CrossRefGoogle ScholarPubMed

Asper, H., Baggiolini, M., Burki, H. R., Lauener, H., Ruch, W. & Stille, G. (1973). Tolerance phenomena with neuroleptics: catalepsy, apomorphine stereotypies and striatal dopamine metabolism in the rat after single and repeated administration of loxapine and haloperidol. European Journal of Pharmacology 22, 287–294.CrossRefGoogle ScholarPubMed

Axelsson, J. & Thesleff, S. (1959). A study of supersensitivity in denervated mammalian skeletal muscle. Journal of Physiology (London) 147, 178–193.CrossRefGoogle ScholarPubMed

Ayd, F. J. (1961). A survey of drug-induced extrapyramidal reactions. Journal of the American Medical Association 175, 1054–1060.CrossRefGoogle ScholarPubMed

Barbeau, A. (1962). The pathogenesis of Parkinson's disease. A new hypothesis. Canadian Medical Association Journal 87, 802–807.Google ScholarPubMed

Bedard, P., Delean, J., Lafleur, J. & Larochelle, L. (1977). Haloperidol-induced dyskinesias in the monkey. Le Journal Canadien des Sciences Neurologique 4, 197–201.Google ScholarPubMed

Berger, B., Tassin, J. P., Blanc, B., Moyne, M. A. & Thierry, A. M. (1974). Histochemical confirmation for dopaminergic innervation of the rat cerebral cortex after destruction of the noradrenergic ascending pathways. Brain Research 81, 332–337.CrossRefGoogle ScholarPubMed

Bernheimer, H., Birkmayer, W., Hornykiewicz, O., Jellinger, K. & Seitelberg, F. (1973). Brain dopamine and the syndromes of Parkinson and Huntington: clinical, morphological and neurochemical correlations. Journal of Neurological Sciences 20, 415–455.CrossRefGoogle ScholarPubMed

Bertler, A. (1961). Effect of reserpine on the storage of catecholamines in brain and other tissues. Acta physiologica scandinavica 51, 75–83.CrossRefGoogle Scholar

Birkmayer, W. & Hornykiewicz, O. (1961). Der L-Dioxy-phenylalanin (= dopa) - Effekt bei der Parkinson-Akinese. Wiener klinische Wochenschrift 73, 787–788.Google Scholar

Bobon, D. P., Janssen, P. A. J. & Bobon, J. (eds.) (1970). Modern Problems in Pharmacopsychiatry. Volume 5: The Neuroleptics. S. Karger: Basel.Google Scholar

Bunney, B. S. & Aghajanian, G. K. (1976). _d-_Amphetamine induced inhibition of central dopaminergic neurons: mediation by a striato-nigral feedback pathway. Science 192, 391–393.CrossRefGoogle ScholarPubMed

Bunney, B. S., Walters, J. R., Roth, R. H. & Aghajanian, G. K. (1973). Dopaminergic neurons: effects of anti-psychotic drugs and amphetamines on single cell activity. Journal of Pharmacology and Experimental Therapeutlcs 185, 560–571.Google Scholar

Burt, D. R., Creese, I. & Snyder, S. H. (1976). Properties of 3H-haloperidol and 3H-dopamine binding associated with dopamine receptors in calf brain membranes. Molecular Pharmacology 12, 800–812.Google Scholar

Burt, D. R., Creese, I. & Snyder, S. H. (1977). Antischizophrenic drugs: chronic treatment elevates dopamine receptor binding in brain. Science 196, 326–328.CrossRefGoogle ScholarPubMed

Calne, D. B., Teychenne, P. F., Claveria, L. E., Eastman, R., Greenacre, J. K. & Petrie, A. (1974). Bromocriptine in parkinsonism. British Medical Journal iv, 442–444.CrossRefGoogle Scholar

Carlsson, A. (1970). Biochemical implications of dopainduced actions on the central nervous system with particular reference to abnormal movements. In L-DOPA and Parkinsonism (ed. Barbeau, A. and McDowell, F. H.), pp. 205–213. Davis: Philadelphia.Google Scholar

Carlsson, A. & Lindqvist, M. (1963). Effect of chlorpromazine or haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta pharmacologica et toxicologica 20, 140–144.CrossRefGoogle ScholarPubMed

Carlsson, A.Davis, J. N., Kehr, W., Lindqvist, M. & Atack, C. V. (1972 a). Simultaneous measurement of tyrosine and tryptophan hydroxylase activities in brain in vivo using an inhibitor of the aromatic amino acid decarboxylase. Naunyn-Schmiedebergs Archiv für Pharmakologie 275, 153–168.CrossRefGoogle ScholarPubMed

Carlsson, A., Kehr, W., Lindqvist, M., Magnusson, T. & Atack, C. V. (1972 b). Regulation of monoamine metabolism in the central nervous system. Pharmacological Reviews 24, 371–384.Google ScholarPubMed

Carroll, B. J., Curtis, G. C. & Kokmen, E. (1977). Paradoxical response to dopamine agonists in tardive dyskinesia. American Journal of Psychiatry 134, 785–789.Google ScholarPubMed

Carter, C. J. & Pycock, C. J. (1978). Studies on the role of catecholamines in the frontal cortex. British Journal of Pharmacology 42, 402P.Google Scholar

Chase, T. N. (1972). Drug-induced extrapyramidal disorders. Research Publications of the Association of Nervous and Mental Diseases 50, 448–471.Google ScholarPubMed

Christensen, A. V. (1973). Acute and delayed effects of a single dose of a neuroleptic drug. Acta physiologica scandinavica Suppl. 396, 78.Google Scholar

Christensen, A. V. & Møller-Nielsen, I. (1974). Influence of flupenthixol and flupenthixol-decanoate on methyiphenidate and apomorphine induced compulsive gnawing in mice. Psychopharmacologia (Berlin) 34, 119–126.CrossRefGoogle ScholarPubMed

Christensen, A. V., Fjalland, B. & Møller-Nielsen, I. (1976). On the supersensitivity of dopamine receptors induced by neuroleptics. Psychopharmacology 48, 1–6.CrossRefGoogle ScholarPubMed

Clement-Cormier, Y. C., Kebabian, J. W., Petzold, G. L. & Greengard, P. (1974). Dopamine-sensitive adenylate cyclase in mammalian brain: a possible site of action of antipsychotic drugs. Proceedings of the National Academy of Sciences (USA) 71, 1113–1117.CrossRefGoogle Scholar

Clow, A., Jenner, P. & Marsden, C. D. (1978). An experimental model of tardive dyskinesias. Life Sciences 23, 421–424.CrossRefGoogle ScholarPubMed

Clow, A., Jenner, P., Theodorou, A. & Marsden, C. D. (1979 a). Striatal dopamine receptors become supersensitive while rats are given trifluoperazine for six months. Nature 278, 59–61.CrossRefGoogle Scholar

Clow, A., Jenner, P. & Marsden, C. D. (1979 b). Changes in dopamine mediated behaviour during one year's neuroleptic administration. European Journal of Pharmacology 57, 365–375.CrossRefGoogle ScholarPubMed

Cools, A. R. & van Rossum, J. M. (1976). Excitation-mediating and inhibition-mediating dopamine receptors: a new concept towards a better understanding of electrophysiological, biochemical, pharmacological, functional and clinical data. Psychopharmacologia (Berlin) 45, 243–254.CrossRefGoogle ScholarPubMed

Cools, A. R., Struyker, Boudier H. A. J. & van Rossum, J. M. (1976). Dopamine receptors: selective agonists and antagonists of functionally distinct types within the feline brain. European Journal of Pharmacology 37, 283–293.CrossRefGoogle ScholarPubMed

Corrodi, H., Fuxe, K. & Lidbrink, P. (1972). Interaction between cholinergic and catecholaminergic neurones in rat brain. Brain Research 43, 397–416.CrossRefGoogle ScholarPubMed

Costall, B. & Naylor, B. J. (1975). Neuroleptic antagonism of dyskinetic phenomena. European Journal of Pharmacology 33, 301–312.CrossRefGoogle ScholarPubMed

Cotzias, G. C., van Woert, M. H. & Schiffer, L. M. (1967). Aromatic amino acids and modification of parkinsonism. New England Journal of Medicine 276, 374.CrossRefGoogle ScholarPubMed

Crane, G. E. (1968). Tardive dyskinesia in patients treated with major neuroleptics: a review of the literature. American Journal of Psychiatry 124, 40–48.CrossRefGoogle ScholarPubMed

Davis, J. M. & Casper, R. (1977). Antipsychotic drugs: clinical pharmacology and therapeutic use. Drugs 14, 260–282.CrossRefGoogle ScholarPubMed

de Belleroche, J. & Bradford, H. F. (1978). Biochemical evidence for the presence of presynaptic receptors in dopaminergic nerve terminals. Brain Research 142, 53–68.CrossRefGoogle ScholarPubMed

Degkvitz, R. (1967). Über die Ursachen der persisteirenden extrapyramidalen Hyperkineser nach langfristiger. Anwendung von Neuroleptika Activitas Nervosa Superior (Praha) 12, 67–68.Google Scholar

Degkvitz, R. & Wenzel, W. (1967). Persistent extrapyramidal side effects after long-term application of neuroleptics.In Neuropsychopharmacology, International Congress Series No. 129 (ed. Brill, H.), pp. 608–615. Excerpta Medica: Amsterdam.Google Scholar

Delay, J. & Deniker, P. (1957). Caractéristiques neurophysiologiques des médicaments neuroleptiques. Rapport Symposium Internationale Médicaments Psychotropies, Milan 1957. In Psychotropic Drugs (ed. Garratini, S. and Ghetti, V.), pp. 485–501. Elsevier: Amsterdam.Google Scholar

Delay, J., Deniker, P. & Harl, J. M. (1952). Utilisation en thérapeutique psychiatrique d'une phenothiazine d'action centrale élective (4560 RP). Annales medico-psychologiques 110, 112–117.Google ScholarPubMed

Deneau, G. A. & Crane, G. E. (1968). Dyskinesia in rhesus monkeys tested with high doses of chlorpromazine. In Psychotropic Drugs and Dysfunctions of the Basal Ganglia (ed. Crane, G. E. and Gardner, J. R.). pp. 12–14. US Public Health Service Publications, no. 938: Washington, D.C.Google Scholar

Di Chiara, G., Porceddu, M. L., Vargiu, L., Argiolas, A. & Gessa, G. L. (1976). Evidence for dopamine receptors mediating sedation in the mouse brain. Nature 264, 564–567.CrossRefGoogle ScholarPubMed

Di Chiara, G., Porceddu, M. L., Fratta, W. & Gessa, G. L. (1977). Postsynaptic receptors are not essential for DA feedback regulation. Nature 267, 270–272.CrossRefGoogle ScholarPubMed

Di Chiara, G., Onali, P. L., Tissari, A. H., Porceddu, M. L., Morelli, M. & Gessa, G. L. (1978). Destruction of post-synaptic dopamine receptors prevents neuroleptic-induced activation of striatal tyrosine hydroxylase but not dopamine synthesis stimulation. Life Sciences 23, 691–696.CrossRefGoogle Scholar

Ehringer, H. & Hornykiewicz, O. (1960). Verteilung von Noradrenalin und Dopamin im Gehirn des Menschen und ihr Verhalten bei Erkrankungen des extrapyramidalen Systems. Klinische Wochenschrift 38, 1236–1239.CrossRefGoogle Scholar

Eldridge, R. & Gottlieb, R. (1976). The primary hereditary dystonias: genetic classification of 768 families and revised estimate of gene frequency, autosomal recessive form and selected bibliography. In Advances in Neurology, volume 14 (ed. Eldridge, R. and Fahn, S.), pp. 457–474. Raven Press: New York.Google Scholar

Fann, W. E. & Lake, C. R. (1974). On the coexistence of parkinsonism and tardive dyskinesias. Diseases of the Nervous System 35, 324–326.Google Scholar

Farnebo, L.-O & Hamberger, B. (1971). Drug-induced changes in the release of 3H-monoamines from field stimulated rat brain slices. Acta physiologica scandinavica suppl. 371, 35–44.CrossRefGoogle Scholar

Fleming, P., Makar, H. & Hunter, K. R. (1970). Levodopa in drug-induced extrapyramidal disorders. Lancet ii, 1186.CrossRefGoogle Scholar

Forrest, I. S. & Forrest, F. M. (1960). Urine color test for the detection of phenothiazine compounds. Clinical Chemistry 6, 11–15.CrossRefGoogle ScholarPubMed

Garcia-Munoz, M., Nicolaou, N., Tulloch, I. F., Wright, A. K. & Arbuthnott, G. W. (1977). Striato-nigral fibres – feedback loop or output pathway? Nature 265, 363–365.CrossRefGoogle ScholarPubMed

Garver, D. L., Davis, J. M., Dekirmenjian, H., Ericksen, S., Gosenfield, L. & Haraszti, J. (1976 a). Dystonic reactions following neuroleptics: time course and proposed mechanisms. Psychopharmacology 47, 199–201.CrossRefGoogle ScholarPubMed

Garver, D. L., Davis, J. M., Dekirmejian, H., Jones, F. D., Casper, B. & Haraszti, J. (1976b). Pharmacokinetics of red blood cell phenothiazine and clinical effects: acute dystonic reactions. Archives of General Psychiatry 33, 862–866.CrossRefGoogle ScholarPubMed

Geffen, L. B., Jessell, T. M., Cuello, A. C. & Iversen, L. L. (1976). Release of dopamine from dendrites in substantia nigra. Nature 260, 258–260.CrossRefGoogle ScholarPubMed

Gerlach, J. (1977a). Relationship between tardive dyskinesia, L-DOPA-induced hyperkinesia and parkinsonism. Psychopharmacology 51, 259–263.CrossRefGoogle ScholarPubMed

Gerlach, J. (1977b). The relationship between parkinsonism and tardive dyskinesia. American Journal of Psychiatry 134, 781–784.Google ScholarPubMed

Gerlach, J., Reisby, N. & Randrup, A. (1974). Dopaminergic hypersensitivity and cholinergic hypofunction in the pathophysiology of tardive dyskinesia. Psychopharmacologia (Berlin) 34, 21–35.CrossRefGoogle ScholarPubMed

Gey, K. F. & Pletscher, A. (1968). Acceleration of turnover of 14C-catecholamines in rat brain by chlorpromazine. Experientia 24, 335–336.CrossRefGoogle ScholarPubMed

Giorguieff, M. F., Le Floc'h, M. L., Westfall, T. C., Glowinski, J. & Beeson, M. J. (1976). Nicotonic effect of acetylcholine on she release of newly synthesised 3H- dopamine on rat striatal slices and cat caudate nucleus. Brain Research 106, 117–131.CrossRefGoogle Scholar

Giorguieff, M. F., Kemel, M. L. & Glowinski, J. (1977). Presynaptic effect of L-glutamic acid on dopamine release in rat striatal slices. Neuroscience Letters 6, 73–77.CrossRefGoogle ScholarPubMed

Glowinski, J., Iversen, L. L. & Axelrod, J. (1966). Storage and synthesis of norepinephrine in the reserpine-treated rat brain. Journal of Pharmacology and Experimental Therapeutics 151, 385–399.Google ScholarPubMed

Gnegy, M., Uzunov, P. & Costa, E. (1977). Participation of an endogenous Ca++-binding protein activator in the development of drug-induced super-sensitivity of striatal dopamine receptors. Journal of Pharmacology and Experimental Therapeutics 202, 558–564.Google Scholar

Grinspoon, L., Ewalt, J. R. & Shader, R. (1968), Psychotherapy and pharmacotherapy in chronic schizophrenia. American Journal of Psychiatry 124, 1645–1652.CrossRefGoogle ScholarPubMed

Groves, P.M., Wilson, C., Young, S. & Rebec, G. (1975). Self-inhibition by dopaminergic neurons. Science 190, 522–529.CrossRefGoogle ScholarPubMed

Gunne, L. M. & Barany, S. (1976). Haloperidol-induced tardive dyskinesia in monkeys. Psychopharmacology 50, 237–240.CrossRefGoogle ScholarPubMed

Handforth, A. & Sourkes, T. L. (1975). Inhibition by dopamine agonists of dopamine accumulation following λhydroxybutyrate treatment. European Journal of Pharmacology 34, 311–319.CrossRefGoogle ScholarPubMed

Heal, D. J., Green, A. R., Boullin, D. J. & Grahame-Smith, D. G. (1976). Single and repeated administration of neuroleptic drugs to rats: effect on striatal dopamine-sensitive adenylate cyclase and locomotor activity produced by tranylcypromine and L-tryptophan or L-dopa. Psychopharmacology 49, 287–300.CrossRefGoogle ScholarPubMed

Hirsch, S. R., Gaind, R., Rohde, P. D., Stevens, B. C. & Wing, J. K. (1973). Outpatient maintenance of chronic schizophrenic patients with long-acting fluphenazine: double blind placebo trial. Report to MRC Committee on Clinical Trials in Psychiatry. British Medical Journal i, 633–637.CrossRefGoogle Scholar

Hogarty, G. G., Goldberg, S. L. & Schooler, N. R. (1974). Drug and sociotherapy in the aftercare of schizophrenic patients. II. Two year relapse rates. Archives of General Psychiatry 31, 603–608.CrossRefGoogle ScholarPubMed

Hökfelt, T., Fuxe, K., Johansson, O. & Ljungdahl, A. (1974). Pharmacohistochemical evidence of the existence of dopamine nerve terminals in the limbic cortex. European Journal of Pharmacology 25, 108–112.CrossRefGoogle ScholarPubMed

Hornykiewicz, O. (1975). Parkinsonism induced by dopaminergic antagonists. In Advances in Neurology, volume 9 (ed. Calne, D. B., Chase, T. N. and Barbeau, A.), pp. 155–164. Raven Press: New York.Google Scholar

Hyttel, J. (1978). Dopamine-receptor binding and adenylate-cyclase activity in mouse striatal tissue in the supersensitivity phase after neuroleptic treatment. Psychopharmacology 59, 211–216.CrossRefGoogle ScholarPubMed

Iversen, L. L., Rogawski, M. A. & Miller, R. J. (1976). Comparison of the effects of neuroleptic drugs on preand postsynaptic dopaminergic mechanisms in the rat striatum. Molecular Pharmacology 12, 251–262.Google Scholar

Iversen, S. D. (1971). The effect of surgical lesions to frontal cortex and substantia nigra on amphetamine responses in rats. Brain Research 31, 295–311.CrossRefGoogle ScholarPubMed

Janssen, P. A. J., Niemegeers, C. J. E. & Schellekens, K. H. L. (1965). Is it possible to predict the clinical effects of neuroleptic drugs (major tranquillizers) from animal data? 1. Neuroleptic activity spectra for rats. Arzneimittel Forschung 15, 104–112.Google Scholar

Jus, A., Pineau, R., Lachance, R., Pelchat, G., Jus, K., Pires, P. & Villeneuve, R. (1976 a). Epidemiology of tardive dyskinesia. Part I. Diseases of the Nervous System 37, 210–214.Google Scholar

Jus, A., Pineau, R., Lachance, R., Pelchat, G., Jus, K., Pires, P. & Villeneuve, R. (1976 b). Epidemiology of tardive dyskinesia. Part II. Diseases of the Nervous System 37, 257–261.Google ScholarPubMed

Kazamatsuri, H., Chien, C. P. & Cole, J. O. (1972 a). Treatment of tardive dyskinesia. I. Clinical efficacy of a dopamine-depleting agent, tetrabenazine. Archives of General Psychiatry 27, 95–99.CrossRefGoogle ScholarPubMed

Kazamatsuri, H., Chien, C. P. & Cole, J. O. (1972 b). Treatment of tardive dyskinesia. II. Short term efficacy of dopamine-blocking agents haloperidol and thiopropazate. Archives of General Psychiatry 27, 100–103.CrossRefGoogle ScholarPubMed

Kebabian, J. W., Petzold, G. L. & Greengard, P. (1972). Dopamine-sensitive adenylate cyclase in caudate nucleus of rat brain and its similarity to the dopamine receptor. Proceedings of the National Academy of Sciences (USA) 69, 2145–2149.CrossRefGoogle Scholar

Klawans, H. L. (1973 a). The pharmacology of extra-pyramidal movement disorders. In Monograph in Neural Science (ed. Cohen, M. M.). S. Karger: Basel.Google Scholar

Klawans, H. L. & Rubovits, R. (1974). Effect of cholinergic and anticholinergic agents on tardive dyskinesias. Journal of Neurology, Neurosurgery and Psychiatry 27, 941–947.CrossRefGoogle Scholar

Langer, S. Z. & Trendelenburg, U. (1966). The onset of denervation supersensitivity. Journal of Pharmacology and Experimental Therapeutics 151, 73–86.Google ScholarPubMed

Langer, S. Z., Draskoczy, P. R. & Trendelenberg, U. (1967). Time course of the development of supersensitivity to various amines in the nictitating membranes of the pithed cat after denervation and decentralization. Journal of Pharmacology and Experimental Therapeutics 157, 255–273.Google ScholarPubMed

Laverty, R. & Sharman, D. F. (1965). Modification by drugs of the metabolism of 3, 4-dihydroxyphenylethylamine, nor-adrenaline and 5-hydroxytryptamine in the brain. British Journal of Pharmacology 24, 759–772.Google Scholar

Leff, J. P. & Wing, J. K. (1971). Trials of maintenance therapy in schizophrenia. British Medical Journal iii, 599–604.CrossRefGoogle Scholar

Lindvall, O., Bjorklund, A., Moore, R. Y. & Stenevi, U. (1974). Mesencephalic dopamine neurons projecting to the neocortex. Brain Research 81, 325–331.CrossRefGoogle Scholar

Loga, S., Curry, S. & Lader, M. (1975). Interactions of orphenadrine and phenobarbitone with chlorpromazine: plasma concentrations and effects in man. British Journal of Clinical Pharmacology 2, 197–208.CrossRefGoogle ScholarPubMed

Marsden, C. D., Tarsy, D. & Baldessarini, R. J. (1975). Spontaneous and drug induced movement disorders in psychotic patients. In Psychiatric Aspects of Neurologic Disease (ed. Benson, D. F. and Blumer, D.), pp. 219–266. Grune & Stratton: New York.Google Scholar

Martres, M. P., Costentin, J., Baudry, M., Marcais, H., Protais, P. & Schwartz, J. C. (1977). Long-term changes in the sensitivity of pre- and post-synaptic dopamine receptors in mouse striatum evidence by behavioural and biochemical studies. Brain Research 136, 319–337.CrossRefGoogle Scholar

Meldrum, B. S., Anlezark, G. M. & Marsden, C. D. (1977). Acute dystonia as an idiosyncratic response to neuroleptic drugs in baboons. Brain 100, 313–326.CrossRefGoogle ScholarPubMed

Meyer, H. H. (1956). Die Behandlung exogener Psychosen mit Phenothiazenderivaten. L'Encéphale 45, 524–527.Google Scholar

Møller-Nielsen, I. & Christensen, A. V. (1975). Long term effects of neuroleptic drugs. Journal de Pharmacologie (Paris) 6, 277–282.Google Scholar

Møller-Nielsen, I., Christensen, A. V. & Fjalland, B. (1976). Receptor blockade and receptor supersensitivity following neuroleptic treatment. In Antipsychotic Drugs: Pharmacodynamics and Pharmacokinetics (ed Sedvall, G., Uvnas, B. and Zotterman, B.), pp. 257–260. Pergamon Press: Oxford.Google Scholar

Mones, R. J. (1973). Experimental dyskinesias in normal rhesus monkey. In Advances in Neurology, volume 1 (ed. Barbeau, A., Chase, T. N. and Paulson, G. W.), pp. 665–670. Raven Press: New York.Google Scholar

Muller, P. & Seeman, P. (1977). Brain neurotransmitters after long term haloperidol: dopamine, acetylcholine, serotonin, α-noradrenergic and naloxone receptors. Life Sciences 21, 1751–1758.CrossRefGoogle ScholarPubMed

National Institute of Mental Health (1964). Phenothiazine treatment in acute schizophrenia: effectiveness. Archives of General Psychiatry 10, 246–261.CrossRefGoogle Scholar

Nieoullon, A., Cheramy, A. & Glowinski, J. (1977). Release of dopamine in vivo from cat substantia nigra. Nature 266, 375–377.CrossRefGoogle ScholarPubMed

Nybäck, H. & Sedvall, G. (1970). Further studies on the accumulation and disappearance of catecholamines formed from tyrosine-14C in the mouse brain. European Journal of Pharmacology 10, 193–205.CrossRefGoogle ScholarPubMed

O'Keefe, R., Sharman, D. F. & Vogt, M. (1970). Effect of drugs used in psychoses on cerebral dopamine metabolism. British Journal of Pharmacology 38, 287–304.CrossRefGoogle Scholar

Olianas, M. C., De Montis, G. M., Concu, A., Tagliamonte, A. & Di Chiara, G. (1978). Intranigral kainic acid: evidence for nigral non-dopaminergic neurons controlling posture and behaviour in a manner opposite to the dopaminergic one. European Journal of Pharmacology 49, 223–232.CrossRefGoogle Scholar

Paden, C., Wilson, C. J. & Groves, P. M. (1976). Amphetamine-induced release of dopamine from the substantia nigra in vitro. Life Sciences 19, 1499–1506.CrossRefGoogle ScholarPubMed

Parkes, J. D., Bedard, P. & Marsden, C. D. (1976). Chorea and torsion in parkinsonism. Lancet i, 155.CrossRefGoogle Scholar

Paulson, G. W. (1973). Dyskinesia in monkeys. In Advances in Neurology, volume I (ed. Barbeau, A., Chase, T. N. and Paulson, G. W.), pp. 647–650. Raven Press: New York.Google Scholar

Reisine, T. D., Nagy, J. I., Fibiger, H. C. & Yamamura, H. I. (1979). Localisation of dopamine receptors in rat brain. Brain Research 169, 209–214.CrossRefGoogle ScholarPubMed

Roth, R. H., Walters, J. R., Murrin, L. C., Morgenroth, V. H. III (1975). Dopamine neurons: role of impulse flow and presynaptic receptors in the regulation of tyrosine hydroxylase. In Pre- and Post-Synaptic Receptors (ed. Usdin, E. and Bunney, W. E. Jr), pp. 5–46. Marcel Dekker: New York.Google Scholar

Rotrosen, J., Friedman, E. & Gershon, S. (1975). Striatal adenylate cyclase activity following reserpine and chronic chiorpromazine administration in rats. Life Sciences 17, 563–568.CrossRefGoogle ScholarPubMed

Sakalis, G., Curry, S. H., Mould, G. P. & Lader, M. H. (1972). Physiologic and clinical effects of chlorpromazine and their relationship to plasma level. Clinical Pharmacology and Therapeutics 13, 931–946.CrossRefGoogle ScholarPubMed

Salzman, N. P. & Brodie, B. B. (1956). Physiological disposition and fate of chlorpromazine and a method for its estimation in biological materials. Journal of Pharmacology and Experimental Therapeutics 118, 46–54.Google Scholar

Sassin, J. F. (1975). Drug-induced dyskinesias in monkeys. In Advances in Neurology, volume 10 (ed. Meldrum, B. S. and Marsden, C. D.), pp. 47–54. Raven Press: New York.Google Scholar

Scatton, B. (1977). Differential regional development of tolerance to increase in dopamine turnover upon repeated neuroleptic administration. European Journal of Pharmacology 46, 363–369.CrossRefGoogle ScholarPubMed

Seeber, U. & Kuchinsky, K. (1976). Dopamine-sensitive adenylate cyclase in homogenates of rat striata during ethanol and barbiturate withdrawal. Archives of Toxicology (Berlin) 35, 247–253.CrossRefGoogle ScholarPubMed

Seeman, P. & Lee, T. (1974). The dopamine-releasing actions of neuroleptics and ethanol. Journal of Pharmacology and Experimental Therapeutics 190, 131–140.Google ScholarPubMed

Seeman, P., Chau-Wong, M., Tedesco, J. & Wong, K. (1975). Brain receptors for antipsychotic drugs and dopamine: direct binding assay. Proceedings of the National Academy of Sciences (USA) 72, 4376–4380.CrossRefGoogle Scholar

Sigwald, J., Bouttier, D., Raymondeaud, C. & Piot, C. (1959). Quatre cas de dyskinesie catrice a evolution prolongée secondaire à un traitement par les neuroleptiques. Revue Neurologique 100, 751–755.Google Scholar

Simpson, G. M. (1970). Controlled studies of antiparkinsonism agents in the treatment of drug-induced extrapyramidal symptoms. Acta psychiatrica scandinavica. Suppl. 212, 44–51.CrossRefGoogle Scholar

Skirboll, L. R. & Bunney, B. S. (1979). Effects of chronic haloperidol treatment of spontaneous activity in the caudate nucleus. In Catecholamines: Basic and Clinical Frontiers (ed Usdin, E., Kopin, I. J. and Barchas, J.), pp. 634–636. Pergamon Press: New York.CrossRefGoogle Scholar

Smith, R. C. & Davis, J. M. (1976). Behavioural evidence for supersensitivity after chronic administration of haloperidol, clozapine and thioridazine. Life Sciences 19, 725–732.CrossRefGoogle ScholarPubMed

Smith, R. C., Tamminga, C. A., Haraszti, J., Paudey, G. W. & Davis, J. M. (1977). Effects of dopamine agonists in tardive dyskinesia. American Journal of Psychiatry 134, 763–768.Google ScholarPubMed

Spano, P. F., Trabucchi, M. & Di Chiara, G. (1977). Localisation of nigral dopamine sensitive adenylate cyclase on neurons originating from the corpus striatum. Science 196, 1343–1345.CrossRefGoogle ScholarPubMed

Steck, H. (1954). Le syndrome extrapyramidal et diencéphalique au cours des traitements au Largactil et au Serpasil. Annales medico-psychologiques 112, 737–743.Google ScholarPubMed

Strombom, U. (1977). Antagonism by haloperidol of locomotor depression induced by small doses of apomorphine. Journal of Neural Transmission 40, 191–194.CrossRefGoogle ScholarPubMed

Tarsy, D. & Baldessarini, R. J. (1973). Pharmacologically-induced behavioural supersensitivity to apomorphine. Nature 245, 262–263.Google ScholarPubMed

Tarsy, D. & Baldessarini, R. J. (1974). Behavioural super-sensitivity to apomorphine following chronic treatment with drugs which interfere with the synaptic function of catecholamines. Neuropharmacology 13, 927–940.CrossRefGoogle Scholar

Tarsy, D. & Baldessarini, R. J. (1976). The tardive dyskinesia syndrome. In Clinical Neuropharmacology, volume I (ed. Klawans, H. L.), pp. 29–61. Raven Press: New York.Google Scholar

Tassin, J. P., Stinus, L., Simon, M., Blanc, G., Thierry, A. M., le Moral, M., Cardo, B. & Glowinski, J. (1978). Relationship between the locomotor hyperactivity induced by A10 lesions and the destruction of the fronto-cortical dopaminergic innervation in the rat. Brain Research 141, 267–281.CrossRefGoogle ScholarPubMed

Thierry, A. M., Blanc, G., Sobel, A., Stinus, L. & Glowinski, J. (1973). Dopamine terminals in the rat cortex. Science 182, 499–501.CrossRefGoogle ScholarPubMed

Tolosa, E. S. (1978). Modification of tardive dyskinesia and spasmodic torticollis by apomorphine. Archives of Neurology 35, 459–462.CrossRefGoogle Scholar

Trendelenburg, U. (1963 a). Supersensitivity and subsensitivity to sympathomimetic amines. Pharmacological Reviews 15, 225–276.Google ScholarPubMed

Trendelenburg, U. (1963b). Time course of changes in sensitivity after denervation of the nictitating membrane of the spinal cat. Journal of Pharmacology 142, 335–342.Google ScholarPubMed

Uhrbrand, L. & Faurbye, A. (1960). Reversible and irreversible dyskinesia after treatment with perphenazine, chlorpromazine, reserpine and electroconvulsive therapy. Psychopharmacologia (Berlin) 1, 408–419.CrossRefGoogle Scholar

van Rossum, J. M. (1966). Significance of dopamine-receptor blockade for mechanism of action of neuroleptic drugs Archives internationales de pharmacodynamie et de thérapie 160, 492–494.Google ScholarPubMed

von Voigtlander, P. F., Losey, E. G. & Triezenberg, H. J. (1975). Increased sensitivity to dopaminergic agents after chronic neuroleptic treatment. Journal of Pharmacology and Experimental Therapeutics 193, 88–94.Google Scholar

Weiss, B., Santelli, S. & Lusink, G. (1977). Movement disorders induced in monkeys by chronic haloperidol treatment. Psychopharmacology 53, 289–293.CrossRefGoogle ScholarPubMed

Yaryura-Tobias, J. A., Wolpert, A., Dana, L. & Merlis, J. (1970). Action of L-DOPA in drug-induced extrapyramidalism. Diseases of the Nervous System 31, 60–63.Google ScholarPubMed

Yeh, B. K., McNay, J. L. & Goldberg, L. I. (1969). Attenuation of dopamine renal and mesenteric vasodilatation by haloperidol in evidence for a specific dopamine receptor. Journal of Pharmacology and Experimental Therapeutics 168, 303–309.Google ScholarPubMed

Zivkovic, B., Guidotri, A.Revuelta, A. & Costa, E. (1975). Effect of thioridazine, clozapine and other antipsychotics on the kinetic state of tyrosine hydroxylase and on the turnover rate of dopamine in striatum and nucleus accumbens. Journal of Pharmacology and Experimental Therapeutics 194, 37–46.Google ScholarPubMed