Applications of Fluorescence Correlation Spectroscopy† | Quarterly Reviews of Biophysics | Cambridge Core (original) (raw)
Extract
The preceding paper by Douglas Magde has recounted the basic principles of Fluorescence Correlation Spectroscopy (FCS) as originally described (see Magde, Elson & Webb, 1972; Elson & Magde, 1974; Magde, Elson & Webb, 1974 Elson & Webb, 1975; referred to collectively as MEW), and has described the first application to chemical kinetics. In this paper I shall first illustrate the same principles of FCS with a simple graphical demonstration model based on the scheme for application to lateral diffusion in membranes as it was developed in our laboratory by Dr T. J. Herbert; I shall then proceed to discuss some current research in our group organized jointly with Professor E. L. Elson at Cornell.
References
Alder, B. J. & Wainwright, T. E. (1970). Decay of the velocity auto-correlation function. Phys. Rev. A 1, 18–21.CrossRefGoogle Scholar
Badley, R. A., Martin, W. G. & Schneider, H. (1973). Dynamic behavior of fluorescent probes in lipid bilayer model membranes. Biochemistry, N.Y. 12, 268–75,CrossRefGoogle ScholarPubMed
Elson, E. L. & Magde, D. (1974). Fluorescence correlation spectroscopy. I. Conceptual basis and theory. Biopolymers 13, 1–27.CrossRefGoogle Scholar
Elson, E. L. & Webb, W. W. (1975). Concentration correlation spectroscopy: A new biophysical probe based on occupation number fluctuations. A. Rev. Biophys. Bioeng. 4, 311–34.CrossRefGoogle ScholarPubMed
Frye, L. D. & Edidin, M. (1970). The rapid intermixing of cell surface antigens after formation of mouse–human heterokaryons. J. Cell Sci. 7, 319–35.CrossRefGoogle ScholarPubMed
Gulik-Krzywicki, T. (1975). Structural studies of the associations between biological membrane components. Biochim. biophys. Acta 415, 1–28.CrossRefGoogle ScholarPubMed
Jones, R. B., Felderhof, B. U. & Deutch, J. M. Diffusion of polymers along a fluid–fluid interface. (Unpublished private communication.)Google Scholar
Keyes, T. & Oppenheim, I. (1973). Bilinear hydrodynamics and the Stokes–Einstein Law. Phys. Rev. 8, 937.CrossRefGoogle Scholar
Koppel, D. E. (1974). Statistical accuracy in fluorescence correlation spectroscopy. Phys. Rev. A 10, 1938–45.CrossRefGoogle Scholar
Lee, A. G. (1975). Functional properties of biological membranes: a physical chemical approach. Prog. Biophys. & molec. Biol. 29, 3–56.CrossRefGoogle ScholarPubMed
Lewis, J. C. (1973). On the Einstein–Stokes diffusion coefficient for Brownian motion in two dimensions. Phys. Lett. 44 A, 245–6.CrossRefGoogle Scholar
Magde, D., Elson, E. & Webb, W. W. (1972). Thermodynamic fluctuations in a reacting system – measurements by fluorescence correlation spectroscopy. Phys. Rev. Lett. 29, 705–8.CrossRefGoogle Scholar
Magde, D., Elson, E. L. & Webb, W. W. (1974). Fluorescence correlation Spectroscopy. II. An experimental realization. Biopolymers 13, 29–61.CrossRefGoogle Scholar
Montal, M. & Mueller, P. (1972). Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc. natn. Acad. Sci. U.S.A. 69, 3561–6.CrossRefGoogle Scholar
Mueller, P., Rudin, D. O., Tien, H. T. & Wescott, W. C. (1962). Reconstitution of excitable cell membrane structure in vitro. Circulation 26, 1167–70.CrossRefGoogle Scholar
Peters, R., Peters, J., Tews, K. H. & Bahr, W. (1974). A microfluorimetric study of translational diffusion in erythrocyte membranes. Biochim. biophys. Acta 367, 282–94.CrossRefGoogle ScholarPubMed
Poo, M.-m. & Cone, R. A. (1974). Lateral diffusion of rhodopsin in the photoreceptor membrane. Nature, Lond. 247, 438–41.CrossRefGoogle ScholarPubMed
Rand, R. P. & Pangborn, W. A. (1973). A structural transition in egg lecithin-cholesterol bilayers at 12 °C. Biochim. biophys. Acta 318, 299–305.CrossRefGoogle Scholar
Razi-Naqvi, K. (1974). Diffusion-controlled reactions in two-dimensional fluids: Discussion of measurements of lateral diffusion of lipids in biological membranes. Chem. Phys. Lett. 28, 280–4.CrossRefGoogle Scholar
Sims, P. J., Waggoner, A. S., Wang, C. H. & Hoffman, J. F. (1974). Studies on the mechanism by which cyanine dyes measure membrane potential in red blood cells and phosphatidyl-choline vesicles. Biochemistry, N.Y. 13, 3315–30.CrossRefGoogle Scholar
Singer, S. I. & Nicolson, G. L. (1972). The fluid mosaic model of the structure of cell membranes. Science, N.Y. 175, 720–31.CrossRefGoogle ScholarPubMed
Tardieu, A., Luzzati, V. & Reman, F. C. (1973). Structure and polymorphism of the hydrocarbon chains of lipids: A study of lecithin-water phases. J. molec. Biol. 75, 711–33.CrossRefGoogle ScholarPubMed
Yguerabide, J. & Stryer, L. (1971). Fluorescence spectroscopy of an oriented model membrane. Proc. natn. Acad. Sci. U.S.A. 68, 1217–21.CrossRefGoogle ScholarPubMed