Ionic pores, gates, and gating currents | Quarterly Reviews of Biophysics | Cambridge Core (original) (raw)

Extract

The current phase of axon physiology began with the invention of the voltage clamp by Cole (1949) and its use by Hodgkin & Huxley (1952d) to produce an astonishingly complete analysis of the ionic permeabilities that are responsible for the action potential. Their description did notcontain much in the way of molecular detail, and left open such questions as whether ions cross the membrane by way of pores or carriers, and the nature of the ‘gating‘ processes that increase ordecrease ion permeability in response to changes of the membrane potential. In the last few years our picture of the ionicchannels has grown considerably more tangible, though it still falls far short of a detailed molecular description. This article describes this sharpened picture and reviews the evidence for it. The viewpoint expressed is a very personal one, andno attempt has been made to review the literature of axonology comprehensively.

References

Adelman, W. J. & Senft, J. P. (1968). Dynamic asymmetries in the squid axon membrane. J. gen. Physiol. 51, 102–14s.CrossRefGoogle ScholarPubMed

Anderson, C. R. & Stevens, C. F. (1973). Voltage-clamp analysis of acetylcholine produced fluctuations at frog neuromuscular junction. J. Physiol., Lond. 235, 655–691.CrossRefGoogle ScholarPubMed

Armstrong, C. M. (1966). Time course of TEA+induced anomalous rectification in squid giant axon. J. gen. Physiol. 50, 491–503.CrossRefGoogle Scholar

Armstrong, C. M. (1969). Inactivation of the potassium conductance and related phenomena caused by quaternary ammonium ion injected in squid axon. J. gen. Physiol. 54, 553–75.CrossRefGoogle Scholar

Armstrong, C. M. (1970). Comparison of g K inactivation caused by quaternary ammonium ion with g Na inactivation. Biophys. Soc. Ann. Meet. Abstr. 10, 185 a.Google Scholar

Armstrong, C. M. (1971). Interaction of tetraethylammonium ion derivatives with the potassium channels of giant axons. J. gen. Physiol. 58, 413–37.CrossRefGoogle ScholarPubMed

Armstrong, C. M. (1974). K pores of nerve and muscle membrane. In Membranes: A Series of Advances, vol. 3 (ed. Eisenman, G.). New York: Marcel Dekker.Google Scholar

Armstrong, C. M. & Bezanilla, F. (1973 a). Properties of gating currents of sodium channels. Biol. Bull. mar. biol. Lab., Woods Hole 145, 423.Google Scholar

Armstrong, C. M. & Bezanilla, F. (1973 b). Currents related to the movement of gating particles of the sodium channels. Nature, Lond. 242, 459–61.CrossRefGoogle Scholar

Armstrong, C. M., Bezanilla, F. M. & Horowicz, P. (1972). Twitches in the presence of ethylene-glycol bis (β-aminoethyl ether)-N, N'-tetraacetic acid. Biochim. biophys. Acta 267, 605–8.CrossRefGoogle Scholar

Armstrong, C. M., Bezanilla, F. & Rojas, E. (1973). Destruction of sodium conductance inactivation in squid axon perfused with pronase. J. gen. Physiol. 62, 375–91.CrossRefGoogle ScholarPubMed

Armstrong, C. M. & Binstock, L. (1965). Anomalous rectification in the squid giant axon injected with tetraethylammonium chloride. J. gen. Physiol. 48, 859–72.CrossRefGoogle ScholarPubMed

Armstrong, C. M. & Hille, B. (1972). The inner quaternary ammonium ion receptor in potassium channels of node of Ranvier. J. gen. Physiol. 59, 388–400.CrossRefGoogle ScholarPubMed

Baker, P. F., Hodgkin, A. L. & Ridgway, E. B. (1971). Depolarization and calciumentry in squid giant axon. J. Physiol., Lond. 218, 709–55.CrossRefGoogle Scholar

Begenisich, T. & Lynch, C. (1973). Reversible blockage of ionic currents by internal Zn. Biol. Bull. mar. biol. Lab., Woods Hole 145, 424.Google Scholar

Bergman, C. (1970). Increase of sodium concentration near the inner surface of nodal membrane. Pfüuger's Arch. Eur. J. Physiol. 317, 287–302.CrossRefGoogle ScholarPubMed

Bezanilla, F. & Armstrong, C. M. (1972). Negative conductance caused by entry of sodium and cesium ions into the potassium channels of squid axon. J. gen. Physiol. 60, 588–608.CrossRefGoogle Scholar

Bezanilla, F. & Armstrong, C. M. (1973). Unpublished data.Google Scholar

Bezanilla, F. & Armstrong, C. M. (1974.). Gating currents of the sodium channels: three waysto block them. Science, N. Y. (In the Press.)CrossRefGoogle Scholar

Ciani, S., Eisenman, G. & Szabo, G. (1969). A theory for the effects of neutral carriers such as the macrotetralide actin antibiotics on electrical properties of bilayer membranes. J. molec. Biol. I, 1–36.Google Scholar

Cohen, L. B., Keynes, D. & Landowne, D. (1972). Changes in axon light scatteringthat accompany the action potential: current dependent component. J. Physiol., Lond. 224, 727–52.CrossRefGoogle Scholar

Cohen, L. B., Hille, B. & Keynes, R. D. (1970). Changes in axon birefringence during action potential. J. Physiol., Lond. 211, 495–515.CrossRefGoogle ScholarPubMed

Cole, K. S.Dynamic electrical characteristics of the squid axon membrane. Archs. Sci. Physiol. 3, 253–8.Google Scholar

Colquhoun, D. R., Henderson, R. & Ritchie, J. M. (1972). The binding of tetrodotoxin to non-myelinated nerve fibers. J. Physiol., Lond. 227, 95–125.CrossRefGoogle Scholar

Davila, H. V., Salzberg, B. M. & Cohen, L. B. (1972). Changes of fluorescence ofsquid axon during activity. Biol. Bull. mar. biol. Lab., Woods Hole 143, 457.Google Scholar

Davila, H. V., Salzberg, B. M. & Cohen, L. B. (1973). Use of fluorescent merocyanine dye for measuring axon membrane potential. Nature New Biol. 241, 159–60.CrossRefGoogle Scholar

Diamond, J. M. & Wright, E. M. (1969). Biological membranes: The physical basis of ion and nonelectrolyte selectivity. A. Rev. Physiol. 31, 581–646.CrossRefGoogle ScholarPubMed

Fishman, H. S. (1972). Excess noise from small patches of squid axon membrane. Biophys. Soc. Ann. Meet. Abst. 12, 119.Google Scholar

Fishman, H. S. (1973). Relaxation spectra of potassium channel noise from squid axon membranes. Proc. natn. Acad. Sci. (U.S.A.) 70, 876–9.CrossRefGoogle ScholarPubMed

Frankenhaeuser, B. & Hodgkin, A. L. (1957). The action of calcium on electrical properties of squid axon. J. Physiol., Lond. 137, 218–44.CrossRefGoogle Scholar

Frankenhabuser, B. & Moore, L. E. (1963). The effect of temperature on the sodium and potassium permeability changes in myelinated fibers of Xenopus laevis. J. Physiol., Lond. 169, 431–7.CrossRefGoogle Scholar

Goldman, L. & Schauf, C. L. (1972). Inactivation of the sodium current in myxicola giantaxons. J. gen. Physiol. 59,659–75CrossRefGoogle Scholar

Hagiwara, S. & Saito, N. (1959). Voltage-current relationships in nerve cell membranes of Onchidium verruculatum. J. Physiol., Lond. 148, 161–79.CrossRefGoogle Scholar

Hille, B. (1966). Common mode of action of three agents that decrease the transient change in sodiumpermeability in nerves. Nature, Lond. 210, 1220–2.CrossRefGoogle Scholar

Hille, B. (1967). The selective inhibition of delayed potassium currents in nerves by tetraethylammonium ions. J. gen. Physiol. 50, 1287–302.CrossRefGoogle Scholar

Hille, B. (1971). The permeability of sodium channels to organic cations in myelinated nerves. J. gen. Physiol. 58, 599–619.CrossRefGoogle Scholar

Hille, B. (1972). The permeability of sodium channels to metal cations in myelinated nerves. J. gen. Physiol. 59, 637–58.CrossRefGoogle Scholar

Hladky, S. B. & Haydon, D. A. (1970). Discreteness of conductance change in biomolecularlipid membranes in the presence of certain antibiotics. Nature, Lond. 225, 451–3.CrossRefGoogle ScholarPubMed

Hodgkin, A. L. & Huxley, A. F. (1952 a). Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo.J. Physiol., Lond. 116, 449–72.CrossRefGoogle ScholarPubMed

Hodgkin, A. L. & Huxley, A. F. (1952 b). The components of membrane conductance inthe giant axon of Loligo. J. Physiol., Lond. 116, 473–96.CrossRefGoogle Scholar

Hodgkin, A. L. & Huxley, A. F. (1952 c). The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J. Physiol., Lond. 116, 497–506.CrossRefGoogle ScholarPubMed

Hodgkin, A. L. & Huxley, A. F. (1952 d). A quantitative description of membrane current and its application to conductance and excitation in nerve. J. Physiol., Lond. 117, 500–44.CrossRefGoogle ScholarPubMed

Hodgkin, A. L., Huxley, A. F. & Katz, B. (1952). Measurements of current voltagerelations in the membrane of the giant axon of Loligo. J. Physiol., Lond. 116, 424–48.CrossRefGoogle ScholarPubMed

Hodgkin, A. L. & Keynes, R. D. (1955). The potassium permeability of a giant nerve fibre. J. Physiol., Lond. 128, 61–88.CrossRefGoogle ScholarPubMed

Hodgkin, A. L. & Keynes, R. D. (1957). Movements of labelled calcium in squid giant axon. J. Physiol., Lond. 138, 253–81.CrossRefGoogle Scholar

Horowicz, P., Gage, P. W. & Eisenberg, R. S. (1968). The role of electrochemicalgradient in determining potassium fluxes in frog striated muscle. J. gen. Physiol. 51, 193–203S.CrossRefGoogle ScholarPubMed

Katz, & Miledi, (1972). The statistical nature of the acetyicholine potential and its molecular components. J. Physiol., Lond. 224, 665–699.CrossRefGoogle Scholar

Keynes, R. D., Ritchie, J. M. & Rojas, E. (1971). The binding of tetrodotoxin to nerve membranes. J. Physiol. 213, 235–54.CrossRefGoogle ScholarPubMed

Keynes, R. D. & Rojas, E. (1973). Characteristics of sodium gating currents in the squidgiant axon. J. Physiol. 233, 28–30P.Google ScholarPubMed

Keynes, R. D., Rojas, E. & Taylor, R. E. (1973). Saxitoxin, tetrodotoxin barriers and binding sites in squid giant axon. J. gen. Physiol. 6, 267.Google Scholar

Kilbourn, B. T., Dunitz, J. D., Dioda, L. A. & Simon, W. (1967). Structure of the K+ complex with nonactin a macrotetralide antibiotic possessing highly specific K+ transport properties. J. Molec. Biol. 30, 559–63.CrossRefGoogle Scholar

Krasne, S., Eisenman, G. & Szabo, G. (1971). Freezing and melting of lipid bilayers and the mode of action of nonactin, valinomycin, and grarnicidin. Science, N.Y. 174, 412–15.CrossRefGoogle Scholar

Moora, J. W., Narahashi, T. & Shaw, T. I. (1967). An upper limit to the number of sodium channels in nerve membrane? J. Physiol., Lond. 188, 99–105.CrossRefGoogle Scholar

Mullins, L. J. (1968). A single channel or a dual channel mechanism for nerve excitation. J. gen. Physiol. 52, 550–3.CrossRefGoogle ScholarPubMed

Narahashi, T., Moore, J. W. & Scott, W. R. (1964). Tetrodotoxin blockage of sodium conductance increase in lobster giant axons. J. gen. Physiol. 47, 965–74.CrossRefGoogle ScholarPubMed

Parsegian, A. (1969). Energy of an ion crossing a low dielectric membrane: Solutions to four relevant electrostatic problems. Nature, Lond. 221, 844–6.CrossRefGoogle Scholar

Poussart, D. J. M. (1971). Membrane current noise in lobster axon under voltage clamp. Biophys. J. II, 211–34.CrossRefGoogle Scholar

Siebenga, E. A., Meyer, W. A. & Verveen, A. A. (1973). Membrane shot-noise in electrically depolarized nodes of Ranvier. Pflüger's Arch. Eur. J. Physiol. 341, 87–96.CrossRefGoogle ScholarPubMed

Strichartz, G. R. (1973). The inhibition of sodium currents in myelinated nerve by quaternary derivatives of lidocaine. J. gen. Physiol. 62, 37–57.CrossRefGoogle ScholarPubMed

Tasaki, I. & Hagiwara, S. (1957). Demonstration of two stable potential states in squid giant axon under tetraethylammonium chloride. J. gen.Physiol. 40, 851–85.CrossRefGoogle ScholarPubMed

Urry, D. W. (1971). The gramicidin A transmembrane channel: A proposed π(L, D) helix. Proc. natn. Acad. Sci. U.S.A. 68, 672–6.CrossRefGoogle Scholar

Urry, D. W. (1972). A molecular theory of ion-conducting channels: A field dependent transition between conducting and non-conducting conformations. Proc. natn. Acad. Sci. U.S.A. 69, 1610–14.CrossRefGoogle Scholar

Verveen, A. A. & Derksen, H. E. (1968). Fluctuation phenomena in nerve membrane. Proc. IEEE 56, 906–16.CrossRefGoogle Scholar

Winkler, R. (1969). Kinetik und Mechanismus der Alkali-und Erdalkalimetalkomplexbildung in Methanol. Ph.D. Dissertation, Göttingen— Wien.Google Scholar