Structure and function of tetanus and botulinum neurotoxins | Quarterly Reviews of Biophysics | Cambridge Core (original) (raw)

References

Adler, M., Deshpande, S. S., Sheridan, R. E. & Lebeda, F. J. (1994). Evaluation of captopril and other potential therapeutic compounds in antagonizing botulinum toxin-induced muscle paralysis. In Therapy with botulinum toxin, (eds. Jankovic, J. & Hallett, M.), pp. 63–70. New York: Marcel Dekker.Google Scholar

Alder, G. M., Bashford, C. L. & Pasternak, C. A. (1990). Action of diphtheria toxin does not depend on the induction of large, stable pores across biological membranes. J. Membr. Biol. 113, 67–74.CrossRefGoogle Scholar

Anderson, M. D., Fairweather, N., Charles, I. G., Emsley, P., Isaacs, N. W. & Macdermott, G. (1993). Crystallographic characterization of tetanus toxin fragment C. J Mol Biol 230, 673–674.CrossRefGoogle ScholarPubMed

Anhert-Hilger, G., Bader, M. F., Bhakdi, S. & Gratzl, M. (1989 a). Introduction of macromolecules into bovine adrenal medullary chromaffin cells and rat pheochromocytoma cells (PC 12) by permeabilization with streptolysin O – inhibitory effect of tetanus toxin on catecholamine secretion. J. Neurochem. 52, 1751–1758.CrossRefGoogle Scholar

Anhert-Hilger, G., Weller, U., Dauzenroth, M. E., Habermann, E. & Gratzl, M. (1989 b). The tetanus toxin light chain inhibits exocytosis. FEBS Lett. 242, 245–248.CrossRefGoogle Scholar

Archer, B. T., Ozcelik, T., Jahn, R., Francke, U. & Südhof, T. C. (1990). Structures and chromosomal localizations of two human genes encoding synaptobrevins 1 and 2. J. Biol. Chem. 265, 17267–17273.CrossRefGoogle Scholar

Ashton, A. C., De Paiva, A. M., Poulain, B., Tauc, L. & Dolly, J. O. (1993). Factors underlying the characteristic inhibition of the neuronal release of transmitters by tetanus and various botulinum toxin. In: DasGupta, B. R. (ed). Botulinum and tetanus neurotoxins. Neurotransmission and biomedical aspects. Plenum press, New York, pp. 191–213.CrossRefGoogle Scholar

Aureli, P., Fenicia, L., Pasolini, B., Gianfranceschi, M., McCroskey, L. M. & Hatheway, C. O. (1986). Two cases of type E infant botulism in Italy caused by neurotoxigenic Clostridium butyricum. J. Infect. Dis. 154, 207–211.CrossRefGoogle ScholarPubMed

Bagetta, G., Nisticò, G. & Bowery, N. G. (1991). Characteristic of tetanus toxin and its exploitation in neurodegenerative studies. Trends Pharmacol. Set. 12, 285–289.CrossRefGoogle ScholarPubMed

Bark, C. (1993). Structure of the chicken gene for SNAP-25 reveals duplicated exons encoding distinct isoforms of the protei. J. Mol. Biol. 233, 67–76.CrossRefGoogle Scholar

Bark, C. & Wilson, M. C. (1994). Human cDNA clones encoding two different isoforms of the nerve terminal protein SNAP-25. Gene 139, 291–292.CrossRefGoogle ScholarPubMed

Barrett, A. Editor (1995). Metallo-proteinases and aspartic proteases. Methods Enzymol. 248, Academic Press.Google Scholar

Bartels, F., Bergel, H., Bigalke, H., Frevert, J., Halpern, J. & Middlebrook, J. (1994). Specific antibodies against the Zn-binding domain of clostridial neurotoxins restore exocytosis in chromaffin cells treated with tetanus or botulinum A neurotoxin. J. Biol. Chem. 269, 8122–8127.CrossRefGoogle ScholarPubMed

Bauerfeind, R., Huttner, W. B., Almers, W. & Augustine, G. J. (1994). Quantal neurotransmitter release from early endosomes. Trends Cell Biol. 4, 155–156.CrossRefGoogle ScholarPubMed

Baumann, U., Wu, S., Flaherty, K. M. & McKay, D. B. (1993). Three-dimensional structure of the alkaline protease of Pseudomonas aeruginosa: a two domain protein with a calcium binding parallel beta roll motif. EMBO J. 12, 3357–3364.CrossRefGoogle ScholarPubMed

Baumert, M., Maycox, P. R., Navone, F., De Camilli, P. & Jahn, R. (1989). Synaptobrevin: an integral membrane protein of 18,000 daltons present in small synaptic vesicles of rat brain. EMBO J. 8, 379–384.CrossRefGoogle Scholar

Beise, J., Hahnen, J., Andersen-Beckh, B. & Dreyer, F. (1994). Pore formation by tetanus toxin, its chain and fragments in neuronal membranes and evaluation of the underlying motifs in the structure of the toxin molecule. Naunyn-Schmiedeberg's Arch. Pharmacol. 349, 66–73.CrossRefGoogle ScholarPubMed

Benecke, R., Takano, K., Schmidt, J. & Henatsch, H. D. (1977). Tetanus toxin induced actions on spinal Renshaw cells and la-inhibitory interneurons during development of local tetanus in the cat. Exp. Brain Res. 27, 271–286.Google ScholarPubMed

Bennett, M. K., Calakos, N. & Scheller, R. H. (1992). Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Science 257, 255–259.CrossRefGoogle ScholarPubMed

Bennett, M. K., Garcia-Arras, J. E., Elferink, L. A., Peterson, K., Fleming, A. M., Hazuka, C. D. & Scheller, R. H. (1993). The syntaxin family of vesicular transport receptors. Cell 74, 863–873.CrossRefGoogle ScholarPubMed

Bennett, M. K. & Scheller, R. H. (1994). A molecular description of synaptic vesicle membrane trafficking. Annu. Rev. Biochem. 63, 63–100.CrossRefGoogle ScholarPubMed

Bergey, G. K., McDonald, R. L., Habig, W. H., Hardegree, M. C. & Nelson, P. G. (1983). Tetanus toxin: convulsant action on mouse spinal cord neurons in culture. J. Neuroscience 3, 2310–2324.CrossRefGoogle ScholarPubMed

Bergey, G. K., Bigalke, H. & Nelson, P. G. (1987). Differential effects of tetanus toxin on inhibitory and excitatory synaptic transmission in mammalian spinal cord neurons in culture: a presynaptic locus of action for tetanus toxin. J. Neurophysiol. 57, 121–131.CrossRefGoogle ScholarPubMed

Bevan, S. & Wendon, L. M. B. (1984). A study of the action of tetanus toxin at rat soleus neuromuscular junctions. J. Physiol. (London) 348, 1–17.CrossRefGoogle ScholarPubMed

Bigalke, H., Dreyer, F. & Bergey, G. (1985). Botulinum A neurotoxin inhibits non-cholinergic synaptic transmission in mouse spinal cord neurons in culture. Brain Res. 360, 318–324.CrossRefGoogle ScholarPubMed

Bigalke, H., Muller, H. & Dreyer, F. (1986). Botulinum A neurotoxin unlike tetanus toxin acts via a neuraminidase sensitive structure. Toxicon 24, 1065–1074.CrossRefGoogle Scholar

Binz, T., Grebenstein, O., Kurazono, H., Eisel, U., Wernars, K., Popoff, M., Mochida, S., Poulain, B., Tauc, L., Kozaki, S. & Niemann, H. (1992). Molecular biology of the L chains of clostridial neurotoxins. In Bacterial Protein Toxins (ed. Witholt, B.), pp. 56–65. Stuttgart: Gustav Fischer Verlag.Google Scholar

Binz, T., Blasi, J., Yamasaki, S., Baumeister, A., Link, E., Südhof, T. C., Jahn, R. & Niemann, H. (1994). Proteolysis of SNAP-25 by types E and A botulinal neurotoxins. J. Biol. Chem. 269, 1617–1620.CrossRefGoogle Scholar

Bisson, R. & Montecucco, C. (1987). Diphtheria toxin membrane translocation: an open question. Trends Biochem. Sci. 12, 181–182.CrossRefGoogle Scholar

Bittner, M. A. & Holz, R. W. (1988). Effects of tetanus toxin on catecholamine release from intact and digitonin-permeabilized chromaffin cells. J. Neurochem. 51, 451–456.CrossRefGoogle ScholarPubMed

Bittner, M. A., DasGupta, B. R. & Holz, R. W. (1989 a). Isolated light chains of botulinum neurotoxins inhibit exocytosis. Studies in digitonin-permeabilized chromaffin cells. J. Biol. Chem. 264, 10354–10360.CrossRefGoogle ScholarPubMed

Bittner, M. A., Habig, W. H. & Holz, R. W. (1989 b). Isolated light chain of tetanus toxin inhibits exocytosis: studies in digitonin-permeabilized cells. J. Neurochem. 53, 966–968.CrossRefGoogle ScholarPubMed

Black, J. D. & Dolly, J. O. (1986 a). Interaction of 1251-labeled neurotoxins with nerve terminals. I. Ultrastructure autoradiographic localization and quantitation of distinct membrane acceptors for types A and B on motor nerves. J. Cell Biol. 103, 521–534.CrossRefGoogle Scholar

Black, J. D. & Dolly, J. O. (1986 b). Interaction of 1251-labeled neurotoxins with nerve terminals. II. Autoradiographic evidence for its uptake into motor nerves by acceptor-mediated endocytosis. J. Cell Biol. 103, 535–544.CrossRefGoogle Scholar

Blasi, J., Chapman, E. R., Link, E., Binz, T., Yamasaki, S., DeCamilli, P., Südhof, T. C., Niemann, H. & Jahn, R. (1993 a). Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25. Nature 365, 160–163.CrossRefGoogle ScholarPubMed

Blasi, J., Chapman, E. R., Yamasaki, S., Binz, T., Niemann, H. & Jahn, R. (1993 b). Botulinum neurotoxin C blocks neurotransmitter release by means of cleaving HPC-1/syntaxin. EMBO J. 12, 4821–4828.CrossRefGoogle Scholar

Blaustein, R. O., Germann, W. J., Finkelstein, A. & DasGupta, B. R. (1989). The N-terminal half of the heavy chain of botulinum type A neurotoxin forms channels in planar phospholipid bilayers. FEBS Lett., 226, 115–120.CrossRefGoogle Scholar

Bleck, T. P. (1989). Clinical aspects of tetanus. In Botulinum neurotoxins and tetanus toxin, (ed. Simpson, L. L.), pp. 379–398. San Diego: Academic Press.CrossRefGoogle Scholar

Blumenthal, R. & Habig, W. H. (1984). Mechanism of tetanolysin-induced membrane damage: studies with black lipid membranes. J. Bacteriol. 157, 321–323.CrossRefGoogle ScholarPubMed

Bode, W., Gomis-Ruth, F. X., Huber, R., Zwilling, R. & Stocker, W. (1992). Structure of astacin and implication of astacins and zinc-ligation of collagenases. Nature 358, 164–166.CrossRefGoogle ScholarPubMed

Bode, W., Gomis-Ruth, F. X. & Stocker, W. (1993). Astacins, serralysin, snake venoms and matrix metalloproteinases exhibit identical zinc-binding environments (HEXXHXXGXXH and Met-turn) and topologies and should be grouped into a common family, the ‘metzincins’. FEBS Lett. 331, 134–140.CrossRefGoogle ScholarPubMed

Bode, W., Reinemer, P., Huber, R., Kleine, T., Schnierer, S. & Tschesche, H. (1994). The X-ray crystal structure of the catalytic domain of human neutrophil collagenase inhibited by a substrate analogue reveals the essentials for catalysis and specificity. EMBO J. 13, 1263–1269.CrossRefGoogle ScholarPubMed

Bonventre, P. F. & Kempe, L. L. (1960). Physiology of toxin production by Clostridium botulinum type A and B. IV Activation of toxin. J. Bacteriol. 79, 24–32.CrossRefGoogle Scholar

Boquet, P. & Duflot, E. (1983). Tetanus toxin fragment forms channels in lipid vesicles at low pH. Proc. Natl. Acad. Set. USA, 79, 7614–7618.CrossRefGoogle Scholar

Boquet, P., Duflot, E. & Hattecoeur, B. (1984). Low pH induces a hydrophobic domain in the tetanus toxin molecule. Eur. J. Biochem., 144, 339–344.CrossRefGoogle Scholar

Boroff, D. A., DelCastillo, J., Evoy, W. H. & Steinhardt, R. A. (1974). Observations on the actions of type A botulinum toxin on frog neuromuscular junctions. J. Physiol. (London) 240, 227–253.CrossRefGoogle ScholarPubMed

Brace, H. M., Jeffrerys, J. G. R. & Mellanby, J. (1985). Long-term changes in hyppocampal physiology and learning ability of rats after intrahyppocampal tetanus toxin. J. Physiol. (London) 368, 343–357.CrossRefGoogle Scholar

Braun, J. E. A., Fritz, B. A., Wong, S. M. E. & Lowe, A. W. (1994). Identification of a vesicle-associated membrane protein (VAMP-like) membrane protein in zymogen granules of the rat exocryne pancreas. J. Biol. Chem. 269, 5328–5335.CrossRefGoogle ScholarPubMed

Brennwald, P., Kearns, B., Champion, K., Keranen, S., Bankaitis, V. & Novick, P. (1994). Sec9 is a SNAP-25-like component of a yeast SNARE complex that may be the effector of Sec4 function in excytosis. Cell 79, 245–258.CrossRefGoogle Scholar

Brooks, V. B., Curtis, D. R. & Eccles, J. C. (1957). The action of tetanus toxin on the inhibition of motoneurons. J. Physiol. 135, 655–672.CrossRefGoogle Scholar

Bruschettini, A. (1892). Sulla diffusione del veleno del tetano nell'organismo. Rif. Med. 8, 270–273.Google Scholar

Burgen, A. S. V., Dickens, F. & Zatman, L. J. (1949). The action of botulinum toxin on the neuro-muscular junction. J. Physiol. (London) 109, 10–24.CrossRefGoogle Scholar

Bychkova, V. E., Pain, R. H. & Ptitsyn, O. B. (1988). The ‘molten globule’ state is involved in the translocation of proteins across membranes? FEBS Lett. 238, 231–234.CrossRefGoogle ScholarPubMed

Cabiaux, V., Lorge, P., Vandenbranden, M., Falmagne, P. & Ruysschaert, J. M. (1985). Tetanus toxin induces fusion and aggregation of lipid vesicles containing phosphatidylinositol at low pH. Biochem. Biophys. Res. Commun., 128, 840–849.CrossRefGoogle ScholarPubMed

Calakos, N. & Scheller, R. H. (1994). Vesicle-associated membrane protein and synaptophysin are associated on the synaptic vesicle. J. Biol. Chem. 269, 24534–24537.CrossRefGoogle Scholar

Carle, A. & Rattone, G. (1884). Studio esperimentale sull'eziologia del tetano. Giorn. Accad. Med. Torino 32, 174–179.Google Scholar

Chapman, E. R., An, S., Barton, N. & Jahn, R. (1994). SNAP-25, a t-SNARE which binds to both syntaxin and synaptobrevin via domains that may form coiled coils. J. Biol. Chem. 269, 27427–27432.CrossRefGoogle ScholarPubMed

Chin, A. C., Burgess, R. W., Wong, B. R., Schwarz, T. L. & Scheller, R. H. (1994). Differential expression of transcripts from syb, a Drosophila melanogaster gene encoding VAMP (synaptobrevin that is abundant in non-neuronal cells. Gene 131, 175–181.CrossRefGoogle Scholar

Corley-Cain, C., Trimble, W. S. & Lienhard, G. E. (1992). Members of the VAMP family of synaptic vesicles proteins are components of glucose transporter-containing vesicles from rat adipocytes. J. Biol. Chem. 267, 11681–11684.CrossRefGoogle Scholar

Cornille, F., Goudreau, N., Flcheux, D., Nlemann, H. & Roques, B. P. (1994) Solid-phase synthesis, conformational analysis and in vitro cleavage of synthetic human synaptobrevin II 1–93 by tetanus toxin L chain. Eur. J. Biochem. 222, 173–181.CrossRefGoogle ScholarPubMed

Creighton, T. E. (1992). Proteins: structures and molecular properties. Freeman & Co., Oxford.Google Scholar

Critchley, D. R., Nelson, P. G., Habig, W. H. & Fishman, P. H. (1985). Fate of tetanus toxin bound to the surface of primary neurons in culture: evidence for rapid internalization. J. Cell Biol. 100, 1499–1507.CrossRefGoogle Scholar

Cull-Candy, S. G., Lundh, H. & Thesleff, S. (1976). Effects of botulinum toxin on neuromuscular transmission in the rat. J. Physiol. (London) 260, 177–203.CrossRefGoogle ScholarPubMed

Curtis, D. R., Game, C. J. A., Lodge, D. & McCulloch, R. M. (1976). A pharmacologic study of Renshaw cell inhibition. J. Physiol. 258, 227–242.CrossRefGoogle Scholar

DasGupta, B. R. (1989). The structure of botulinum neurotoxin. In Botulinum neurotoxins and tetanus toxin, (ed. Simpson, L. L.), pp. 53–67. San Diego: Academic Press.CrossRefGoogle Scholar

DasGupta, B. R. (1994). Structures of botulinum neurotoxin, its functional domains, and perspectives on the crystalline type A toxin. In Therapy with botulinum toxin (eds. Jankovic, J. & Hallett, M.), pp. 15–39. New York: Marcel Dekker.Google Scholar

Dayanithi, G., Weller, U., Anhert-Hilger, G., Link, H., Nordmann, J. J. & Gratzl, M. (1992). The light chain of tetanus toxin inhibits calcium dependent vasopressin release from permeabilized nerve endings. Neuroscience 46, 489–493.CrossRefGoogle Scholar

Dayanithi, G., Stecher, B., Höhne-Zell, B., Yamasaki, S., Binz, T., Weller, U., Niemann, H. & Gratzl, M. (1994). Exploring the functional domain and the target of the tetanus toxin light chain in neurohypophysial terminals. Neuroscience 58, 423–431.CrossRefGoogle Scholar

De Filippis, V., Vangelista, L., Schaivo, G., Tonello, F. & Montecucco, C. (1995). Structural studies on the zinc-endopeptidase light chain of tetanus neurotoxin. Eur. J. Biochem., in press.Google ScholarPubMed

De Paiva, A., Poulain, B., Lawrence, G. W., Shone, C. C., Tauc, L. & Dolly, J. O. (1993 a). A role for the interchain disulfide or its participating thiols in the internalization of botulinum neurotoxin A revealed by a toxin derivative that binds to ecto-acceptors and inhibits transmitter release intracellularly. J. Biol. Chem. 268, 20838–20844.CrossRefGoogle ScholarPubMed

De Paiva, A., Ashton, A. C., Foran, P., Schiavo, G., Montecucco, C. & Dolly, J. O. (1993 b). Botulinum A like type B and tetanus toxin fulfils criteria for being a zinc-dependent protease. J. Neurochem. 61, 2338–2341.CrossRefGoogle Scholar

Di Antonio, A., Burgess, R. W., Chin, A. C., Deitcher, D. L., Scheller, R. H. & Schwarz, T. L. (1993). Identification and characterization of Drosophila genes for synaptic vesicle proteins. J. Neurosci. 13, 4924–4935.CrossRefGoogle ScholarPubMed

Dobrenis, K., Joseph, A. & Rattazzi, M. C. (1992). Neuronal lysosomal enzyme replacement using fragment C of tetanus toxin. Proc. Natl. Acad. Sci. USA 89, 2297–2301.CrossRefGoogle ScholarPubMed

Dolly, J. O., Black, J., Williams, R. S. & Melling, J. (1984). Acceptors for botulinum neurotoxin reside on motor nerve terminals and mediate its internalization. Nature 307, 457–460.CrossRefGoogle Scholar

Dolly, J. O., Lande, S. & Wray, D. W. (1987). The effects of in vitro application of purified botulinum neurotoxin at mouse motor-nerve terminals. J. Physiol. (London) 386, 475–484.CrossRefGoogle ScholarPubMed

Donovan, J. J. & Middlebrook, J. L. (1986). Ion-conducting channels produced by botulinum toxin in planar lipid membranes. Biochemistry, 25, 2872–2876.CrossRefGoogle ScholarPubMed

Dreyer, F. & Schmitt, A. (1981). Different effect of botulinum A toxin and tetanus toxin in the transmitter releasing process at the mammalian neuromuscular junction. Neurosci. Lett. 26, 307–311.CrossRefGoogle ScholarPubMed

Dreyer, F. & Schmitt, A. (1983). Transmitter release in tetanus and botulinum A toxin-poisoned mammalian motor endplates and its dependence on nerve stimulation and temperature. Pflugers Arch. 399, 228–234.CrossRefGoogle ScholarPubMed

Dreyer, F., Mallart, A. & Brigant, J. L. (1983). Botulinum A toxin and tetanus toxin do not affect presynaptic membrane currents in mammalian motor nerve endings. Brain Res. 270, 373–375.CrossRefGoogle Scholar

Duchen, L. W. (1973 a). The effects of tetanus toxin on the motor end-plates of the mouse–an electron microscopic study. J. Neurol. Sci. 19, 153–167.CrossRefGoogle Scholar

Duchen, L. W. (1973 b). The local effects of tetanus toxin on the electron microscopic structure of skeletal muscle fibres of the mouse. J. Neurol. Sci. 19, 169–177.CrossRefGoogle ScholarPubMed

Duchen, L. W. & Tonge, D. A. (1973). The effects of tetanus toxin on neuromuscular transmission and on the morphology of motor end-plate in slow and fast skeletal muscle of the mouse. J. Physiol. (London) 228, 157–172.CrossRefGoogle ScholarPubMed

Elferink, L. A., Trimble, W. S. & Scheller, R. H. (1989). Two vesicle-associated membrane protein genes are differently expressed in the rat central nervous system. J. Biol. Chem. 264, 11061–11064.CrossRefGoogle ScholarPubMed

Eklund, M. W., Poysky, F. T. & Habig, W. H. (1989). Bacteriophages, plasmids and toxin production. In Botulinum neurotoxins and tetanus toxin, (ed. Simpson, L. L.), pp. 25–51. New York, Academic Press.CrossRefGoogle Scholar

Erdmann, G., Wiegand, H. & Wellhoner, H. (1975). Intraxonal and extraaxonal transport of 125I-tetanus toxin in early local tetanus. Naunyn-Schmiedebergs Arch. Pharmacol. 290, 357–373.CrossRefGoogle Scholar

Erdmann, G., Hanauske, A. & Wellhoner, H. (1981). Intraspinal distribution and reaction in the grey matter with tetanus toxin of intracistemally injected antitetanus toxoid F(ab′)2 fragments. Brain Res. 211, 367–377.CrossRefGoogle Scholar

Evans, D. M., Williams, R. S., Shone, C. C., Hambleton, P., Melling, J. & Dolly, J. O. (1986). Botulinum neurotoxin type B: purification, radioiodination and interaction with rat brain synaptosomal membranes. Eur. J. Biochem. 154, 409–416.CrossRefGoogle Scholar

Faber, K. (1890). Die Pathogenie des Tetanus. Berl. klin. Wochenschr. 27, 717–720.Google Scholar

Facchiano, F., Benfenati, F., Valtorta, F. & Luini, A. (1993 a). Covalent modification of synapsin I by a tetanus toxin-activated transglutaminase. J. Biol. Chem. 268, 4588–4591.CrossRefGoogle Scholar

Facchiano, F., Valtorta, F., Benfenati, F. & Luini, A. (1993 b). The transglutaminase hypothesis for the action of tetanus toxin. Trends Biochem. Sci. 18, 327–329.CrossRefGoogle ScholarPubMed

Ferro-Novick, S. & Jahn, R. (1994). Vesicle fusion from yeast to man. Nature 370, 191–193.CrossRefGoogle Scholar

Fesce, R., Grohovaz, F., Valtorta, F. & Meldolesi, J. (1994). Neurotransmitter release: fusion or ‘kiss-and-run’? Trends Cell Biol. 4, 1–4.CrossRefGoogle ScholarPubMed

Fevre, F., Henry, J-P. & Thieffry, M. (1994). Reversible and irreversible effects of basic peptides on the mitochondrial cationic channel. Biophys. J. 66, 1887–1894.CrossRefGoogle ScholarPubMed

Gaisano, H. Y., Sheu, L., Foskett, J. K. & Trimble, W. S. (1994). Tetanus toxin light chain cleaves a vesicle-associated membrane protein (VAMP) isoform 2 in rat pancreatic zymogen granules and inhibits enzyme secretion. J. Biol. Chem. 269, 17062–17066.CrossRefGoogle Scholar

Gambale, F. & Montal, M. (1988). Characterization of the channel properties of tetanus toxin in planar lipid bilayers. Biophys. J., 53, 771–783.CrossRefGoogle Scholar

Gansel, M., Penner, R. & Dreyer, F. (1987). Distinct sites of action of clostridial neurotoxins revealed by double poisoning of mouse motor-nerve terminals. P flugers Arch. 409, 533–539.CrossRefGoogle ScholarPubMed

Gomis-Ruth, F. X., Kress, L. F. & Bode, W. (1993). First structure of a snake venom metalloproteinase: a prototype for matrix metalloproteinases/collagenases. EMBO J., 12, 4151–4157.CrossRefGoogle ScholarPubMed

Gundersen, C. B. (1980). The effects of botulinum toxin on the synthesis, storage and release of acetylcholine. Prog. Neurobiol. 14, 99–119.CrossRefGoogle ScholarPubMed

Gundersen, C. B., Katz, B. & Miledi, R. (1982). The antagonism between botulinum toxin and calcium in motor-nerve terminals. Proc. Royal Soc. [_B_] 216, 369–376.Google ScholarPubMed

Habermann, E. & Albus, U. (1986). Interaction between tetanus toxin and rabbit kidney: a comparison with brain preparations. J. Neurochem. 46, 1219–1226.CrossRefGoogle Scholar

Habermann, E. & Dimpfel, W. (1973). Distribution of 125I-tetanus toxin and 125I-toxoid in rat with generalized tetanus, as influenced by antitoxin. Naunyn Schmiedebergs Arch. Pharamacol. 176, 327–340.CrossRefGoogle Scholar

Habermann, E. & Dreyer, F. (1986). Clostridial neurotoxins: handling and action at the cellular and molecular level. Curr. Top. Microbiol. Immunol. 129, 93–179.Google Scholar

Habermann, E., Dreyer, F. & Bigalke, H. (1980). Tetanus toxin blocks the neuromuscular transmission in vitro like botulinum A toxin. Naunyn-Schmiedebergs Arch. Pharmacol. 311, 33–40.CrossRefGoogle ScholarPubMed

Habermann, E. & Weller, U. (1989). Structure-activity relationships of tetanus in comparison to botulinum toxin, tetanus. In Eight International Conference on Tetanus (eds. Nisticò, G., Bizzini, B., Bytchenko, B. & Triau, R.), pp. 43–50. Rome: Pythagora Press.Google Scholar

Habig, W. H., Bigalke, H., Bergey, G. K., Neale, E. A., Hardegree, M. C. & Nelson, P. G. (1986). Tetanus toxin in dissociated spinal cord cultures: long term characterization of form and action. J. Neurochem. 47, 930–937.CrossRefGoogle ScholarPubMed

Hall, J. D., McCroskey, L. M., Pincomb, B. J. & Hatheway, C. O. (1985). Isolation of an organism resembling Clostridium barati which produces type F toxin from an infant with botulism. J. Clin. Microbiol. 21, 654–655.CrossRefGoogle Scholar

Halpern, J. L. & Loftus, A. (1993). Characterization of the receptor-binding domain of tetanus toxin. J. Biol. Chem. 268, 11188–11192.CrossRefGoogle ScholarPubMed

Halpern, J. L. & Neale, E. A. (1995). Neurospecific binding, internalization, and retrograde axonal transport. In Clostridial Neurotoxins, Curr. Top. Microbiol. Immunol. (ed. Montecucco, C.), 195, in press.Google Scholar

Harris, A. J. & Miledi, R. (1971). The effect of type D botulinum toxin on frog neuromuscular junctions. J. Physiol. (London) 217, 497–515.CrossRefGoogle ScholarPubMed

Hatheway, C. L. (1995). Botulism: the present status of the disease. In Clostridial Neurotoxins, Curr. Top. Microbiol. Immunol. (ed. Montecucco, C.), 195, in press.Google Scholar

Hayashi, T., McMahon, H., Yamasaki, S., Binz, T., Hata, Y., Sudhof, T. C. & Niemann, H. (1994). Synaptic vesicles membrane fusion complex: action of clostridial neurotoxins on assembly. EMBO J. 13, 5051–5061.CrossRefGoogle Scholar

Helting, T. B. & Zwisler, O. (1977). Structure of tetanus toxin. I. Beakdown of the toxin and discrimination between polypeptide fragments. J. Biol. Chem. 252, 187–193.CrossRefGoogle Scholar

Hess, D. T., Slater, T. M., Wislon, M. C. & Skene, J. H. P. (1992). The 25 kDa synaptosomal-associated protein SNAP-25 is the major methionine-rich polypeptide in rapid axonal transport and a major substrate for palmitoylation in adult CNS. J. Neurosci. 12, 4634–4641.CrossRefGoogle Scholar

Hoch, D. H., Romero-Mira, M., Ehrlich, B. E., Finkelstein, A., DasGupta, B. R. & Slmpson, L. L. (1985). Channels formed by botulinum, tetanus and diphtheria toxins in planar lipid bilayers: relevance to translocation of proteins across membranes. Proc. Natl. Acad. Sci. USA 82, 1692–1696.CrossRefGoogle ScholarPubMed

Höhne-Zell, B., Stecher, B. & Gratzl, M. (1993). Functional characterization of the catalytic site of the tetanus toxin light chain using permeabilized adrenal chromaffin cells. FEBS Lett. 336, 175–180.CrossRefGoogle ScholarPubMed

Höhne-Zell, B., Ecker, A., Weller, U. & Gratzl, M. (1994). Synaptobrevin cleavage by tetanus toxin light chain is linked to inhibition of exocytosis in chromaffin cells. FEBS Lett. 355, 131–134.CrossRefGoogle ScholarPubMed

Holmgren, J., Elwing, H., Fredman, P. & Svennerholm, L. (1980). Polystirene-absorbed gangliosides for investigation of the structure of the tetanus toxin receptor. Eur.J. Biochem. 106, 371–379.CrossRefGoogle ScholarPubMed

Hughes, R. & Whaler, B. C. (1962). Influence of nerve-endings activity and of drugs on the rate of paralysis of rat diaphragm preparations by Clostridium botulinum type A toxin. J. Physiol. (London) 160, 221–233.CrossRefGoogle ScholarPubMed

Hunt, J. M., Bommert, K., Charlton, M. P., Kistner, A., Habermann, E., Augustine, G. J. & Betz, H. (1994). A post-docking role for synaptobrevin in synaptic vesicle fusion. Neuron 12, 1269–1279.CrossRefGoogle ScholarPubMed

Inoue, A., Obata, K. & Akagawa, K. (1992). Cloning and sequence analysis of cDNA for a neuronal cell membrane antigen, HPC-1. J. Biol. Chem. 267, 10613–10619.CrossRefGoogle ScholarPubMed

Ikonen, E., Tagaya, M., Ullrich, O., Montecucco, C. and Simons, K. (1995). Different requirements for NSF, SNAP, and Rab proteins in apical and basolateral transport in MDCK cells. Cell, in press.CrossRefGoogle Scholar

Jacobsson, G., Bean, A. J., Scheller, R. H., Juntti-Berggren, L., Beeney, J. T., Berggren, P. O. & Meister, B. (1994). Identification of synaptic proteins and their isoform mRNA in compartments of pancreatic endocrine cells. Proc. Natl. Acad. Sci. USA 91, 12487–12491.CrossRefGoogle ScholarPubMed

Jankovic, J. & Hallett, M. Editors (1994). Therapy with botulinum toxin. New York: Marcel Dekker.Google ScholarPubMed

Jiang, W. & Bond, J. S. (1992). Families of metalloendopeptidases and their relationships. FEBS Lett. 312, 110–114.CrossRefGoogle ScholarPubMed

Jongeneel, C. V., Bouvier, J. & Bairoch, A. (1989). A unique signature identifies a family of zinc-dependent metallopeptidases. FEBS Lett. 242, 211–214.CrossRefGoogle ScholarPubMed

Johnstone, S. R., Morrice, L. M. & Van Heyningen, S. (1990). The heavy chain of tetanus toxin can mediate the entry of cytotoxic gelonin into intact cells. FEBS Lett. 265, 101–103.CrossRefGoogle ScholarPubMed

Kamata, Y., Kozaki, S., Sakaguchi, G., Iwamori, M. & Nagai, Y. (1986). Evidence for direct binding of Clostridium botulinum type E derivative toxin and its fragments to gangliosides and free fatty acids. Biochem. Biophys. Res. Commun. 140, 1015–1019.CrossRefGoogle ScholarPubMed

Kanda, K. & Takano, K. (1983). Effect of tetanus toxin on the excitatory and the inhibitory post-synaptic potentials in the rat motoneurone. J. Physiol. (London) 335, 319–333.CrossRefGoogle Scholar

Katz, B. (1966). Nerve, muscle, and synapse. McGraw-Hill, New YorkGoogle Scholar

Kaufmann, J. A., Way, J. F., Siegel, L. S. & Sellin, L. C. (1985). Comparison of the actions of types A and F botulinum toxin at the rat neuromuscular junction. Toxicol. Appl. Pharmacol. 79, 211–217.CrossRefGoogle Scholar

Kelly, R. (1993). Storage and release of neurotransmitters. Cell 72 / Neuron 10, 42–53.Google Scholar

Kim, Y., Lomo, T., Lupa, M. T. & Thesleff, S. (1984). Miniature end plate potentials in rat skeletal muscle poisoned with botulinum toxin. J. Physiol (London) 356, 587–599.CrossRefGoogle ScholarPubMed

Kitamura, M., Iwamori, M. & Nagai, Y. (1980). Interaction between Clostridium botulinum neurotoxin and gangliosides. Biochim. Biophys. Acta 628, 328–335.CrossRefGoogle ScholarPubMed

Kitamura, M. & Sone, S. (1987). Binding ability of Clostridium botulinum neurotoxin to the synaptosomes upon treatment with various kind of enzymes. Biochem. Biophys. Res. Commun. 143, 928–933.CrossRefGoogle Scholar

Kitasato, S. (1889). Ueber den Tetanus bacillus. Ztschr. Hyg. InfektKr. 7, 225–233.Google Scholar

Kitasato, S. (1891). Experimented Unterschungen ùber das Tetanusgift. Ztschr. Hyg. InfektrKr. 10, 267–305.Google Scholar

Knight, D. E., Tonge, D. A. & Baker, P. F. (1985). Inhibition of exocytosis in bovine adrenal medullary cells by botulinum toxin type D. Nature 317, 719–721.CrossRefGoogle ScholarPubMed

Kozaki, S., Miki, A., Kamata, Y., Ogasawara, J. & Sakaguchi, G. (1989). Immunological characterization of papain-induced fragments of Clostridium botulinum type A neurotoxin and interaction of the fragments with brain synaptosomes. Infect. Immun. 57, 2634–2639.CrossRefGoogle ScholarPubMed

Krieglstein, K. G., Henschen, A., Weller, U. & Habermann, E. (1991). Limited proteolysis of tetanus toxin. Eur. J. Biochem. 202, 41–51.CrossRefGoogle ScholarPubMed

Kryzhanovsky, G. N. (1958). Central nervous changes in experimental tetanus and the mode of action of the tetanus toxin. Communication I. Irradiation of the excitation on stimulating the tetanized limb. Bull. Exp. Biol. Med. 44, 1456–1464 (English translation).CrossRefGoogle Scholar

Kryzhanovsky, G. N., Pozdynakov, O. M., D'yakonova, M. V., Polgar, A. A. & Smirnova, V. S. (1971). Disturbance of neurosecretion in myoneural junctions of muscle poisoned with tetanus toxin. Bull. Exp. Biol. Med. 72, 1387–1391 (English translation).CrossRefGoogle Scholar

Kurazono, H., Mochida, S., Binz, T., Eisel, U., Quanz, M., Grebenstein, O., Wernars, K., Poulain, B., Tauc, L. & Niemann, H. (1992). Minimal essential domains specifying toxicity of the light chains of tetanus toxin and botulinum nurotoxin type A. J. Biol. Chem. 267, 14721–14729.CrossRefGoogle ScholarPubMed

Lebeda, F. J. & Olson, M. A. (1994). Secondary structural predictions for the clostridial neurotoxins. Proteins: Structure, Function & Genetics 20, 293–300.CrossRefGoogle ScholarPubMed

Li, Y., Foran, P., Fairweather, N., De Paiva, A., Weller, U., Dougan, G. & Dolly, O. (1994). A single mutation in the recombinant light chain of tetanus toxin abolishes its proteolytic activity and removes its toxicity seen after reconstitution with native heavy chain. Biochemistry 33, 7014–7020.CrossRefGoogle Scholar

Liley, A. W. (1957). Spontaneous release of transmitter substance in multiquantal units. J. Physiol. (London) 136, 595–605.CrossRefGoogle ScholarPubMed

Link, E., Edelmann, L., Chou, J. H., Binz, T., Yamasaki, S., Eisel, U., Baumert, M., Südhof, T. C., Niemann, H. & Jahn, R. (1992). Tetanus toxin action: inhibition of neurotransmitter release linked to synaptobrevin. Biochem. Biophys. Res. Commun. 189, 1017–1023.CrossRefGoogle ScholarPubMed

Llinas, R., Sugimori, M. & Silver, R. B. (1992). Microdomains of high calcium concentration in a presynaptic terminal. Science 256, 677–679.CrossRefGoogle Scholar

Lovejoy, B., Cleasby, A., Hassell, A. M., Longley, K., Luther, M. A., Weigl, D., McGeehan, G., McElroy, A. B., Drewry, D., Lambert, M. H. & Jordan, S. R. (1994). Structure of the catalytic domain of fibroblast collagenase complexed with an inhibitor. Science 263, 375–377.CrossRefGoogle ScholarPubMed

Mallart, A.Molgo, J., Angaut-Petit, D. & Thesleff, S. (1989). Is the internal calcium regulation altered in type A botulinum toxin poisoned motor endings? Brain Res. 479, 167–171.CrossRefGoogle ScholarPubMed

Marxen, P. & Bigalke, H. (1991). The chromaffin cell: a suitable model for investigating the actions and the metabolism of tetanus and botulinum A neurotoxins. Naunyn-Schmiedebergs Arch. Pharmacol. 343 (Suppl.), 12–29.Google Scholar

Marxen, P., Fuhrmann, U. & Bigalke, H. (1989). Ganglioside mediate inhibitory effects of tetanus and botulinum A neurotoxins on exocytosis in chromaffin cells. Toxicon 27, 849–859.CrossRefGoogle ScholarPubMed

Matsuda, M. & Yoneda, M. (1975). Isolation and purification of two antigenically active, complementary polypeptide fragments of tetanus neurotoxin. Infect. Immun. 12, 1147–1153.CrossRefGoogle Scholar

Matsuda, M., Sugimoto, N., Ozutsumi, K. & Hirai, T. (1982). Acute botulinum-like intoxication by tetanus neurotoxin in mice. Biochem. Biophys. Res. Commun. 104, 799–805.CrossRefGoogle ScholarPubMed

Matteoli, M., Takei, K., Perin, M. S., Sudhof, T. C. & De Camilli, P. (1992). Exoendocytic recycling of synaptic vesicles in developing processes of cultured hyppocampal neurons. J. Cell Biol. 117, 849–861.CrossRefGoogle Scholar

Matthews, B. W. (1988). Structural basis of the action of thermolysin and related zinc peptidases. Acc. Chem. Res. 21, 333–340.CrossRefGoogle Scholar

Matthews, B. W., Jansonius, J. N. & Colman, P. M. (1972). Three-dimensional structure of thermolysin. Nature New Biol. 238, 37–41.CrossRefGoogle ScholarPubMed

McInnes, C. & Dolly, J. O. (1990). Ca2+-dependent noradrenaline release from permeabilised PC 12 cells is blocked by botulinum neurotoxin A or its light chain. FEBS Lett. 261, 323–326.CrossRefGoogle ScholarPubMed

McMahon, H. T., Ushkaryov, Y. A., Edelmann, L., Link, E., Binz, T., Niemann, H., Jahn, R. & Südhof, T. C. (1993). Cellubrevin is a ubiquitous tetanus-toxin substrate homologous to a putative synaptic vesicle fusion protein. Nature 364, 346–349.CrossRefGoogle ScholarPubMed

Meldolesi, J., Scheer, H., Madeddu, L. & Wanke, E. (1986). Mechanism of action of Á-latratoxin: the presynaptic stimulatory toxin of the black widow spider venom. Trends Pharmacol. Sci. 6, 151–155.CrossRefGoogle Scholar

Mellanby, J. & Thompson, P. A. (1972). The effect of tetanus toxin at the neuromuscular junction in the goldfish. J. Physiol. (London) 224, 407–419.CrossRefGoogle ScholarPubMed

Mellanby, J., Mellanby, H., Pope, D. & Van Heyningen, W. E. (1968). Ganglioside as a profilactic agent in experimental tetanus in mice. J. gen. Microbiol. 54, 161–168.CrossRefGoogle Scholar

Mellanby, J., Beaumont, M. A. & Thompson, P. A. (1988). The effect of lantanum on nerve terminals in goldfish muscle after paralysis with tetanus toxin. Neuroscience 25, 1095–1106.CrossRefGoogle Scholar

Menestrina, G., Forti, S. & Gambale, F. (1989). Interaction of tetanus toxin with lipid vesicles: effects of pH, surface charge, and transmembrane potential on the kinetics of channel formation. Biophys. J. 55, 393–405.CrossRefGoogle ScholarPubMed

Menestrina, G., Schiavo, G. & Montecucco, C. (1994). Molecular mechanisms of action of bacterial protein toxins. Molec. Aspects Med. 15, 79–193.CrossRefGoogle ScholarPubMed

Middlebrook, J. L. & Brown, J. E. (1995) Immunodiagnosis and immunotherapy of tetanus and botulinum neurotoxins. In Clostridial Neurotoxins, Curr. Top. Microbiol. Immunol. (ed. Montecucco, C.) 195, in press.Google Scholar

Milne, J. C. & Collier, R. J. (1993). pH-dependent permeabilization of the plasma membrane of mammalian cells by anthrax protective antigen. Mol. Microbiol. 10, 647–653.CrossRefGoogle ScholarPubMed

Mims, C. A. (1987). The pathogenesis of infectious disease. London: Academic Press.Google Scholar

Minton, N. (1995). Molecular genetics of clostridial neurotoxins. In Clostridial Neurotoxins, Curr. Top. Microbiol. Immunol. (ed. Montecucco, C.), 195, in press.Google Scholar

Mitsui, N., Mitsui, K. & Hase, J. (1980). Purification and some properties of tetanolysin. Microbiol. Immunol. 24, 575–584.CrossRefGoogle ScholarPubMed

Mochida, S., Poulain, B., Weller, U., Habermann, E. & Tauc, L. (1989). Light chain of tetanus toxin intracellularly inhibits acethylcholine release at neuro-neuronal synapses, and its internalization is mediated by heavy chain. FEBS Lett. 253, 47–51.CrossRefGoogle Scholar

Molgo, J., DasGupta, B. R. & Thesleff, S. (1989 a). Characterization of the actions of botulinum neurotoxin type E at the neuromuscular junctions. Acta Physiol. Scand. 137, 497–501.CrossRefGoogle Scholar

Molgo, J., Siegel, L. S., Tabti, N. & Thesleff, S. (1989 b). A study of synchronization of quantal trasmitter release from mammalian motor endings by the use of botulinal neurotoxins type A and D. J. Physiol. (London) 411, 195–205.CrossRefGoogle Scholar

Molgo, J., Comella, J. X., Angaut-Petit, D., Pecot-Dechavassine, M., Tabti, N., Faille, L., Mallart, A. & Thesleff, S. (1990). Presynaptic actions of botulinal neurotoxins at vertebrate neuromuscular junctions. J. Physiol. (Paris) 84, 152–166.Google ScholarPubMed

Monk, J. R. & Fernandez, J. M. (1994). The exocytotic fusion pore and neurotransmitter release. Neuron 12, 707–716.CrossRefGoogle Scholar

Montal, M. S., Blewitt, R., Tomich, J. M. & Montal, M. (1992). Identification of an ion channel-forming motif in the primary structure of tetanus and botulinum neurotoxins. FEBS Lett. 313, 12–18.CrossRefGoogle ScholarPubMed

Montecucco, C. (1986). How do tetanus and botulinum neurotoxins bind to neuronal membranes? Trends Biochem. Sci. 11, 314–317CrossRefGoogle Scholar

Montecucco, C. (1989). Some theoretical considerations on tetanus. In Eight International Conference on Tetanus (eds. Nisticò, G., Bizzini, B., Bytchenko, B. & Triau, R.), pp. 71–91. Rome: Pythagora Press.Google Scholar

Montecucco, C. & Schiavo, G. (1993). Tetanus and botulism neurotoxins: a new group of zinc proteases. Trends Biochem. Sci. 18, 324–327.CrossRefGoogle ScholarPubMed

Montecucco, C. & Schiavo, G. (1994). Mechanism of action of tetanus and botulinum neurotoxins. Mol. Microbiol. 13, 1–8.CrossRefGoogle ScholarPubMed

Montecucco, C., Schiavo, G., Brunner, J., Duflot, E., Boquet, P. & Roa, M. (1986). Tetanus toxin is labeled with photoactivatable phospholipids at low pH. Biochemistry 25, 919–924.CrossRefGoogle ScholarPubMed

Montecucco, C., Schiavo, G., Gao, Z., Bauerlein, E., Boquet, P. & DasGupta, B. R. (1988). Interaction of botulinum and tetanus toxins with the lipid bilayer surface. Biochem. J. 251, 379–383.CrossRefGoogle ScholarPubMed

Montecucco, C., Schiavo, G. & DasGupta, B. R. (1989). Effect of pH on the interaction of botulinum neurotoxins A, B and E with liposomes. Biochem. J. 259, 47–53.CrossRefGoogle Scholar

Montecucco, C., Papini, E. & Schiavo, G. (1991). Molecular models of toxin membrane translocation. In Sourcebook of bacterial protein toxins, (eds. Alouf, J. E. & Freer, J. H.), pp. 45–56. London: Academic Press.Google Scholar

Montecucco, C., Papini, E. & Schiavo, G. (1994). Bacterial protein toxins penetrate cells via a four-step mechanism. FEBS Lett. 346, 92–98.CrossRefGoogle Scholar

Montesano, R., Roth, J., Robert, A. & Orci, L. (1982). Noa coated invaginations are involved in binding and internalization of cholera and tetanus toxin. Nature 296, 651–653.CrossRefGoogle Scholar

Morante, S., Furenlid, L., Schiavo, G., Tonello, , Zwilling, R. & Montecucco, C. (1995). A X-ray absorption spectroscopy study of zinc coordination in tetanus neurotoxin, astacin, thermolysin and alkaline protease, submitted.CrossRefGoogle Scholar

Moretto, A., Lotti, M., Sabri, M. I. & Spencer, P. S. (1987). Progressive deficit of retrograde axonal transport is associated with the pathogenesis of di-n-butyl dichlorvos axonopathy. J. Neurochem. 49, 1515–1522.CrossRefGoogle ScholarPubMed

Morris, N. P., Consiglio, E., Kohn, L. D., Habig, W. H., Hardegree, M. C. & Helting, T. B. (1980). Interaction of fragments B and C of tetanus toxin with neural and thyroid membranes and with gangliosides. J. Biol. Chem. 255, 6071–6076.CrossRefGoogle Scholar

Neale, E. A., Habig, W. H., Schrier, B. K., Bergey, G. K., Bowers, L. M. & Koh, J. (1989). Application of tetanus toxin for structure-function studies in neuronal cell cultures. In Eight International Conference on Tetanus (eds. Nistico, G., Bizzini, B., Bytchenko, B. & Triau, R.), pp. 66–70. Rome: Pythagora Press.Google Scholar

Niemann, H. (1991). Molecular biology of clostridial neurotoxins. In Sourcebook of bacterial protein toxins, (eds. Alouf, J. E. & Freer, J. H.), pp. 303–348. London: Academic Press.Google Scholar

Nishiki, T., Kamata, Y., Nemoto, Y., Omori, A., Ito, T., Takahashi, M. & Kozaki, S. (1994). Identification of protein receptor for Clostridium botulinum type B neurotoxin in rat brain synaptosomes. J. Biol. Chem. 269, 10498–10503.CrossRefGoogle ScholarPubMed

Ochanda, J. O., Syuto, B., Ohishi, I., Naiki, M. & Kubo, S. (1986). Binding of Clostridium botulinum neurotoxin to gangliosides. J. Biochem. 100, 27–33.CrossRefGoogle ScholarPubMed

O'Connor, V. O., Augustine, G. J. & Betz, H. (1994). Synaptic vesicle exocytosis: molecules and models. Cell 76, 785–787.CrossRefGoogle ScholarPubMed

Osen-Sand, A., Catsicas, M., Staple, J. K., Jones, K. A., Ayala, G., Knowles, J., Grenningloh, G. & Catsicas, S. (1993). Inhibition of axonal growth by SNAP-25 antisense oligonucleotides in vitro and in vivo. Nature 364, 445–448.CrossRefGoogle ScholarPubMed

Oyler, G. A., Higgins, G. A., Hart, R. A., Battenberg, E., Billingsley, M., Bloom, F. E. & Wilson, M. C. (1989). The identification of a novel synaptosomal-associated protein, SNAP-25, differently expressed by neuronal subpopulations. J. Cell Biol. 109, 3039–3052.CrossRefGoogle Scholar

Papini, E., Sandonà, D., Rappuoli, R. & Montecucco, C. (1988). On the membrane translocation of diphtheria toxin: at low pH the toxin induces ion channels in cells. EMBO J. 7, 3353–3359.CrossRefGoogle Scholar

Papini, E., Rossetto, O. & Cutler, D. (1995). Vesicle-associated membrane protein (VAMP/synaptobrevin-2 is associated with dense core secretory granules in PC12 neuroendocryne cells. J. Biol. Chem. 270, 1332–1336.CrossRefGoogle Scholar

Parton, R. G., Ockleford, C. D. & Critchley, D. R. (1987). A study of the mechanism of internalisation of tetanus toxin by primary mouse spinal cord cultures. J. Neurochem. 49, 1057–1068.CrossRefGoogle ScholarPubMed

Parton, R. G., Ockleford, C. D. & Critchley, D. R. (1988). Tetanus toxin binding to mouse spinal cord cells: an evaluation of the role of gangliosides in toxin internalization. Brain Res. 475, 118–127.CrossRefGoogle ScholarPubMed

Patarnello, T., Bargelloni, L., Rossetto, O., Schiavo, G. & Montecucco, C. (1993). Neurotransmission and secretion. Nature 364, 581–582.CrossRefGoogle ScholarPubMed

Pauptit, R. A., Karlsson, R., Picot, D., Jenkins, J. A., Niklaus-Reimer, A. S. & Jansonius, J. N. (1988). Crystal structure of neutral protease from Bacillus cereus refined at 30 A resolution and comparison with the homologous but more thermostable enzyme termolysin. J. Mol. Biol. 199, 525–537.CrossRefGoogle Scholar

Payling-Wright, G. (1955). The neurotoxins of Clostridium botulinum and Clostridum tetani. Pharmacol. Rev. 7, 413–465.Google Scholar

Pecot-Dechavassine, M., Molgo, J. & Thesleff, S. (1991). Ultrastructure of botulinum type A poisoned frog motor nerve terminals after enhanced quantal transmitter release caused by carbonyl cyanide m-chlorophenylhydrazone. Neurosci. Lett. 130, 5–8.CrossRefGoogle ScholarPubMed

Penner, R., Neher, E. & Dreyer, F. (1986). Intracellularly injected tetanus toxin inhibits exocytosis in bovine adrenal chromaffin cells. Nature 324, 76–77.CrossRefGoogle ScholarPubMed

Petrenko, A. G., Perin, M. S., Davletov, A. B., Ushkaryov, Y. A., Geppert, M. & Sudhof, T. C. (1991). Binding of synaptotagmin to the Á-latrotoxin receptor implicates both in synaptic vesicle exocytosis. Nature 353, 65–68.CrossRefGoogle Scholar

Pierce, E. J., Davison, M. D., Parton, R. G., Habig, W. H. & Critchley, D. R. (1986). Characterization of tetanus toxin binding to rat brain membranes. Biochem. J. 236, 845–852.CrossRefGoogle ScholarPubMed

Podzdnyakov, O. M., Polgar, A. A., Smirnova, V. S. & Kryzhanovsky, G. N. (1972). Changes in the ultrastructure of the neuromuscular synapse produced by tetanus toxin. Bull. Exp. Biol. Med. 74, 852–855 (English translation).CrossRefGoogle Scholar

Ponomarev, A. W. (1928). Zur frage der pathogenese des tetanus und des fortbewegungsmechanismus des tetanustoxins langs dem nerven. Z. Ges. Exp.Med. 61, 93–106.CrossRefGoogle Scholar

Poulain, B., Tauc, L., Maisey, E. A., Wadsworth, J. D. F., Mohan, P. M. & Dolly, J. O. (1988). Neurotransmitter release is blocked intracellularly by botulinum neurotoxins, and requires uptake of both toxin polypeptides by a process mediated by the larger chain. Proc. Natl. Acad. Sci. USA 85, 4090–4094.CrossRefGoogle ScholarPubMed

Poulain, B., Rossetto, O., Deloye, F., Schiavo, G., Tauc, L. & Montecucco, C. (1993). Antibodies against rat brain vesicle-associated membrane protein (sinaptobrevin) prevent inhibition of acetylcholine release by tetanus toxin of botulinum neurotoxin type B. J. Neurochem. 61, 1175–1178.CrossRefGoogle Scholar

Poulain, B., Thesleff, S. & Molgo, J. (1995). ‘Quantal neurotransmitter release and the clostridial neurotoxins' targets’. In Clostridial Neurotoxins, Curr. Top. Microbiol. Immunol. (ed. Montecucco, C.), 195, in press.Google Scholar

Price, D. L., Griffin, J., Young, A., Peck, K. & Stocks, A. (1975). Tetanus toxin: direct evidence for retrograde intraaxonal transport. Science 188, 945–947.CrossRefGoogle ScholarPubMed

Protopopov, V., Govindan, B., Novick, P. & Gerst, J. E. (1993). Homologs of the synaptobrevin/VAMP family of synaptic vesicle proteins function on the late secretory pathway in S. cerevisiae. Cell 74, 855–861.CrossRefGoogle ScholarPubMed

Ralston, E., Beushausen, S. & Ploug, T. (1994). Expression of the synaptic vesicle proteins VAMPs/synaptobrevins 1 and 2 in non-neuronal tissue. J. Biol. Chem. 269, 15403–15406.CrossRefGoogle Scholar

Ramon, G. and Descombey, P. A. (1925). Sur l'immunization antitetanique et sur la production de l'antitoxine tetanique. Compt. Rend. Soc. Biol., 93, 508–598.Google Scholar

Rauch, G., Gambale, F. & Montal, M. (1990). Tetanus toxin channels in phosphatidylserine planar bilayers–conductance states and pH-dependence. Eur. Biophys.J. 18, 79–83.CrossRefGoogle ScholarPubMed

Ray, P., Berman, J. D., Middleton, W. & Brendle, J. (1993). Botulinum toxin inhibits arachidonic acid release associated with acetylcholine release from PC12 cells. J. Biol. Chem.. 268, 11057–11064.CrossRefGoogle ScholarPubMed

Regazzi, R., Wolheim, C., Lang, J., Theler, J. M., Rossetto, O., Montecucco, C., Sadoul, K., Weller, U., Palmer, U. & Thorens, B. (1995). Vamp-2 and cellubrevin are expressed in pancreatic β-cells and are essential for Ca2+, but not GTPçS-induced secretion. EMBO J., in press.CrossRefGoogle Scholar

Risinger, C. & Larhammar, D. (1993). Multiple loci for synapse protein SNAP-25 in the tetraploid goldfish. Proc. Natl. Acad. Set. USA 90, 10598–10602.CrossRefGoogle Scholar

Risinger, C., Blomqvist, A. G., Lundell, I., Lambertsson, A., Nässel, D., Pierbone, V. A., Brodin, L. & Larhammar, D. (1993). Evolutionary conservation of synaptosome-associated protein 25 kDa (SNAP-25) shown by Drosophila and Torpedo cDNA clones. J. Biol. Chem. 268, 24408–24414.CrossRefGoogle ScholarPubMed

Roa, M. and Boquet, P. (1985). Interaction of tetanus toxin with lipid vescicles at low pH. J. Biol. Chem., 260, 6827–6835.CrossRefGoogle Scholar

Robinson, J. P., Holladay, L. A., Hash, J. H. & Puett, D. (1981). Conformational and molecular weight studies of tetanus toxin and its major peptides. J. Biol. Chem. 257, 407–411.CrossRefGoogle Scholar

Robinson, J. P., Schmid, M. F., Morgan, D. G. & Chiu, W. (1988). Three-dimensional structural analysis of tetanus toxin by electron crystallography. J. Mol. Biol. 200, 367–375.CrossRefGoogle ScholarPubMed

Robinson, P. J., Liu, J. P., Powell, K. A., Fykse, E. M. & Sudhof, T. C. (1994). Phosphorylation of dynamin I and synaptic-vesicle recycling. Trends Neurosci. 17, 348–353.CrossRefGoogle ScholarPubMed

Rossetto, O., Schiavo, G.Montecucco, C., Poulain, B., Deloye, F., Lozzi, L. & Shone, C. C. (1994). SNARE motif and neurotoxin recognition. Nature 372, 415–416.CrossRefGoogle Scholar

Rossetto, O., Gorza, L., Schiavo, G., Schiavo, N., Scheller, R. H. & Montecucco, C. (1995). VAMP/Synaptobrevin isoforms 1 and 2 are widely and differentially distributed outside the nervous system. J. Cell Biol. submitted.Google Scholar

Rothman, J. E. & Warren, G. (1994). Implications of the SNARE hypothesis for intracellular membrane topology and dynamics. Curr. Biol. 4, 220–233.CrossRefGoogle ScholarPubMed

Sadoul, K., Lang, J., Montecucco, C., Weller, U., Catsicas, S., Wollheim, C. & Halban, P. (1995). SNAP-25 is expressed in islets of Lagerhans and is involved in insulin release. J. Cell. Biol. 128, 1019–1028.CrossRefGoogle Scholar

Sahenk, Z. & Mendell, J. R. (1981). Axoplasmic transport in zinc pyridinethione neuropathy: evidence for anormality in distal turn-around. Brain Res. 186, 343–353.CrossRefGoogle Scholar

Sandvig, K. & Olsnes, S. (1988). Diphtheria toxin-induced channels in Vero cells selective for monovalent cations. J. Biol. Chem. 263, 12352–12359.CrossRefGoogle ScholarPubMed

Sathyamoorthy, V. & DasGupta, B. R. (1985). Separation, purification, partial characterization and comparison of the heavy and light chains of botulinum neurotoxin types A, B and E. J. Biol. Chem. 260, 10461–10466.CrossRefGoogle Scholar

Schengrund, C. L., DasGupta, B. R. & Ringler, N. J. (1991). Binding of botulinum and tetanus neurotoxins to ganglioside GT1b and derivatives thereof. J. Neurochem. 57, 1024–1032.CrossRefGoogle ScholarPubMed

Schiavo, G. & Montecucco, C. (1995). Tetanus and botulism neurotoxins: isolation and assay. Methods Enzymol. 248, in press.CrossRefGoogle Scholar

Schiavo, G., Papini, E., Genna, G. & Montecucco, C. (1990). An intact interchain disulfide bond is required for the neurotoxicity of tetanus toxin. Infect. Immun. 58, 4136–4141.CrossRefGoogle ScholarPubMed

Schiavo, G., Demel, R. & Montecucco, C. (1991 a). On the role of polysialoglycosphingolipids as tetanus toxin receptors: a study with lipid monolayers. Eur. J. Biochem. 199, 705–711.CrossRefGoogle ScholarPubMed

Schiavo, G., Rossetto, O., Ferrari, G. & Montecucco, C. (1991 b). Tetanus toxin receptor. Specific cross-linking of tetanus toxin to a protein of NGF-differentiated PC12 cells. FEBS Lett., 290, 227–230.CrossRefGoogle Scholar

Schiavo, G., Poulain, B., Rossetto, O., Benfenati, F., Tauc, L. & Montecucco, C. (1992 a). Tetanus toxin is a zinc protein and its inhibition of neurotrasmitter release and protease activity depend on zinc. EMBO J. 11, 3577–3583.CrossRefGoogle Scholar

Schiavo, G., Rossetto, O., Santucci, A., DasGupta, B. R. & Montecucco, C. (1992 b). Botulinum neurotoxins are zinc proteins. J. Biol. Chem. 267, 23479–23483.CrossRefGoogle Scholar

Schiavo, G., Benfenati, F., Poulain, B., Rossetto, O., Polverino De Laureto, P., DasGupta, B. R. & Montecucco, C. (1992 c). Tetanus and botulinum-B neurotoxins block neurotransmitter release by a proteolytic cleavage of synaptobrevin. Nature 359, 832–835.CrossRefGoogle ScholarPubMed

Schiavo, G., Poulain, B., Benfenati, F., DasGupta, B. R. & Montecucco, C. (1993 a). Novel targets and catalytic activities of bacterial protein toxins. Trends Microbiol. 1, 170–174.CrossRefGoogle ScholarPubMed

Schiavo, G., Shone, C. C., Rossetto, O., Alexandre, F. C. G. & Montecucco, C. (1993 b). Botulinum neurotoxin serotype F is a zinc endopeptidase specific for VAMP/synaptobrevin. J. Biol. Chem. 268, 11516–11519.CrossRefGoogle ScholarPubMed

Schiavo, G., Rossetto, O., Catsicas, S., Polverino De Laureto, P., DasGupta, B. R., Benfenati, F. & Montecucco, C. (1993 c). Identification of the nerve-terminal targets of botulinum neurotoxins serotypes A, D and E. J. Biol. Chem. 268, 23784–23787.CrossRefGoogle Scholar

Schiavo, G., Santucci, A., DasGupta, B. R., Metha, P. P., Jontes, J., Benfenati, F., Wilson, M. C. & Montecucco, C. (1993 d). Botulinum neurotoxins serotypes A and E cleave SNAP-25 at distinct COOH-terminal peptide bonds. FEBS Lett. 335, 99–103.CrossRefGoogle Scholar

Schiavo, G., Malizio, C., Trimble, W. S., Polverino De Laureto, P., Milan, G., Sugiyama, H., Johnson, E. A. & Montecucco, C. (1994). Botulinum G neurotoxin cleaves VAMP/synaptobrevin at a single Ala/Ala peptide bond. J. Biol. Chem. 269, 20213–20216.CrossRefGoogle Scholar

Schiavo, G., Shone, C. C., Bennett, M. K., Scheller, R. H. & Montecucco, C. (1995 a). Botulinum neurotoxin type C cleaves a single Lys-Ala bond within the carboxyl-terminal region of syntaxins. J. Biol. Chem. 270, 10566–10570.CrossRefGoogle Scholar

Schiavo, G., Rossetto, O., Tonello, F. & Montecucco, C. (1995 b). The metalloproteinase activity of tetanus and botulinum neurotoxins. In Clostridial neurotoxins, Curr. Top. Microbiol. Immunol. (ed. Montecucco, C.), 195, in press.Google Scholar

Schmid, M. F., Robinson, J. P. & DasGupta, B. R. (1993). Direct visualization of botulinum neurotoxin-induced channels in phospholipid vesicles. Nature 364, 827–830.CrossRefGoogle ScholarPubMed

Schuldiner, S., Shirvan, A. & Linial, M. (1995). Vesicular neurotransmitter transporters: from bacteria to humans. Physiol. Rev. 76, in press.Google Scholar

Schwab, M. E. & Thoenen, H. (1976). Electron microscopic evidence for a transsynaptic migration of tetanus toxin in spinal cord motoneurons: an autoradiographic and morphometric study. Brain Res. 105, 213–227.CrossRefGoogle ScholarPubMed

Schwab, M. E., Suda, K. & Thoenen, H. (1979). Selective retrograde trans-synaptic transfer of a protein, tetanus toxin, subsequent to its retrograde axonal transport. J. Cell. Biol., 82, 798–810.CrossRefGoogle Scholar

Scott, A. B. (1989). Clostridial toxins as therapeutic agents. In Botulinum neurotoxins and tetanus toxin, (ed. Simpson, L. L.), pp. 399–412. New York: Academic Press.CrossRefGoogle Scholar

Sellin, L. C. (1987). Botulinum toxin and the blockade of transmitter release. Asia Pacific J. Pharmacol. 2, 203–222.Google Scholar

Sellin, L. C., Thesleff, S. & DasGupta, B. R. (1983). Different effects of types A and B botulinum toxin on transmitter release at the rat neuromuscular junction. Add Physiol. Scand. 119, 127–133.CrossRefGoogle Scholar

Shone, C. C., Hambleton, P. & Melling, J. (1985). Inactivation of Clostridium botulinum type A neurotoxin by trypsin and purification of two tryptic fragments. Eur. J. Biochem. 151, 75–82.CrossRefGoogle ScholarPubMed

Shone, C. C., Hambleton, P. & Melling, J. (1987). A 50-kDa fragment frpm the NH2-terminus of the heavy subunit of Clostridium botulinum type A neurotoxin forms channels in lipid vesicles. Eur. J. Biochem. 167, 75–82.CrossRefGoogle Scholar

Shone, C. C., Quinn, C. P., Wait, R., Hallis, B., Fooks, S. G. & Hambleton, P. (1993). Proteolytic cleavage of synthetic fragments of vesicle-associated membrane protein, isoform-2 by botulinum type B neurotoxin. Eur. J. Biochem. 217, 965–971.CrossRefGoogle ScholarPubMed

Shone, C. C. & Roberts, A. K. (1994). Peptide substrate specificity and properties of the zinc-endopeptidase activity of botulinum type B neurotoxin. Eur.J. Biochem. 225, 263–270.CrossRefGoogle ScholarPubMed

Shumaker, H. B., Lamont, A. & Firor, W. M. (1939). The reaction of ‘tetanus sensitive’ and ‘tetanus resistant’ animals to the injection of tetanal toxin into the spinal cord. J. Immunol. 37, 425–433.CrossRefGoogle Scholar

Simon, S. M. & Blobel, G. (1992). Signal peptides open protein-conducting channels in E. coli. Cell 69, 677–684.CrossRefGoogle ScholarPubMed

Simpson, L. L. (1982). The interaction between aminoquinolines and presynaptically acting neurotoxins. J. Pharmacol. Exp. Ther., 222, 43–48.Google ScholarPubMed

Simpson, L. L. (1983). Ammonium chloride and methylamine hydrochloride antagonize clostridial neurotoxins. J. Pharmacol. Exp. Ther., 225, 546–552.Google ScholarPubMed

Simpson, L. L. (1988). Targeting drugs and toxins to the brain: magic bullets. Intern. Rev. Neurobiol. 30, 123–147.CrossRefGoogle Scholar

Simpson, L. L. Editor (1989). Botulinum neurotoxin and tetanus toxin. San Diego: Academic Press.Google Scholar

Simpson, L. L. & Rapport, M. M. (1971). Ganglioside inactivation of botulinum toxin. J. Neurochem. 18, 1341–1343.CrossRefGoogle ScholarPubMed

Simpson, L. L., Coffield, J. A. & Bakry, N. (1993). Chelation of zinc antagonizes the neuromuscular blocking properties of the seven serotypes of botulinum neurotoxin as well as tetanus toxin. J. Pharmacol. Exp. Ther. 267, 720–727.Google ScholarPubMed

Simpson, L. L., Coffield, J. A. & Bakry, N. (1994). Inhibiton of vacuolar adenosine triphosphatase antagonizes the effects of clostridial neurotoxins but not phospholipase A2 neurotoxins. J. Pharmacol. Exp. Ther. 269, 256–262.Google Scholar

Singh, B. R., Fuller, M. P. & Schiavo, G. (1990 a). Molecular structure of tetanus neurotoxin as revealed by Fourier transform infrared and circular dichroic spectroscopy. Biophys. Chem. 46, 155–166.CrossRefGoogle Scholar

Singh, B. R., Wasacz, F. M., Strand, S., Jakobsen, R. J. & DasGupta, B. R. (1990 b). Structural analysis of botulinum neurotoxin types A and E in aqueous and non polar solvents by Fourier transform infrared, second derivative UV absorption and circular dichroic spectroscopies. J. Protein Chem. 9, 705–713.CrossRefGoogle Scholar

Smith, L. D. & Sugiyama, H. (1988). Botulism: the organism, its toxins, the disease. C. C. Thomas Publ., Springfield, IllinoisGoogle Scholar

Söllner, T., Whiteheart, S. W., Brunner, M., Erdjument-Bromage, H., Geromanos, S., Tempst, P. & Rothman, J. E. (1993 a). SNAP receptors implicated in vesicle targeting and fusion. Nature 362, 318–324.CrossRefGoogle ScholarPubMed

Söllner, T., Bennett, M., Whiteheart, S. W., Scheller, R. H. & Rothman, J. E. (1993 b). A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75, 409–418.CrossRefGoogle ScholarPubMed

Staub, G. C., Walton, K. M., Schnaar, R. L., Nichols, T., Baichwal, R., Sandberg, K. & Rogers, T. B. (1986). Characterization of the binding and internalization of tetanus toxin in a neuroblastoma hybrid cell line. J. Neurosci. 6, 1443–1451.CrossRefGoogle Scholar

Stecher, B., Weller, U., Habermann, E., Gratzl, M. & Anhert-Hilger, G. (1989). The light chain but not the heavy chain of botulinum A toxin inhibits exocytosis from permeabilized adrenal chromaffin cells. FEBS Lett. 255, 391–394.CrossRefGoogle Scholar

Steinhardt, R. A., BI, G. & Alderton, J. M. (1994). Cell membrane resealing by a vesicular mechanism similar to neurotransmitter release. Science 263, 390–393.CrossRefGoogle ScholarPubMed

Stevens, R. C., Evenson, M. L., Tepp, W. & DasGupta, B. R. (1991). Crystallization and preliminary X-ray analysis of botulinum neurotoxin type A. J. Mol. Biol. 222, 877–880.CrossRefGoogle ScholarPubMed

Stockel, K., Schwab, M. & Thoenen, H. (1975). Comparison between the retrograde axonal transport of nerve growth factor and tetanus toxin in motor, sensory and adrenergic neurons. Brain Res. 99, 1–16.CrossRefGoogle ScholarPubMed

Stockel, K., Schwab, M. & Thoenen, H. (1977). Role of gangliosides in the uptake and retrograde axonal transport of cholera and tetanus toxin as compared to nerve growth factor and wheat germ agglutinin. Brain Res. 132, 273–285.CrossRefGoogle Scholar

Südhof, T. C., Baumert, M., Perin, M. S. &. Jahn, R. (1989). A synaptic vesicle membrane protein is conserved from mammals to Drosophila. Neuron 2, 1475–1481.CrossRefGoogle ScholarPubMed

Südhof, T. & Jahn, R. (1991). Proteins of synaptic vesicles involved in exocytosis and membrane recycling. Neuron 6, 665–677.CrossRefGoogle ScholarPubMed

Sweeney, S. T., Broadie, K., Keane, J., Niemann, H. & O'Kane, J. (1995). Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioural defects. Neuron 14, 341–351.CrossRefGoogle Scholar

Takano, K., Kirchner, F., Terhaar, P. & Tiebert, B. (1983). Effect of tetanus toxin on the monosynaptic reflex. Naunyn-Schmiedebergs Arch. Pharmacol. 323, 217–220.CrossRefGoogle ScholarPubMed

Takano, K., Kirchner, F., Gremmelt, A., Matsuda, M., Ozutsumi, N. & Sugimoto, N. (1989). Blocking effect of tetanus toxin and its fragment (A-b) on the excitatory and inhibitory synapses of the spinal motoneuron of the cat. Toxicon 27, 385–392.CrossRefGoogle ScholarPubMed

Takei, K., McPherson, P. S., Schmid, S. L. & De Camilli, P. (1995). Tubular membrane invaginations coated by dynamin rings are induced by GTP-OS in nerve terminals. Nature 374, 186–190.CrossRefGoogle ScholarPubMed

Thayer, M. M., Flaherty, K. M. & McKay, D. B. (1991). Three-dimensional structure of the elastase of Pseudomonas aeruginosa at 1·5 A resolution. J. Biol. Chem. 266, 2864–2871.CrossRefGoogle ScholarPubMed

Thesleff, S. (1986). Different kinds of acetylcholine release from the motor nerve. Intern. Rev. Neurobiol. 28, 59–88.CrossRefGoogle ScholarPubMed

Thesleff, S., Molgo, J. & Tagerud, S. (1990). Trophic interrelations at the neuromuscular junction as revealed by the use of botulinal neurotoxins. J. Physiol. (Paris) 84, 167–173.Google ScholarPubMed

Thieffry, M., Chich, J-F., Goldschmidt, D. & Henry, J-P.. (1988). Incorporation in lipid bilayers of a large conductance cationic channel from mitochondrial membranes. EMBO J. 7, 1449–1454.CrossRefGoogle ScholarPubMed

Thomas, L., Hartung, K., Langosh, D., Rehm, H., Bamber, E., Franke, W. W. & Betz, H. (1988). Identification of synaptophysin as a hexameric channel protein of the synaptic vesicle membrane. Science 242, 1050–1053.CrossRefGoogle ScholarPubMed

Tizzoni, G. & Cattani, G. (1890 a). Uber das Tetanusgift. Zentralbl. Bakt. 8, 69–73.Google Scholar

Tizzoni, G. & Cattani, G. (1890 b). Untersuchungen über das Tetanusgift. Arch. exp. Pathol. Pharmakol. 27, 432–450.CrossRefGoogle Scholar

Trimble, W. S., Cowan, D. M. & Scheller, R. H. (1988). VAMP-1: a synaptic vesicle-associated integral membrane protein. Proc. Natl. Acad. Sci. USA 85, 4538–4542.CrossRefGoogle ScholarPubMed

Vallee, B. L. & Auld, D. S. (1990). Zinc coordination, function and structure of zinc enzymes and other proteins. Biochemistry 29, 5647–5659.CrossRefGoogle ScholarPubMed

Vallee, R. B. & Bloom, G. S. (1991). Mechanisms of fast and slow axonal transport. Annu. Rev. Neurosci. 14, 59–92.CrossRefGoogle ScholarPubMed

ValtortA, F., Maddedu, L., Meldolesi, J. & Ceccarelli, B. (1984). Specific localization of the à-latrotoxin receptor in the nerve terminal plasma membrane. J. Cell Biol. 99, 124–132.CrossRefGoogle Scholar

Valtorta, F., Benfenati, F. & Greengard, P. (1992). Structure and function of the synapsins. J. Biol. Chem. 267, 7195–7198.CrossRefGoogle ScholarPubMed

Van Der Goot, F. G., Gonzalez-Menas, J. M., Lakey, J. H. & Pattus, F. (1991). A ‘molten globule’ membrane-insertion intermediate of pore-forming domain of colicin A. Nature 354, 408–410.CrossRefGoogle Scholar

Van Der Kloot, W. & Molgo, J. (1994). Quantal acetylcholine release at the vertebrate neuromuscular junction. Physiol. Rev. 74, 899–991.CrossRefGoogle ScholarPubMed

Van Ermengem, E. (1897). Über ein neuen anaeroben Bacillus und seine Beziehungen zum Botulismus. Ztsch. Hyg. Infektkrh. 26, 1–56.Google Scholar

Van Heyningen, W. E. (1959). Tentative identification of the tetanus toxin receptor in nervous tissue. J. gen. Microbiol. 20, 810–820.Google Scholar

Van Heyningen, W. E. (1974). Gangliosides as membrane receptors for tetanus toxin, cholera toxin and serotonin. Nature. 249, 415–417.CrossRefGoogle Scholar

Von Gersdorff, H. & Matthews, G. (1994). Dynamics of synaptic vesicle fusion and membrane retrieval in synaptic terminals. Nature 367, 735–739.CrossRefGoogle ScholarPubMed

Wadsworth, J. D. F., Desai, M., Tranter, H. S., King, H. J., Hambleton, P., Melling, J., Dolly, J. O. & Shone, C. C. (1990). Botulinum type F neurotoxin. Large scale purification and characterization of its binding to rat cerebrocortical synaptosomes. Biochem. J. 268, 123–128.CrossRefGoogle ScholarPubMed

Walton, K. M., Sandberg, K., Rogers, T. B. & Schnaar, R. L. (1988). Complex ganglioside expression and tetanus toxin binding by PC 12 pheochromocytoma cells. J. Biol. Chem. 263, 2055–2063.CrossRefGoogle Scholar

Washbourne, P., Schiavo, G. & Montecucco, C. (1995). VAMP-2 forms a complex with synaptophysin. Biochem. J. 305, 721–724.CrossRefGoogle ScholarPubMed

Weller, U., Taylor, C. F. & Habermann, E. (1986). Quantitative comparison between tetanus toxin, some fragments, and toxoid for binding and axonal transport in the rat. Toxicon 24, 1055–1063.CrossRefGoogle ScholarPubMed

Weller, U., Dauzenroth, M.-E., Meyer Heringdorf, D. & Habermann, E. (1989). Chains and fragments of tetanus toxin. Eur. J. Biochem. 182, 649–656.CrossRefGoogle ScholarPubMed

Weller, U., Dauzenroth, M.-E., Gansel, M. & Dreyer, F. (1991). Cooperative action of the light chain of tetanus toxin and the heavy chain of botulinum toxin type A on the transmitter release of mammalian motor endplates. Neurosci. Lett. 122, 132–134.CrossRefGoogle ScholarPubMed

Wellhoner, H. H. (1982). Tetanus neurotoxin. Rev. Physiol. Biochem. Pharmacol. 93, 1–68.Google ScholarPubMed

Wellhoner, H. H. (1992). Tetanus and botulinum neurotoxins. In Handbook of Experimental Pharmacology (eds. Herken, H. & Hucho, F.), vol 102, pp. 357–417. Berlin: Springer–Verlag.Google Scholar

Wellhoner, H. H., Seib, U. C. & Hensel, B. (1973). Local tetanus in cats: the influence of neuromuscular activity on spinal distribution of 125I labelled tetanus toxin. Naunyn–Schmiedebergs Arch. Pharmacol. 276, 387–394.CrossRefGoogle Scholar

Wellhoner, H. H. & Neville, D. Jr (1987). Tetanus toxin binds with high affinity to neuroblastoma x glioma hybrid cells NG 108–15 and impairs their stimulated acetylcholine release. J. Biol. Chem. 262, 17374–13738.CrossRefGoogle ScholarPubMed

Williams, R. S., Tse, C. K., Dolly, J. O., Hambleton, P. & Melling, J. (1983). Radioiodination of botulinum neurotoxin type A with retention of biological activity and its binding to brain synaptosomes. Eur. J. Biochem. 131, 437–445.CrossRefGoogle ScholarPubMed

Williamson, M. P. (1994). The structure and function of proline–rich regions in proteins. Biochem. J. 297, 240–260.CrossRefGoogle ScholarPubMed

Williamson, L. C., Fitzgerald, S. C. & Neale, E. A. (1992). Differential effects of tetanus toxin on inhibitory and excitatory neurotransmitter release from mammalian spinal cord cells in culture. J. Neurochem. 59, 2148–2157.CrossRefGoogle ScholarPubMed

Williamson, L. C. & Neale, E. A. (1994). Bafilomycin Ai inhibits the action of tetanus toxin in spinal cord neurons in cell culture. J. Neurochem. 63, 2342–2345.CrossRefGoogle ScholarPubMed

Whitman, C., Belgharbi, L., Gasse, F., Torei, C., Mattei, V. & Zoffmann, H. (1992). Progress toward the global elimination of neonatal tetanus. Wld. Hlth. Statis. Quart. 45, 248–256.Google Scholar

Wright, J. F., Pernollet, M., Reboul, A., Aude, C. & Colomb, M. (1992). Identification and partial characterization of a low affinity metal-binding site in the light chain of tetanus toxin. J. Biol. Chem. 267, 9053–9058.CrossRefGoogle ScholarPubMed

Yamasaki, S., Hu, Y., Binz, T., Kalkuhl, A., Kurazono, H., Tamura, T., Jahn, R., Kandel, E. & Niemann, H. (1994 a). Synaptobrevin/VAMP of Aplysia californica: structure and proteolysis by tetanus and botulinal neurotoxins type D and F. Proc. Natl. Acad. Sci. USA 91, 4688–4692.CrossRefGoogle Scholar

Yamasaki, S., Baumeister, A., Binz, T., Blasi, J., Link, E., Cornille, F., Roques, B., Fykse, E. M., Südhof, T. C., Jahn, R. & Niemann, H. (1994 b). Cleavage of members of the synaptobrevin/VAMP family by types D and F botulinal neurotoxins and tetanus toxin. J. Biol. Chem. 269, 12764–12772.CrossRefGoogle Scholar

Yavin, E. & Habig, W. H. (1984). Binding og tetanus toxin to somatic neural hybrid cells with varying ganglioside composition. J. Neurochem., 42, 1313–1321.CrossRefGoogle Scholar

Yavin, E. & Nathan, A. (1986). Tetanus toxin receptors on nerve cells contain a trypsin sensitive component. Eur. J. Biochem., 154, 403–407.CrossRefGoogle ScholarPubMed

Zimmermann, J. M. & Piffaretti, J. C. (1977). Interaction of tetanus toxin and toxoid with cultured neuroblastoma cells. Analysis by immunofluorescence. Naunyn Schmiedebergs Arch. Pharmacol. 296, 271–277.CrossRefGoogle Scholar