Thermodynamic analysis of ion effects on the binding and conformational equilibria of proteins and nucleic acids: the roles of ion association or release, screening, and ion effects on water activity | Quarterly Reviews of Biophysics | Cambridge Core (original) (raw)

Extract

The purpose of this review is to examine the various effects of low- molecular-weight electrolytes on the associations and interactions of proteins and nucleic acids. Our primary interest is in general electrostatic effects, rather than chemical effects (specific interactions) of particular ions (e.g. transition metals, protons). We consider those interactions in which a variation in salt concentration has a significant effect on the macromolecular equilibrium, and analyse the effects of salt in these situations in terms of (i) direct participation of ions in the biopolymer reaction, (ii) Debye—Hückel screening by salt ions of the charge interactions on the biopolymers, and (iii) the reduction in water activity brought about at high salt concentrations.

References

Anderson, C. F.Record, M. T. Jr & Hart, P. A. (1978). Sodium-23 NMR studies of cation—DNA interactions. Biophysical Chem. 7, 301–316.CrossRefGoogle ScholarPubMed

Antonini, E. & Brunori, M. (1971). Hemoglobin and Myoglobin in Their Reactions with Ligands. Amsterdam: North Holland.Google Scholar

Aune, K. C. & Tanford, C. (1969 a). Thermodynamics of the denaturation of lysozyme by guanidine hydrochloride. I. Dependence on pH at 25°. Biochemistory, N.Y. 8, 4579–4585.CrossRefGoogle Scholar

Aune, K. C. & Tanford, C. (1969 b). Thermodynamics of the denaturation of lysozyme by guanidine hydrochloride. II. Dependence on denaturant concentration at 25°. Biochemistory, N.Y. 8, 4586–4590.CrossRefGoogle ScholarPubMed

Aune, K. C.Goldsmith, L. C. & Timasheff, S. N. (1971). Dimerization of α-chymotrypsin. II. Ionic strength and temperature dependence. Biochemistory, N.Y. 10, 1617–1622.Google ScholarPubMed

Aune, K. C. & Timasheff, S. N. (1971). Dimerization of α-chymotrypsin. I. pH dependence in the acid region. Biochemistory, N.Y. 10, 1609–1617.Google ScholarPubMed

Benesch, R. E.Benesch, R. & Yu, C. I. (1969). The oxygenation of hemoglobin in the presence of 2,3-diphosphoglycerate. Effect of temperature, pH, ionic strength and hemoglobin concentration. Biochemistory, N.Y. 8, 2567–2571.CrossRefGoogle ScholarPubMed

Berg, D. & Chamberlin, M. (1970). Physical studies on RNA polymerase from E. coil B. Biochemistry, N.Y. 9, 5055–5064.Google Scholar

Bloomfield, V. A.Crothers, D. M. & Tinoco, I. (1974). Physical Chemistry of Nucleic Acids. New York: Harper and Row.Google Scholar

Bradbury, E. M.Cary, P. D.Crave-Robinson, D.Rattle, H. W. E. & Boublik, M. (1975). Conformations and interactions of histone H2A (F2A2, ALK). Biochemistory, N.Y. 14, 1876–1885.CrossRefGoogle ScholarPubMed

Bradley, D. F. & Lifson, S. (1968). Statistical mechanical analysis of binding of acridines to DNA. In Molecular Associations in Biology (ed. Pullman, B.), pp. 261–270. New York: Academic Press.CrossRefGoogle Scholar

Breslauer, K. J.Sturtevant, J. M. & Tinoco, I. Jr, (1975). Calorimetric and spectroscopic investigation of the helix-to-coil transition of a ribooligonucleotide: rA7U7. J. molec. Biol. 99, 549–565.CrossRefGoogle ScholarPubMed

Brun, F.Toulmé, J. & Héléne, C. (1975). Interactions of aromatic residues of proteins with nucleic acids. Fluorescence studies of the binding of oligopeptides containing tryptophan and tyrosine residues to polynucleotides. Biochemistory, N.Y. 14, 558–563.CrossRefGoogle ScholarPubMed

Carr, C. W. (1955). Determination of ionic activity in protein solutions with collodion membrane electrodes. In Electrochemistry in Biology and Medicine (ed. Shedlovsky, T.), 266–283. New York: Wiley.Google Scholar

Chiancone, E.Norne, J. E.Forsén, S.Antonini, E. & Wyman, J. (1975). Nuclear magnetic resonance quadrupole relaxation studies of chloride binding to human oxy- and deoxyhemoglobin. J. molec. Biol. 70, 675–688.CrossRefGoogle Scholar

Chiancone, E.Norne, J. E.Forsén, S.Bonaventura, J.Brunori, M.Antonini, E. & Wyman, J. (1975). Identification of chloride-binding sites in hemoglobin by nuclear-magnetic-resonance quadrupole relaxation studies of hemoglobin digests. Eur. J. Biochem. 55, 385–390.CrossRefGoogle ScholarPubMed

Chiancone, E.Norne, J. E.Forsén, S.Mansouri, A. & Winterhalter, K. H. (1976). Anion binding to proteins. NMR quadrupole relaxation study of chloride binding to various human hemoglobins. FEBS Lett. 63, 309–312.CrossRefGoogle ScholarPubMed

Crothers, D. M. (1971). Statistical thermodynamics of nucleic acid melting transitions with coupled binding equilibria. Biopolymers 10, 2147–2160.CrossRefGoogle ScholarPubMed

D'Anna, J. A. & Isenberg, I. (1974). Conformational changes of histone LAK (f2a2). Biochemistry, N.Y. 2093–2098.Google Scholar

Daune, M. P. (1972). Interactions protéines-acides nucléiques. i. Étude theorique de l'association. Eur. J. Biochem. 26, 207–211.CrossRefGoogle Scholar

Davidson, S. J. & Jencks, W. P. (1969). The effect of concentrated salt solutions on a merocyanine dye, a vinglogous amide. J. Am. chem. Soc. 91, 225–234.CrossRefGoogle Scholar

DeHaseth, P. L.Lohman, T. M. & Record, M. T. Jr, (1977). Nonspecific interaction of lac repressor with DNA: An association reaction driven by counterion release. Biochemistory, N.Y. 16, 4783–4790.CrossRefGoogle ScholarPubMed

DeHaseth, P. L.Lohman, T. M., Burgess, R. R. & Record, M. T. Jr, (1978). Interactions of E. coli RNA polymerase with native and denatured DNA: Differences in the binding behavior of core and holoenzyme. Biochemistory, N.Y. 17, 1612–1622.CrossRefGoogle ScholarPubMed

Draper, D. E. & Von, Hippel P. H. (1978 a). Nucleic acid binding properties of E. coli ribosomal protein Si. I. Structure and interactions of binding site I. J. molec. Biol. (In the Press.)CrossRefGoogle Scholar

Draper, D. E. & Von, Hippel P. H. (1978 b). Nucleic acid binding properties of E. coli ribosomal protein Si. 11. Cooperativity and specificity of binding site II. J. molec. Biol. (In the Press.)Google Scholar

Durand, M.Maurizot, J. C.Borazan, H. N. & Héléne, C. (1975). Interaction of aromatic residues of proteins with nucleic acids. Circular dichroism studies of the binding of oligopeptides to poly(adenylic acid). Biochemistory, N.Y. 14, 563–570.CrossRefGoogle ScholarPubMed

Dwek, R. A. (1973). Nuclear Magnetic Resonance in Biochemistry. Oxford: Clarendon Press.Google Scholar

Eisenberg, H. (1974). Hydrodynamic and thermodynamic studies. In Basic Principles in Nucleic Acid Chemistry, vol. II (ed. Ts'o, P. O. P.), pp. 171–264. New York: Academic Press.CrossRefGoogle Scholar

Elson, E. L.Scheffler, I. E. & Baldwin, R. L. (1970). Helix formation by d(TA) oligomers. III. Electrostatic effects. J. molec. Biol. 54, 401–415.CrossRefGoogle Scholar

Felsenfeld, G. & Miles, H. T. (1967). The physical and chemical properties of nucleic acids. A. Rev. Biochem. 36, 407–448.CrossRefGoogle ScholarPubMed

Frigon, R. P. & Timasheff, S. N. (1975). Magnesium-induced self association of calf brain tubulin. II. Thermodynamics. Biochemistory, N.Y. 14, 4567–4573.CrossRefGoogle ScholarPubMed

Gillberg-La, Force G. & Forsén, S. (1970). The binding of anionic surfactants to human serum albumin studied by means of 81Br nuclear magnetic resonance. Biochem. biophys. Res. Commun 38, 137–142.CrossRefGoogle Scholar

Greene, R. F. Jr & Pace, C. N. (1974). Urea and guanidine hydrochloride denaturation of ribonuclease, lysozyme, α-chymotrypsin and β lactoglobulin. J. biol. Chein. 249, 5388–5393.CrossRefGoogle ScholarPubMed

Guidotti, G. (1967). Studies on the chemistry of hemoglobin. II. The effect of salts on the dissociation of hemoglobin into subunits. J. biol. Chem. 242, 3685–3693.CrossRefGoogle ScholarPubMed

Haire, R. N. & Hedlund, B. E. (1977). Thermodynamic aspects of the linkage between binding of chloride and oxygen to human hemoglobin. Proc. natn. Acad. Sci. U.S.A. 74, 4135–4138.CrossRefGoogle ScholarPubMed

Hamabata, A. & Von, Hippel P. H. (1973). Model studies on the effects of neutral salts on the conformational stability of biological macromolecules. II. Effects of vicinal hydrophobic groups on the specificity of binding of ions to amide groups. Biochemistory, N.Y. 12, 1264–1271.CrossRefGoogle ScholarPubMed

Hamabata, A.Chang, S. & Von, Hippel P. H. (1973). Model studies on the effects of neutral salts on the conformational stability of biological macromolecules. III. Solubility of fatty acid amides in ionic solutions. Biochemistory, N.Y. 12, 1271–1278.CrossRefGoogle Scholar

Hamaguchi, K. & Geiduschek, E. P. (1962). The effect of electrolytes on the stability of the deoxyribonucleate helix. J. Am. chem. Soc. 84, 1329–1338.CrossRefGoogle Scholar

Herskovits, T. T.Cavanagh, S. M. & San, George R. D. (1977). Light-scattering investigations of the subunit dissociation of human hemoglobin. A. Effects of various neutral salts. Biochemistry, N. Y. 16, 5795–5801.CrossRefGoogle ScholarPubMed

Ibanez, V. S. & Herskovits, T. T. (1976). Effects of the aliphatic carboxylate series of salts on the conformation of proteins. Biochemistry, N. Y. 15, 5708–5714.CrossRefGoogle ScholarPubMed

Jencks, W. P. (1969). Catalysis in Chemistry and Enzymology. New York: McGraw-Hill.Google Scholar

Jensen, D. E.Kelly, R. C. & Von, Hippel P. H. (1976). DNA melting proteins. II. Effects of bacteriophage T4 gene-32 protein binding on the conformation and stability of nucleic acid structures. J. biol. Chem. 251, 7215–7228.CrossRefGoogle ScholarPubMed

Jensen, D. E. & Von, Hippel P. H. (1976). DNA ‘melting’ proteins. I. Effects of bovine pancreatic ribonuclease binding on the conformation and stability of DNA. J. biol. Chem. 251, 7198–7214.CrossRefGoogle ScholarPubMed

Jonas, A. & Weber, G. (1971). Presence of arginine residues at the strong, hydrophobic anion binding sites of bovine serum albumin. Biochemistory, N.Y. 10, 1335–1339.CrossRefGoogle ScholarPubMed

Katsura, I. & Noda, H. (1973). Further studies on the formation of reconstituted myosin filaments. J. Biochem (Tokyo) 73, 245–256.Google ScholarPubMed

Kellett, G. L. (1971). Dissociation of hemoglobin into subunits: Ligandlinked dissociation at neutral pH. J. molec. Biol. 59 401–424.CrossRefGoogle ScholarPubMed

Kirshner, A. G. & Tanford, C. (1964). The dissociation of hemoglobin by inorganic salts. Biochemistory, N.Y. 3, 291–296.CrossRefGoogle ScholarPubMed

Klotz, I. M. (1953). Protein interactions. In The Proteins, vol. I B (ed.Neurath, H. and Bailey, K.), pp. 727–806. New York: Academic Press.Google Scholar

Klotz, I. M.Darnall, D. W. & Langerman, N. R. (1975). Quaternary structure of proteins. In The Proteins, vol. I, 3rd ed. (ed. Neurath, H. and Hill, R. L.), pp. 294–411. New York: Academic Press.Google Scholar

Klotz, I. M. & Urquhart, J. M. (1975). The binding of organic ions by proteins. Buffer effects. J. Phys. Chem. 53, 100–114.CrossRefGoogle Scholar

Klump, H. & Ackermann, T. (1971). Experimental thermodynamics of the helix-random coil transition. IV. Influence of the base composition of the DNA on the transition enthalpy. Biopolymers 10, 513–522.CrossRefGoogle ScholarPubMed

Knapp, J. A. & Pace, C. N. (1974). Guanidine hydrochloride and acid denaturation of horse, cow, and candida krusei cytochromes C. Biochemistory, N.Y. 13, 1289–1294.CrossRefGoogle ScholarPubMed

Kotin, L. (1963). On the effect of ionic strength on the melting temperature of DNA. J. molec. Biol. 7, 309–311.CrossRefGoogle ScholarPubMed

Krakauer, H. (1974) A thermodynamic analysis of the influence of simple monovalent and divalent cations on the conformational transitions of polynucleotide complexes. Biochemistory, N.Y. 13, 2579–2589.CrossRefGoogle ScholarPubMed

Krakauer, H. & Sturtevant, J. M. (1968). Heats of the helix-coil transitions of the polyA-polyU complexes. Biopolymers 6, 491–512.CrossRefGoogle Scholar

Latt, S. A. & Sober, H. A. (1967). Protein-nucleic acid interactions. II. Oligopeptide-polyribonucleotide binding studies. Biochemistory, N.Y. 6, 3293–3306.CrossRefGoogle ScholarPubMed

Lee, J. C. & Timasheff, S. N. (1977). In vitro reconstitution of calf brain microtubules: Effect of solution variables. Biochemistory, N.Y. 16, 1754–1764.CrossRefGoogle ScholarPubMed

Lewis, M. S. & Saroff, H. A. (1957). The binding of ions to the muscle proteins. Measurements on the binding of potassium and sodium ions to myosin A, myosin B, and actin. J. Am. chem. Soc. 79, 2112–2117.CrossRefGoogle Scholar

Lifson, S. (1964). Partition functions of linear-chain molecules. J. chem. Phys. 40, 3705–3710.CrossRefGoogle Scholar

Lindman, B. & Forsén, S. (1976). Chlorine, Bromine and Iodine NMR. Berlin: Springer-Verlag.CrossRefGoogle Scholar

Lindman, B.Kamenke, N. & Brun, B. (1972). Detergent translational mobility in the presence of human serum albumin. Biochim. biophys. Acta. 285, 118–123.CrossRefGoogle ScholarPubMed

Loeb, G. I. & Saroff, H. A. (1964). Chloride- and hydrogen-ion binding to ribonuclease. Biochemistory, N.Y. 3, 1819–1826.CrossRefGoogle ScholarPubMed

Lohman, T. M. & Record, M. T. Jr, (1978). (In preparation.)Google Scholar

Lohman, T. M.Wensley, C. G. & Record, M. T. Jr, (1978). (In preparation.)Google Scholar

Long, F. A. & McDevit, W. F. (1952). Activity coefficients of nonelectrolyte solutes in aqueous salt solutions. Chem. Revs. 51, 119–169.CrossRefGoogle Scholar

Longsworth, L. G. & Jacobsen, C. F. (1949). An electrophoretic study of the binding of salt ions by β-lactoglobulin and bovine serum albumin. J. Phys. Chem. 53, 126–135.CrossRefGoogle ScholarPubMed

Losick, R. & Chamberlin, M. (eds.) (1976). RNA Polymerase. New York: Cold Spring Harbor Press.Google ScholarPubMed

Mandelkern, L. & Stewart, W. E. (1964). The effect of neutral salts on the melting temperature and regeneration kinetics of the ordered collagen structure. Biochemistory, N.Y. 3, 1135–1137.CrossRefGoogle ScholarPubMed

Manning, G. S. (1969). Limiting laws and counterion condensation in polyelectrolyte solutions. I. Colligative properties. J. chem. Phys. 51, 924–933.CrossRefGoogle Scholar

Manning, G. S. (1972 a). On the application of polyelectrolyte ‘limiting laws’ to the helix-coil transition of DNA. I. Excess univalent cations. Biopolymers II, 937–949.CrossRefGoogle Scholar

Manning, G. S. (1972 b). On the application of polyelectrolyte ‘limiting laws’ to the helix-coil transition of DNA. II. The effect of Mg++ counterions. Biopolymers II, 951–955.CrossRefGoogle Scholar

Manning, G. S. (1974). Limiting laws for equilibrium and transport properties of polyelectrolyte solutions. In Polyelectrolytes (ed. Selegny, E.), pp. 9–38. Holland: Reidel.CrossRefGoogle Scholar

Manning, G. S. (1975). Remarks on the paper ‘Nuclear magnetic relaxation of 23Na in polyelectrolyte solutions’ by van der Klink, Zuiderweg and Leyte. J. chem. Phys. 62, 748–749.CrossRefGoogle Scholar

Manning, G. S. (1976). The application of polyelectrolyte limiting laws to the helix-coil transition of DNA. VI. The numerical value of the axial phosphate spacing for the coil. Biopolymers 15, 2385–2390.CrossRefGoogle Scholar

Manning, G. S. (1978). The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Q. Rev. Biophys. II, 179–246.CrossRefGoogle Scholar

Manning, G. S. & Holtzer, A. (1973). Application of polyelectrolyte limiting laws to potentiometric titration. J. Phys. Chem. 77, 2206–2212.CrossRefGoogle Scholar

McGhee, J. D. (1976). Theoretical calculations of the helix-coil transition of DNA in the presence of large cooperatively binding ligands. Biopolymers 15, 1345–1375.CrossRefGoogle ScholarPubMed

McGhee, J. D. & Von, Hippel P. H.Theoretical aspects of DNA-protein interactions: cooperative and non-cooperative binding of large ligands to a one dimensional homogeneous lattice. J. molec. Biol. 86, 469–489.CrossRefGoogle Scholar

Mukerjee, P. (1965). Salt effects on nonionic association colloids. J. Phys. Chem. 69, 4038–4040.CrossRefGoogle Scholar

Nakanishi, M.Tsuboi, M. & Ikegani, A. (1973). Fluctuation of the lysozyme structure. II. Effects of temperature and binding of inhibitors. J. molec. Biol. 75, 673–682.CrossRefGoogle ScholarPubMed

Nandi, P. K. & Robinson, D. R. (1972 a). The effects of salts on the free energy of the peptide group. J. Am. chem. Soc. 94, 1299–1308.CrossRefGoogle ScholarPubMed

Nandi, P. K. & Robinson, D. R. (1972 b). The effects of salts on the free energies of nonpolar groups in model peptides. J. Am. chem. Soc. 94, 1308–1315.CrossRefGoogle ScholarPubMed

Nelson, C. A.Hummel, J. P.Swenson, C. A. & Friedman, L. (1962). Stabilization of pancreatic ribonuclease against urea denaturation by anion binding. J. biol. Chem. 237, 1575–1580.CrossRefGoogle ScholarPubMed

Norne, J. E.Hjalmarsson, S. G.Lindman, B. & Zeppezauer, M. (1975 a). Anion binding properties of human serum albumin from halide ion quadrapole relaxation. Biochemistory, N.Y. 14, 3401–3408.CrossRefGoogle Scholar

Norne, J. E.Lilja, H.Lindman, B.Einarsson, R. & Zeppezauer, M. (1975 b). Pt(CN)42- and Au(CN)2-: Potential general probes for anion- binding sites of proteins. 35Cl and 81Br NMR studies. Eur. J. Biochem. 59, 463–473.CrossRefGoogle Scholar

Olson, W. K. & Manning, G. S. (1976). A configurational interpretation of the axial phosphate spacing in polynucleotide helices and random coils. Biopolymers 15, 2391–2405.CrossRefGoogle ScholarPubMed

Oosawa, F. (1971). Polyelectrolytes. New York: Marcel Dekker.Google Scholar

Pande, C. S. & McMenamy, R. H. (1970). Thiocyanate binding with modified bovine plasma albumins. Archs Biochem. Biophys. 136, 260–267.CrossRefGoogle ScholarPubMed

Passero, F.Gabbay, E. J., Gaffney, B. & Kurucsev, T. (1970). Topography of nucleic acid helices in solutions. Stoichiometry and specificity of the interaction of reporter molecules with nucleic acid helices. Macromolecules 3, 158–162.CrossRefGoogle Scholar

Pfeil, W. & Privalov, P. L. (1976 a). Thermodynamic investigation of proteins. I. Standard functions for protein with lysozyme as an example. Biophys. Chem. 4, 23–32.CrossRefGoogle ScholarPubMed

Pfeil, W. & Privalov, P. L. (1976 b). Thermodynamic investigations of proteins. II. Calorimetric study of lysozyme denaturation by guanidine hydrochloride. Biophys. Chem. 4, 33–40.CrossRefGoogle ScholarPubMed

Pfeil, W. & Privalov, P. L. (1976 c). Thermodynamic investigations of proteins. III. Thermodynamic description of lysozyme. Biophys. Chem. 4, 41–50.CrossRefGoogle ScholarPubMed

Poliakow, M. C.Champagne, M. H. & Daune, M. P. (1972). Interactions protéines-acides nucléiques 2. Étude de l'association d'histones riches en lysine avec la DNA. Eur. J. Biochem. 26, 212–219.CrossRefGoogle Scholar

Privalov, P. L. & Khechinashvili, N. N. (1974). A thermodynamic approach to the problem of stabilization of globular protein structure: A calorimetric study. J. molec. Biol. 86, 665–684.CrossRefGoogle Scholar

Privalov, P. L.Ptitsyn, O. B. & Birshtein, T. M. (1969). Determination of stability of the DNA double helix in an aqueous medium. Biopolymers 8, 559–571.CrossRefGoogle Scholar

Puett, D. (1973). The equilibrium unfolding parameters of horse and sperm whale myoglobin. Effects of guanidine hydrochloride, urea, and acid. J. biol. Chem. 248, 4623–4634.CrossRefGoogle ScholarPubMed

Record, M. T. Jr, (1967 a). Polyelectrolyte effects on polynucleotide transitions. I. Behavior at neutral pH. Biopolymers 5, 975–992.CrossRefGoogle Scholar

Record, M. T. Jr, (1967b). Polyelectrolyte effects on polynucleotide transitions. II. Behavior of titrated systems. Biopolymers 5, 993–1008.CrossRefGoogle Scholar

Record, M. T. Jr, (1975). Effects of Na+ and Mg++ on the helix-coil transition of DNA. Biopolymers 14, 2137–2158.CrossRefGoogle Scholar

Record, M. T. JrDehaseth, P. L. & Lohman, T. M. (1977). Interpretation of monovalent and divalent ion effects on the lac repressor—operator interaction. Biochemistory, N.Y. 16, 4791–4796.CrossRefGoogle ScholarPubMed

Record, M. T. Jr & Lohman, T. M. (1978). A semi-empirical extension of polyelectrolyte theory to the treatment of oligoelectrolytes. Application to oligonucleotide helix-coil transitions. Biopolymers 17, 159–166.CrossRefGoogle Scholar

Record, M. T. JrLohman, T. M. & DeHaseth, P. L. (1976 a). Ion effects on ligand-nucleic acid interactions. J. molec. Biol. 107, 145–158.CrossRefGoogle ScholarPubMed

Record, M. T. JrWoodbury, C. P. & Lohman, T. M. (1976b). Na+ effects on transitions of DNA and polynucleotides of variable linear charge density. Biopolymers 15, 893–915.CrossRefGoogle ScholarPubMed

Reuben, J. & Gabbay, E. J. (1975). Binding of manganese(II) to DNA and the competitive effects of metal ions and organic cations. An electron paramagnetic resonance study. Biochemistory, N.Y. 14, 1230–1235.CrossRefGoogle ScholarPubMed

Reuben, J.Shporer, M. & Gabbay, E. J. (1977). The alkali-ion–DNA interaction as reflected in the nuclear relaxation rates of 23Na and 87Rb. Proc. natn. Acad. Sci. U.S.A. 72, 245–247.CrossRefGoogle Scholar

Revzin, A. & Von, Hippel P. H. (1977). Direct measurement of association constants for the binding of Escherichia coli lac repressor to non-operator DNA. Biochemistory, N.Y. 16, 4769–4776.CrossRefGoogle ScholarPubMed

Richards, F. & Wyckoff, H. (1971). Bovine pancreatic ribonuclease. In The Proteins, vol. 4 (ed. Boyer, P. D.), pp. 647–806.Google Scholar

Riggs, A. (1971). Mechanism of the enhancement of the Bohr effect in mammalian hemoglobins by diphosphoglycerate. Proc. natn. Acad. Sci. U.S.A. 68, 2062–2065.CrossRefGoogle ScholarPubMed

Riggs, A. D.Bourgeois, S. & Cohn, M. (1970 b). The lac repressor—operator interaction. III. Kinetic studies. J. molec. Biol. 53, 401–417.CrossRefGoogle Scholar

Riggs, A. D.Suzuki, H. & Bourgeois, S. (1970 a). Lac repressor—operator interaction. I. Equilibrium Studies. J. molec. Biol. 48, 67–83.CrossRefGoogle ScholarPubMed

Rix-Montel, M. A.Grassi, H. & Vasilescu, D. (1974). Experimental studies of thermal denaturation of the Na—DNA system with respect to Manning's model. Biophys. Chem. 2, 278–289.CrossRefGoogle ScholarPubMed

Rix-Montel, M. A.Grassi, A. & Vasilescu, D. (1976). Dielectric study of the interaction between DNA and an oligopeptide (lysine-tyrosinelysine). Nucl. Acids Res. 3, 1001–1011.CrossRefGoogle Scholar

Robinson, D. R. & Grant, M. E. (1966). The effects of aqueous salt solutions on the activity coefficients of purine and pyrimidine bases and their relation to the denaturation of deoxyribonucleic acid by salts. J. biol. Chem. 241, 4030–4042.CrossRefGoogle Scholar

Robinson, D. R. & Jencks, W. P. (1965 a). The effect of concentrated salt solutions on the activity coefficient of acetyltetraglycine ethyl ester. J. Am. chem. Soc. 87, 2470–2479.CrossRefGoogle ScholarPubMed

Robinson, D. R. & Jencks, W. P. (1965 b). The effect of compounds of the urea-guanidinium class on the activity coefficient of acetyltetraglycine ethyl ester and related compounds. J. Am. chem. Soc. 87, 2462–2470.CrossRefGoogle ScholarPubMed

Robinson, R. A. & Stokes, R. H. (1959). Electrolyte Solutions, 2nd ed. London: Butterworths.Google Scholar

Rollema, H. S.De, Bruin S. H.Janssen, L. H. M. & Van, Os G. A. S. (1975). The effect of potassium chloride on the Bohr effect of human hemoglobin. J. biol. Chem. 250, 1333–1339.CrossRefGoogle ScholarPubMed

Salahuddin, A. & Tanford, C. (1970). Thermodynamics of the denaturation of ribonuclease by guanidine hydrochloride. Biochemistory, N.Y. 9, 1342–1347.CrossRefGoogle ScholarPubMed

Saroff, H. A. & Carroll, W. R. (1962). The binding of chloride and sulfate ions to ribonuclease. J. biol. Chem. 237, 3384–3387.CrossRefGoogle ScholarPubMed

Saucier, J.-M. (1977). Physicochemical studies on the interaction of irehdiamine A with bihelical DNA. Biochemistory, N.Y. 16, 5879–5889.CrossRefGoogle ScholarPubMed

Scatchard, G. (1949). The attractions of proteins for small molecules and ions. Ann. N.Y. Acad. Sci. 51, 660–672.CrossRefGoogle Scholar

Scatchard, G. & Black, E. S. (1949). The effects of salts on the isoionic and isoelectric points of proteins. J. Phys. Chem. 53, 88–99.CrossRefGoogle ScholarPubMed

Scatchard, G. & Yap, W. T. (1964). The physical chemistry of protein solutions. XII. The effects of temperature and hydroxide ion on the binding of small anions to human serum albumin. J. Am. chem. Soc. 86, 3434–3438.CrossRefGoogle Scholar

Schellman, J. (1974). Cooperative multi-site binding to DNA. Israel Jnl Chem. 12, 219–238.CrossRefGoogle Scholar

Schildkraut, C. & Lifson, S. (1965). Dependence of the melting temperature of DNA on salt concentration. Biopolymers 3, 195–208.CrossRefGoogle ScholarPubMed

Schrier, E. E. & Schrier, E. B. (1967). The salting-out behavior of amides and its relation to the denaturation of proteins by salts. J. Phys. Chem. 71, 1851–1860.CrossRefGoogle Scholar

Shiao, D. D. F. & Sturtevant, J. M.Heats of thermally induced helix-coil transitions of DNA in aqueous solution. Biopolymers 12, 1829–1836.CrossRefGoogle Scholar

Steinhardt, J. & Beychok, S. (1964). Interaction of proteins with hydrogen ions and other small ions and molecules. In The Proteins (ed. Neurath, H.), pp. 140–304. New York: Academic Press.Google Scholar

Steinhardt, J. & Reynolds, J. A. (1969). Multiple Equilibria in Proteins. New York: Academic Press.Google Scholar

Suelter, C. H. (1974). Monovalent cations in enzyme-catalyzed reactions. In Metal Ions in Biological Systems, vol. 3 (ed. Sigel, H.). Vol. 3. High Molecular Weight Complexes, pp. 201–251. New York: Marcell Dekker.Google Scholar

Tanford, C. (1969). Extension of the theory of linked functions to incorporate the effects of protein hydration. J. molec. Biol. 39, 539–544.CrossRefGoogle ScholarPubMed

Tanford, C. & Aune, K. C. (1970). Thermodynamics of the denaturation of lysozyme by guanidine hydrochloride. III. Dependence on temperature. Biochemistory, N.Y. 9, 206–211.CrossRefGoogle Scholar

Taylor, R. P. & Kuntz, I. D. Jr (1972). Proton acceptor abilities of anions and possible relevance to the Hofmeister series. J. Am. chem. Soc. 94, 7963–7965.CrossRefGoogle Scholar

Thomas, J. O. & Edelstein, S. (1973). Observation of the dissociation of unliganded hemoglobin. II. Effect of pH, salt and dioxane. J. biol. Chem. 248, 2901–2905.CrossRefGoogle ScholarPubMed

Valdes, R. & Ackers, G. K. (1977). Thermodynamic studies on subunit assembly in human hemoglobin. Self-association of oxygenated chains (αSH and βSH): Determination of stoichiometries and equilibrium constants as a function of temperature. J. biol. Chem. 252, 74–81.CrossRefGoogle ScholarPubMed

Van, Der Klink J. J.Zuiderweg, L. H. & Leyte, J. D. (1974). Nuclear magnetic relaxation of 23Na in polyelectrolyte solutions. J. chem. Phys. 60, 2391–2399; 62, 749 (1975).Google Scholar

Von, Hippel P. H. & McGhee, J. D. (1972). DNA-protein interactions. A. Rev. Biochem. 41, 231–300.Google Scholar

Von, Hippel P. H.Peticolas, V.Schack, L. & Karlson, L. (1973) Model studies on the effects of neutral salts on the conformational stability of biological macromolecules. I. Ion binding to polyacrylamide and polystyrene columns. Biochemistory, N.Y. 12, 1256–1264.Google Scholar

Von, Hippel P. H. & Schleich, T. (1969 a). The effects of neutral salts on the structure and conformational stability of macromolecules in solution. In Biological Macromolecules. Vol. 2. Structure and Stability of Biological Macromolecules (ed. Timasheff, S. N. and Fasman, G.), pp. 417–574. New York: Marcel Dekker.Google Scholar

Von, Hippel P. H. & Schleich, T. (1969 b). Ion effects on the solution structure of biological macromolecules. Acc. Chem. Res. 2, 257–265.Google Scholar

Von, Hippel P. H. & Wong, K. Y. (1962). The effects of ions on the kinetics of formation and the stability of the collagen-fold. Biochemistory, N.Y. 1, 664–674.Google Scholar

Von, Hippel P. H. & Wong, K. Y. (1965). On the conformational stability of globular proteins. The effects of various electrolytes and nonelectrolytes on the thermal ribonuclease transition. J. biol. Chem. 240, 3909–3923.Google Scholar

Wang, J. C. & Davidson, N. (1966). Thermodynamic and kinetic studies on the interconversion between the linear and circular forms of phage lambda DNA. J. molec. Biol. 19, 469–482.CrossRefGoogle Scholar

Wensley, C. G. & Record, M. T. Jr (1978). (In preparation.)Google Scholar

Wickett, R. R.Li, H. S. & Isenberg, I. (1972). Salt effects on histone IV conformation. Biochemistory, N.Y. II, 2952–2957.CrossRefGoogle Scholar

Wyman, J. (1964). Linked functions and reciprocal effects in hemoglobin: a second look. Adv. Protein Chem. 19, 223–286.CrossRefGoogle ScholarPubMed