Hydrogen exchange and structural dynamics of proteins and nucleic acids | Quarterly Reviews of Biophysics | Cambridge Core (original) (raw)

References

Allewell, N. M. (1983). Hydrogen exchange studies of proteins: recent advances in medium and high resolution methods. J. Biochem. Biophys. Methods. 7, 345–357.CrossRefGoogle ScholarPubMed

Alvarez, J. & Biltonen, R. L. (1973). Nucleic acid-solvent interactions: temperature dependence of the heat of solution of thymine in water and ethanol. Biopolymers 12, 1815–1828.CrossRefGoogle ScholarPubMed

Anderegg, G., L'Eplattenier, F. & Schwarzenbach, G. (1963). Hydro-xamate complexes. III. Fe(III) exchange between sideramines and complexons. Discussion of the binding constants of hydroxamate complexes. Helv. chim. Acta 46, 1409–1422.CrossRefGoogle Scholar

Artymiuk, P. J., Blake, C. C. F., Grace, D. E. P., Oatley, S. J., Phillips, D. C. & Sternberg, M. J. E. (1979). Crystallographic studies of the dynamic properties of lysozyme. Nature, Lond. 280, 563–568.CrossRefGoogle ScholarPubMed

Baker, L. J., Hansen, A. M. F., Rao, P. B. & Bryan, W. P. (1983). Effects of the presence of water on lysozyme conformation. Biopolymers 22, 1637–1640.CrossRefGoogle ScholarPubMed

Baldwin, R. L. (1975). Intermediates in protein folding reactions and the mechanism of protein unfolding. A. Rev. Biochem. 44, 453–475.CrossRefGoogle Scholar

Baldwin, R. L. & Creighton, T. E. (1980). Recent experimental work on the pathway and mechanism of protein folding. In Protein Folding (ed. Jaenicke, R.), pp. 217–259. Amsterdam: Elsevier-North Holland.Google Scholar

Barkley, M. D. & Zimm, B. H. (1979). Theory of twisting and bending of chain macromolecules: analysis of the fluorescence depolarization of DNA. J. chem. Phys. 70, 2991–3007.CrossRefGoogle Scholar

Bates, R. G. (1964). Determination of pH: Theory and Practice, 2nd ed.New York: Wiley.Google Scholar

Beece, D., Eisenstein, L., Frauenfelder, H., Good, D., Marden, M. C., Reinisch, L., Reynolds, A. H., Sorenson, L. B. & Yue, K. T. (1980). Solvent viscosity and protein dynamics. Biochemistry 19, 5147–5157.CrossRefGoogle ScholarPubMed

Bentley, G. A., Delepierre, M., Dobson, C. M., Mason, S. A., Poulsen, F. M. & Wedin, R. E. (1983). Exchange of individual hydrogens of a protein in a crystal and in solution. J. molec. Biol. 170, 243–247.CrossRefGoogle Scholar

Berger, A. & Linderstrøm-Lang, K. (1957). Deuterium exchange of poly-DL-alanine in aqueous solution. Archs Biochem. Biophys. 69, 106–118.CrossRefGoogle ScholarPubMed

Berger, A., Loewenstein, A. & Meiboom, S. (1959). A nuclear magnetic resonance study of the protolysis and ionization of AT-methylaceta-mide. J. Am. chem. Soc. 81, 62–67.CrossRefGoogle Scholar

Blake, C. C. F., Pulford, W. C. A. & Artymiuk, P. J. (1983). X-ray studies of water in crystals of lysozyme. J. molec. Biol. 167, 693–723.CrossRefGoogle ScholarPubMed

Bolton, P. H. & James, T. L. (1980). Fast and slow conformational fluctuations of RNA and DNA. Subnanosecond internal motion correlation times determined by 31P NMR. J. Am. chem. Soc. 102, 25–31.CrossRefGoogle Scholar

Borochov, N., Eisenberg, H. & Kam, Z. (1981). Dependence of DNA conformation on the concentration of salt. Biopolymers 20, 231–235.CrossRefGoogle ScholarPubMed

Brewster, A. I. & Bovey, F. A. (1971). Conformation of cyclolinopeptide A observed by NMR spectroscopy. Proc. natn. Acad. Sci. U.S.A. 68, 1199–1202.CrossRefGoogle Scholar

Brown, L. R., DeMarco, A., Richarz, R., Wagner, G. & Wüthrich, K. (1978). The influence of a single salt bridge on static and dynamic features of the globular solution conformation of the basic pancreatic trypsin inhibitor. 1H and 13C nuclear magnetic resonance studies of the native and the transaminated inhibitor. Eur. J. Biochem. 88, 87–95.CrossRefGoogle ScholarPubMed

Bryan, W. D. (1970). The mechanism of hydrogen exchange in proteins. Recent Prog. Surf Sci. 3, 101–120.CrossRefGoogle Scholar

Bryant, R. G. & Shipley, W. M. (1980). Dynamical deductions from NMR relaxation measurements at the water-protein interface. Biophys. J. 32, 3–11.CrossRefGoogle ScholarPubMed

Calhoun, D. B., Vanderkooi, J. M. & Englander, S. W. (1983 b). Penetration of small molecules into proteins studied by quenching of phosphorescence and fluorescence. Biochemistry 22, 1533–1539.CrossRefGoogle ScholarPubMed

Calhoun, D. B., Vanderkooi, J. M., WoodrowIII, G. W. & Englander, S. W. (1983 a). Penetration of dioxygen into proteins studied by quenching of phosphorescence and fluorescence. Biochemistry 22, 1526–1532.CrossRefGoogle ScholarPubMed

Careri, G., Fasella, P. & Gratton, E. (1979). Statistical time events: a physical assessment. CRC Crit. Revs. Biochem. 3, 141–164.CrossRefGoogle Scholar

Carter, J. V., Knox, D. G. & Rosenberg, A. (1978). Pressure effects on folded proteins in solution. J. biol. Chem. 253, 1947–1953.CrossRefGoogle ScholarPubMed

Chothia, C., Levitt, M. & Richardson, D. (1977). Structure of proteins: packing of alpha-helices and pleated sheets. Proc. natn. Acad. Sci. U.S.A. 74, 4130–4134.CrossRefGoogle ScholarPubMed

Connolly, M. L. (1981). Molecular surfaces and interior cavities of proteins. Ph.D. Dissertation UCSF.Google Scholar

Cooper, A. (1976). Thermodynamic fluctuations in protein molecules. Proc. natn. Acad. Sci. U.S.A. 73, 2740–2741.CrossRefGoogle ScholarPubMed

Creighton, T. E. (1979). Experimental studies of protein folding and unfolding. Prog. Biophys. molec. Biol. 33, 231–297.CrossRefGoogle Scholar

Cross, D. G. (1975). Hydrogen exchange in nucleosides and nucleotides. Measurement of hydrogen exchange by stopped-flow and ultraviolet difference spectroscopy. Biochemistry 14, 357–362.CrossRefGoogle ScholarPubMed

Crothers, D. M., Cole, P. E., Hilbers, C. W. & Shulman, R. G. (1974). The molecular mechanism of thermal unfolding of Escherichia-Coli formyl methionine transfer RNA. J. molec. Biol. 87, 63–88.CrossRefGoogle Scholar

Cutnell, J. D., LaMar, G. N. & Kong, S. B. (1981). Proton NMR study of the relaxation behavior and kinetic lability of exchangeable protons in the heme pocket of cyanomet myoglobin. J. Am. chem. Soc. 103, 3567–3582.CrossRefGoogle Scholar

Deisenhofer, J. & Steigemann, W. (1975). Crystallographic refinement of the structure of bovine pancreatic trypsin inhibitor at 1·5 A resolution. Acta crystallogr B 31, 238–250.CrossRefGoogle Scholar

DeMarco, A. & Llinas, M. (1980). Solvent effects and approaches for the fine structure analysis of peptidyl amide 1H NMR spectra. J. magn. Reson. 39, 253–262.Google Scholar

Dubs, A., Wagner, G. & Wüthrich, K. (1979). Individual assignments of amide proton resonances in the proton NMR spectrum of the basic pancreatic trypsin inhibitor. Biochim. biophys. Acta 577, 177–194.CrossRefGoogle ScholarPubMed

Early, T. A., Kearns, D. R., Hillen, W. & Wells, R. D. (1981). A 300 megahertz proton NMR investigation of DNA restriction fragments dynamic properties. Biochemistry 20, 3764–3769.CrossRefGoogle Scholar

Eftink, M. R. & Ghiron, C. A. (1975). Dynamics of a protein matrix revealed by flourescence quenching. Proc. natn. Acad. Sci. U.S.A. 72, 3290–3294.CrossRefGoogle Scholar

Eftink, M. R. & Ghiron, C. A. (1981). Fluorescence quenching studies with proteins. Analyt. Biochem. 114, 199–227.CrossRefGoogle ScholarPubMed

Eigen, M. (1964). Proton transfer, acid-base catalysis, and enzymatic hydrolysis. Angew. Chem. Ed. 3, 1–19.CrossRefGoogle Scholar

Ellis, L. M., Bloomfield, V. A. & Woodward, C. K. (1975). Hydrogen-tritium exchange kinetics of soybean trypsin inhibitor. Solvent accessibility in the folded conformation. Biochemistry 14, 3413–3419.CrossRefGoogle ScholarPubMed

Englander, J. J., Calhoun, D. B. & Englander, S. W. (1979). Measurement and calibration of peptide group hydrogen–deuterium exchange by ultraviolet spectrophotometry. Analyt. Biochem. 92, 517–524.CrossRefGoogle ScholarPubMed

Englander, J. J., Downer, N. W. & Englander, S. W. (1982). Reexamination of rhodopsin structure by hydrogen exchange. J. biol. Chem. 257, 7982–7986.Google Scholar

Englander, J. J. & Englander, S. W. (1965). Hydrogen exchange studies of sRNA. Proc. natn. Acad. Sci. U.S.A. 53, 370–378.CrossRefGoogle ScholarPubMed

Englander, J. J., Kallenbach, N. R. & Englander, S. W. (1972). Hydrogen exchange study of some polynucleotides and transfer RNA. J. molec. Biol. 63, 153–169.CrossRefGoogle ScholarPubMed

Englander, J. J., Rogero, J. R. & Englander, S. W. (1983). Identification of an allosterically sensitive unfolding unit in hemoglobin. J. molec. Biol. 169, 325–344.CrossRefGoogle ScholarPubMed

Englander, S. W. (1975). Measurement of structural and free energy changes in hemoglobin by hydrogen exchange methods. Ann. N. Y. Acad. Sci. 244, 10–27.CrossRefGoogle ScholarPubMed

Englander, S. W., Calhoun, D. B., Englander, J. J., Kallenbach, N. R., Leim, R. H. K., Malin, E. L., Mandal, C. & Rogero, J. R. (1980 a). Individual breathing reactions measured in hemoglobin by hydrogen exchange methods. Biophys. J. 32, 577–589.CrossRefGoogle ScholarPubMed

Englander, S. W. & Englander, J. J. (1983). Functional labelling of proteins in hemoglobin. In Structure and Dynamics of Nucleic Acids and Proteins (ed. Dementi, E. and Sarma, R. H.), pp. 421–433. New York: Adenine Press.Google Scholar

Englander, S. W., Kallenbach, N. R., Heeger, A. J., Krumhamsl, J. A. & Litwin, S. (1980 b). Nature of the open state in long polynucleotide double helices: possibility of soliton excitations. Proc. natn. Acad. Sci. U.S.A. 77, 7222–7226.CrossRefGoogle Scholar

Englander, S. W. & Mauel, C. (1972). Hydrogen exchange detection of discrete ligand-induced changes in hemoglobin. J. biol. Chem. 247, 2387–2394.CrossRefGoogle Scholar

Englander, S. W. & Poulsen, A. (1969). Hydrogen-tritium exchange of the random chain polypeptide. Biopolymers 7, 329–393.CrossRefGoogle Scholar

Englander, S. W. & Rolfe, A. (1973). Structural and free energy changes in hemoglobin by use of a difference method. J. biol. Chem. 248, 4852–4861.CrossRefGoogle ScholarPubMed

Englander, S. W. & Staley, R. (1969). Measurement of the free and the H-bonded amides of myoglobin. J. molec. Biol. 45, 277–295.CrossRefGoogle ScholarPubMed

Finney, J. L., Gellatly, B. J., Golton, I. C. & Goodfellow, J. (1980). Solvent effects and polar interactions in the structural stability and dynamics of globular proteins. Biophys. J. 32, 17–30.CrossRefGoogle ScholarPubMed

Frauenfelder, H., Petsko, G. A. & Tsernoglu, D. (1979). Temperature dependent X-ray diffraction as a probe of protein structural dynamics. Nature, Lond. 280, 558–563.CrossRefGoogle ScholarPubMed

Gamble, R. C., Schoemaker, H. J. P., Jekowsky, E. & Schimmel, P. R. (1976). Rate of tritium labelling of specific purines in relation to nucleic acid and RNA conformation. Biochemistry 15, 2791–2799.CrossRefGoogle ScholarPubMed

Gavish, B. (1980). Position dependent viscosity effects on rate coefficients. Phys. Rev. Lett. 44, 1160–1163.CrossRefGoogle Scholar

Glasstone, S., Laidler, K. J. & Eyring, H. (1941). The Theory of Rate Processes. New York: McGraw-Hill.Google Scholar

Goldstein, R. N., Stefanovic, S. & Kallenbach, N. R. (1972). On the conformation of tRNA in solution: dependence of denaturation temperature and structural parameters of mixed and formylmethionyl E. coli tRNA on sodium ion concentration. J. molec. Biol. 69, 217–236.CrossRefGoogle ScholarPubMed

Gralla, J. & Crothers, D. M. (1973). Free energy of imperfect nucleic acid helices. J. molec. Biol. 73, 497–511.CrossRefGoogle ScholarPubMed

Gregory, R. B., Knox, D. G., Percy, A. J. & Rosenberg, A. (1982). Thermodynamics of structural fluctuations in lysozyme as revealed by hydrogen exchange kinetics. Biochemistry 21, 6523–6530.CrossRefGoogle ScholarPubMed

Hamann, S. A. (1963). The ionization of water at high pressures. J. phys. Chem. 67, 2233–2235.CrossRefGoogle Scholar

Hare, D. R. & Reid, B. R. (1982). Direct assignment of the dihydrouridine-helix imino proton resonances in transfer ribonucleic acid nuclear magnetic resonance spectra by means of the nuclear overhauser effect. Biochemistry 21, 1835–1842.CrossRefGoogle ScholarPubMed

Haslam, J. L. & Eyring, E. M. (1967). Deuterium oxide solvent isotope effects on N-H … O, O-H.… N and N-H.… N intramolecular hydrogen bonds. J. phys. Chem. 71, 4470–4475.CrossRefGoogle Scholar

Hermans, J. Jr., Lohr, D. & Ferro, D. (1969). Unfolding and hydrogen exchange of proteins: the three dimensional Ising lattice as a model. Nature, Lond. 224, 175–177.CrossRefGoogle ScholarPubMed

Hetzel, R., Wüthrich, K., Deisenhofer, J. & Huber, R. (1976). Dynamics of the basic pancreatic trypsin inhibitor (BPTI). II. Semi-empirical energy calculations. Biophys. Struct. & Mechanism 2, 159–180.CrossRefGoogle ScholarPubMed

Hilton, D. B., Trudeau, K. R. & Woodward, C. K. (1981). Protein fluctuations limiting HX rates in the folded state are not correlated to thermal stability in denaturants. Biochemistry 20, 4697–4703.CrossRefGoogle Scholar

Hilton, B. D. & Woodward, C. K. (1978). Nuclear magnetic resonance measurement of hydrogen exchange kinetics of single protons in basic pancreatic trypsin inhibitor. Biochemistry 17, 3325–3332.CrossRefGoogle ScholarPubMed

Hilton, B. D. & Woodward, C. K. (1979). On the mechanism of isotope exchange kinetics of single protons in bovine pancreatic trypsin inhibitor. Biochemistry 18, 5834–5841.Google Scholar

Huber, R. & Bennett, W. S. Jr. (1983). Functional significance of flexibility in proteins. Biopolymers 22, 261–279.CrossRefGoogle ScholarPubMed

Huber, R., Kukla, D., Ruhlman, A. & Steigemann, W. (1971). Pancreatic trypsin inhibitor (Kunitz). I. Structure and function. Cold Spring Harb. Symp. quant. Biol. 36, 141–150.CrossRefGoogle Scholar

Hurd, R. E. & Reid, B. R. (1980). Helix-coil dynamics in RNA: the amino acid acceptor helix of phenylalanine transfer RNA. J. molec. Biol. 142, 181–194.CrossRefGoogle ScholarPubMed

Hvidt, A. (1964). Discussion of the pH dependence of the H-D exchange of proteins. C. r. Trav. Lab. Carlsberg 34, 299–317.Google Scholar

Hvidt, A. (1973). Isotopic hydrogen exchange in solutions of biological macromolecules. In Dynamic Aspects of Conformational Changes in Macromolecules (ed. Sadron, C.), pp. 103–115. Holland: Reidel.CrossRefGoogle Scholar

Hvidt, A. & Corett, R. (1970). Kinetics of hydrogen-deuterium exchange in poly-N-vinylacetamide measured by infrared spectroscopy. J. Am. chem. Soc. 92, 5546–5550.CrossRefGoogle Scholar

Hvidt, A. & Linderstrøm-Lang, K. (1954). Exchange of hydrogen atoms in insulin with deuterium atoms in aqueous solutions. Biochim. biophys. Acta 14, 574–575.CrossRefGoogle ScholarPubMed

Hvidt, A. & Nielsen, S. O. (1966). Hydrogen exchange in proteins. Adv. Protein Chem. 21, 287–386.Google Scholar

Hvidt, A. & Wallevik, K. (1972). Conformational changes in human serum albumin as revealed by hydrogen deuterium exchange studies. J. biol. Chem. 247, 1530–1535.CrossRefGoogle ScholarPubMed

Ikegami, A., Kanehisa, M. I., Nakanishi, M. & Tsuboi, M. (1974). Isotope exchange and Conformational fluctuation in polypeptides. Adv. Biophys 6, 1–39.Google Scholar

Ikegami, A. & Kono, N. (1967). Tritium-hydrogen exchange of poly-peptides in aqueous solutions. J. molec. Biol. 29, 251–274.CrossRefGoogle Scholar

Johnston, P. D. & Redfield, A. G. (1981). Study of ribonucleic acid unfolding by dynamic nuclear magnetic resonance. Biochemistry 20, 3996–4006.CrossRefGoogle ScholarPubMed

Jullien, M. & Baldwin, R. L. (1981). The role of proline residues in the folding kinetics of the bovine pancreatic trypsin inhibitor derivative RCAM (14–38). J. Molec. Biol. 145, 265–280.CrossRefGoogle ScholarPubMed

Kakuda, Y., Perry, N. & Mueller, D. D. (1971). Hydrogen-deuterium exchange of a charged poly-methacrylamide and its monomeric analog. J. Am. chem. Soc. 93, 5992–5998.CrossRefGoogle Scholar

Kallenbach, N. R. & Kim, P. S. (1984). Effects of bases on fluctuations at the heme pocket of cyanometmyoglobin. Proc. natn. Acad. Sci. U.S.A. (in the Press).Google Scholar

Karplus, M. & McCammon, J. A. (1981). The internal dynamics of globular proteins. C.R.C. Crit. Rev. Biochem. 9, 293–349.Google Scholar

Keepers, J. W., Kollman, P. A., Weiner, P. K. & James, T. L. (1982). Molecular mechanical studies of DNA flexibility: Coupled backbone torsion angles and base-pair openings. Proc. natn. Acad. Sci. U.S.A. 79, 5537–5541.CrossRefGoogle ScholarPubMed

Kim, P. S. & Baldwin, R. L. (1982 a). Specific intermediates in the folding reaction of small proteins and the mechanism of protein folding. A. Rev. Biochem. 51, 459–489.Google Scholar

Kim, P. S. & Baldwin, R. L. (1982 b). Influence of charge on the rate of amide proton exchange. Biochemistry 21, 1–5.Google Scholar

Klotz, I. M. (1960). Non-covalent bonds in protein structure. Brookhaven Symp. Biol. 13, 25–48.Google ScholarPubMed

Knox, D. & Rosenberg, A. (1980). Fluctuations of protein structure as expressed in the distribution of hydrogen exchange rate constants. Biopolymers 19, 1049–1068.Google Scholar

Koshland, D. E. Jr., Nemethy, G. & Filmer, D. (1966). Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry 5, 365–385.Google Scholar

Kossiakoff, A. A. (1982). Protein dynamics investigated by the neutron diffraction-hydrogen exchange technique. Nature, Lond. 296, 713–721.CrossRefGoogle ScholarPubMed

Krauss, E. M. & Cowburn, D. (1981). Anomalous exchange kinetics of peptide amide protons in aqueous solution. Int. J. Peptide & Protein Res. 17, 42–47.CrossRefGoogle Scholar

Kuwajima, K. & Baldwin, R. L. (1983). Exchange behavior of the H-bonded amide protons in the 3–13 helix of ribonuclease S. J. molec. Biol. 169, 299–324.Google Scholar

Lakowicz, J. R. & Weber, G. (1973 a). Quenching of fluorescence by oxygen. A probe for structural fluctuations in macromolecules. Biochemistry 12, 4161–4170.Google Scholar

Lakowicz, J. R. & Weber, G. (1973 b). Quenching of protein fluorescence by oxygen. Detection of structural fluctuations in proteins on the nanosecond time scale. Biochemistry 12, 4171–4179.CrossRefGoogle ScholarPubMed

Lane, M. J. & Thomas, G. J. Jr, (1979). Kinetics of hydrogen-deuterium exchange in GMP and cyclic GMP determined by laser Raman spectroscopy. Biochemistry 18, 3839–3846.Google Scholar

Lee, B. & Richards, F. M. (1971). The interpretation of protein structures: estimation of static accessibility. J. molec. Biol. 55, 379–440.CrossRefGoogle ScholarPubMed

Leichtling, B. H. & Klotz, I. M. (1966). Catalysis of H-D exchange in polypeptides. Biochemistry 5, 4026–4036.CrossRefGoogle Scholar

Lenormant, H. & Blout, E. R. (1953). Origin of the absorption band at 1550 cm−1 in proteins. Nature, Lond. 172, 720–722.Google Scholar

Levitt, M. (1981 a). Molecular dynamics of hydrogen bonds in bovine pancreatic trypsin inhibitor protein. Nature, Lond. 294, 379–380.Google Scholar

Levitt, M. (1981 b). Hydrogen bond and internal solvent dynamics of BPTI protein. Ann. N.Y. Acad. Sci. 367, 162–181.CrossRefGoogle Scholar

Levitt, M. (1982). Protein conformation, dynamics and folding by computer simulation. A. Rev. Biophys. Bioeng. 11, 251–271.CrossRefGoogle ScholarPubMed

Levitt, M. (1983). Molecular dynamics of native protein. J. molec. Biol. (in the Press).Google Scholar

Levy, G., Hilliard, P. R., Levy, L. F. & Rill, R. L. (1981). Carbon-13 spin lattice relaxation, linewidth and nuclear overhauser enhancement measurements of nucleosome length DNA. J. biol. Chem. 256, 9986–9989.CrossRefGoogle ScholarPubMed

Levy, R. M. & Karplus, M. (1979). Vibrational approaches to the dynamics of an alpha-helix. Biopolymers 18, 2465–2495.CrossRefGoogle Scholar

Linderstrøm-Lang, K. U. (1955). Deuterium exchange between peptides and water. In Symposium on Peptide Chemistry. Chem. Soc. Spec. Publ. 2, 1–20.Google Scholar

Linderstrøm-Lang, K. U. (1958). Deuterium exchange and protein structure. In Symposium on Protein Structure (ed. Neuberger, A.). London: Methuen.Google Scholar

Linderstrøm-Lang, K. U. & Schellman, J. A. (1959). Protein structure and enzyme activity. In The Enzymes, 2nd ed. vol. 1 (ed. Boyer, P. D., Lardy, H. and Myrback, K.). New York: Academic Press.Google Scholar

Llinas, M., Klein, M. P. & Neilands, J. B. (1973 b). The solution conformation of the ferrichromes. J. biol. Chem. 248, 915–923.CrossRefGoogle ScholarPubMed

Llinas, M., Klein, M. P. & Neilands, J. B. (1973 a). The solution conformation of the ferrichromes. J. biol. Chem. 248, 924–931.CrossRefGoogle ScholarPubMed

Lomant, A. J. & Fresco, J. R. (1975). Structural and energetic consequences of non-complementary base oppositions in nucleic acids. Prog. nucleic Acid Res. & molec. Biol. 15, 185–218.CrossRefGoogle Scholar

Lumry, R. (1978). The role of conformational fluctuations in protein association, immunology and tissue recognition. In Dynamic Properties of Polyion Systems (ed. Imai, N. and Sugai, S.). Kyoto. (In the Press.)Google Scholar

Lumry, R., Legare, R. & Miller, W. G. (1964). The dynamics of the helix-coil transition in poly-glutamic acid. Biopolymers 2, 489–500.Google Scholar

Lumry, R. & Rosenberg, A. (1975). The mobile defect hypothesis of protein function. Col. Int. C.N.R.S. L'Eau Syst. Biol. 246, 55–63.Google Scholar

McCammon, J. A., Wolynes, P. G. & Karplus, M. (1979). Picosecond dynamics of tyrosine side chains in proteins. Biochemistry 18, 927–942.CrossRefGoogle ScholarPubMed

McConnell, B. M. & Von Hippel, P. H. (1970). Hydrogen exchange as a probe of the dynamic structure of DNA. J. molec. Biol. 50, 317–332.CrossRefGoogle ScholarPubMed

McConnell, B. (1974). Imidazole catalysis of amino proton exchange in 2,3 cyclic AMP. A general exchange mechanism. Biochemistry 13, 4516–4523.CrossRefGoogle Scholar

McGhee, J. D. & Von Hippel, P. H. (1975). Formaldehyde as a probe of DNA structure. Biochemistry 14, 1281–1303.Google Scholar

McLendon, G. & Radany, E. (1978). Is protein turnover thermodyn-amically controlled? J. biol. Chem. 253, 6335–6337.CrossRefGoogle ScholarPubMed

Malin, E. L. & Englander, S. W. (1980). The slowest allosterically responsive hydrogens in hemoglobin: completion of the hydrogen exchange survey. J. biol. Chem. 255, 10695–10701.Google Scholar

Mandal, C., Kallenbach, N. R. & Englander, S. W. (1979). Base-pair opening and closing reactions in the double helix. J. molec. Biol. 135, 391–411.Google Scholar

Marinetti, T. D., Snyder, G. H. & Sykes, B. D.(1976).Nuclearmagnetic resonance determination of intramolecular distances in bovine pancreatic trypsin inhibitor using nitrotyrosine chelation of lanthanides. Biochemistry 15, 4600–4608.Google Scholar

Mason, S. A., Bentley, G. A. & McIntyre, G. J. (1983). Deuterium exchange in lysozyme at 1·4 Å resolution. In Neutrons in Biology: Neutron Scattering Analysis for Biological structures (ed. Schoenborn, B. P.). New York: Plenum.Google Scholar

Matthew, J. B. & Richards, F. M. (1983). The pH dependence of hydrogen exchange in proteins. J. biol. Chem. (in the Press).Google Scholar

Millar, D. P., Robbins, R. J. & Zewail, A. H. (1982). Torsion and bending of nucleic acids studied by subnanosecond time resolved fluorescence depolarization of intercalated dyes. J. chem. Phys. 76, 2080–2086.CrossRefGoogle Scholar

Miller, M. M. & Klotz, I. M. (1973). Hydrogen-deuterium exchange in some polymer amides. J. Am. chem. Soc. 95, 5694–5700.CrossRefGoogle Scholar

Moelwyn-Hughes, E. A. (1961). Physical Chemistry, 2nd ed., chapter 11, pp. 27–91. Oxford: Pergamon.Google Scholar

Molday, R. S., Englander, S. W. & Kallen, R. G. (1972). Primary structure effects on peptide group hydrogen exchange. Biochemistry 11, 150–158.Google Scholar

Monod, J., Wyman, J. & Changeux, J. P. (1965). On the nature of allosteric transitions: a plausible model. J. molec. Biol. 12, 33–118.CrossRefGoogle ScholarPubMed

Nakanishi, M., Nakamura, H., Hirakawa, A. Y., Tsuboi, M., Nagamura, T. & Saijo, Y. (1978). Measurement of hydrogen exchange at the tryptophan residues of a protein by stopped flow and UV spectroscopy. J. Am. chem. Soc. 100, 272–276.Google Scholar

Nakanishi, M., Tsuboi, M. & Ikegami, A. (1972). Fluctuation of the lysozyme structure. J. molec. Biol. 70, 351–361.Google Scholar

Nakanishi, M., Tsuboi, M. & Ikegami, A. (1973). Fluctuations of the lysozome structure. II. Effects of temperature and binding of inhibitors. J. Molec. Biol. 75, 673–682.CrossRefGoogle Scholar

Nakanishi, M., Tsuboi, M. & Ikegami, A. (1974). Fluctuations of myoglobin structure. Bull. chem. Soc. Japan 47, 293–298.CrossRefGoogle Scholar

Nakanishi, M., Tsuboi, M., Ikegami, A. & Kaneshisa, M. (1972). Fluctuation of an alpha-helix structure. Difference between the central and terminal portions. J. molec. Biol. 64, 363–378.CrossRefGoogle Scholar

Noguti, T. & Go, N. (1982). Collective variable description of small amplitude conformational fluctuations in a globular protein. Nature, Lond. 296, 776–778.CrossRefGoogle Scholar

Pardi, A., Morden, K. M., Patel, D. J. & Tinoco, I., JR. (1982). Kinetics of exchange of imino protons in the d(C-G-C-G-A-A-T-T-C-G-C-G) double helix and in two similar helices that contain a G.T base pair d(C-G-T-G-A-A-T-T-C-G-C-G), and an extra adenine d(C-G-C-A-G-A-A-T-T-C-G-C-G). Biochemistry 24, 6567–6574.CrossRefGoogle Scholar

Pardi, A. & Tinoco, I. Jr., (1982). Kinetics for exchange of imino protons in DNA, RNA, and hybrid oligonucleotide helices. Biochemistry 21, 4686–4693.CrossRefGoogle ScholarPubMed

Patel, D. J., Pardi, A. & Itakura, K. (1982). DNA conformation, dynamics, and interactions in solution. Science, N.Y. 216, 581–590.CrossRefGoogle ScholarPubMed

Perutz, M. F. (1980). Stereochemistry of cooperative effects in hemoglobin. Nature, Lond. 228, 726–739.Google Scholar

Pettigrew, D. M., Romeo, P. H., Tsapsis, A., Thillet, J., Smith, M. L., Turner, B. W. & Ackers, G. K. (1982). Probing the energetics of proteins through structural perturbation: Sites of regulatory energy in human hemoglobin. Proc. natn. Acad. Sci. U.S.A. 79, 1849–1853.CrossRefGoogle ScholarPubMed

Phillips, D. C. (1981). Crystallographic studies of movement within proteins. Biochem. Soc. Symp. 46, 1–15.Google Scholar

Praissman, M. & Rupley, J. A. (1968 a). Comparison of protein structure in the crystal and in solution. II. Tritium hydrogen exchange of zinc-free and zinc insulin. Biochemistry 7, 2431–2445.CrossRefGoogle ScholarPubMed

Praissman, M. & Rupley, J. A. (1968 b). Comparison of protein structure in crystal and in solution. III. Tritium hydrogen exchange of lysozyme and lysozyme saccharide complex. Biochemistry 7, 2446–2450.CrossRefGoogle Scholar

Preisler, R. S., Mandal, C., Englander, S. W., Kallenbach, N. R., Howard, F. B., Frazier, J. & Miles, H. T. (1981). Equilibrium and kinetic characteristics of the low temperature open state in poly-nucleotide duplexes. In Biomolecular Stereodynamics (ed. Sarma, R. H.), pp. 405–415. New York: Adenine Press.Google Scholar

Printz, M. P. & Von Hippel, P. H. (1965). Hydrogen exchange studies of DNA structure. Proc. natn. Acad. Sci. U.S.A. 53, 363–370.CrossRefGoogle ScholarPubMed

Rialdi, G. & Biltonen, R. L. (1975). Thermodynamics and Thermochemistry of Biologically Important Systems, MTP 1st Rev. Sci., pp. 148–184. MTP Butterworths.Google Scholar

Richards, F. M. (1979). Packing defects, cavities, volume fluctuations, and access to the interior of proteins. Carlsberg Res. Commun. 44, 47–63.CrossRefGoogle Scholar

Richards, P. M. & Vithayathil, P. J. (1959). The preparation of subtilisin-modified ribonuclease and the separation of the peptide and protein components. J. biol. Chem. 234, 1459–1465.CrossRefGoogle Scholar

Richardson, J. (1979). The anatomy and taxonomy of protein structure. Adv. Protein Chem. 34, 167–339.Google Scholar

Richarz, R., Sehr, P., Wagner, G. & Wüthrich, K. (1979). Kinetics of the exchange of individual amide protons in the basic pancreatic trypsin inhibitor. J. molec. Biol. 130, 19–30.CrossRefGoogle ScholarPubMed

Richarz, R., Tschesche, H. & Wüthrich, J. (1979). Structural characterization by nuclear magnetic resonance of a reactive site carbon-13 labelled basic pancreatic trypsin inhibitor with the peptide bond Arg-39-Ala-40 cleaved and Arg-39 removed. Eur. J. Biochem. 102, 563–571.CrossRefGoogle Scholar

Roder, H. (1981). Mobilitat in Proteinen unter nativen und denaturierden Bedingungen: Untersuchung von Trypsin Inhibitoren mit spectro-skopischen Methoden. Diss. ETH No. 6932.Google Scholar

Roder, H., Wagner, G. & Wüthrich, K. (1983 a). Kinetics and cooper-ativity of the solvent exchange of individual amide protons in BPTI. Biochim. biophys. Acta (in the Press).Google Scholar

Roder, H., Wagner, G. & Wüthrich, K. (1983 b). Exchange kinetics of individual amide protons in thermally unfolded BPTI. Biochim. biophys. Acta (in the Press).Google Scholar

Rosa, J. J. & Richards, F. M. (1979). An experimental procedure for increasing the structural resolution of chemical hydrogen exchange measurements on proteins: application to ribonuclease S peptide. J. molec. Biol. 133, 399–416.CrossRefGoogle ScholarPubMed

Rosa, J. J. & Richards, F. M. (1981). Hydrogen exchange from identified regions of the S-protein component of ribonuclease as a function of temperature, pH and the binding of the S-peptide. J. molec. Biol. 145, 835–851.CrossRefGoogle ScholarPubMed

Rose, M. C. & Stuehr, J. (1968). Kinetics of proton transfer reactions in aqueous solution: rates of internally hydrogen-bonded systems. J. Am. chem. Soc. 90, 7205–7209.CrossRefGoogle Scholar

Rosenberg, A. & Chakravarti, K. (1968). Studies of hydrogen exchange in proteins, i. The exchange kinetics of bovine carbonic anhydrase. J. biol. Chem. 243, 5193–5201.CrossRefGoogle ScholarPubMed

Rosenberg, A. & Enberg, J. (1969). Studies of hydrogen exchange in proteins. II. The reversible thermal unfolding of chymotrypsinogen A as studied by exchange kinetics. J. biol. Chem. 244, 6153–6159.Google Scholar

Roy, S. & Redfield, A. G. (1981). Nuclear overhauser effect study and assignment of D stem and reverse-Hoogsteen base pair proton resonance in yeast tRNA Asp. Nucl. Acids Res. 9, 7073–7078.Google Scholar

Rupley, J. A., Gratton, E. & Careri, G. (1983). Water and globular proteins. Trends Biochem. Sci. 8, 18–22.CrossRefGoogle Scholar

Sarma, R. H. (1981). Biomolecular Stereodynamics. New York: Adenine Press.Google Scholar

Saviotti, M. L. & Galley, W. C. (1974). Room temperature phosphorescence and the dynamic aspects of protein structure. Proc. natn. Acad. Sci. U.S.A. 71 (10), 4154–4158.CrossRefGoogle ScholarPubMed

Scarpa, J. S., Mueller, D. D. & Klotz, I. M. (1967). Slow hydrogen-deuterium exchange in a non-alpha-helical polyamide. J. Am. chem. Soc. 89, 6024–6030.CrossRefGoogle Scholar

Schellman, J. A. (1955). The stability of hydrogen bonded peptide structures in aqueous solution. C. r. Lab. Carlsberg (Ser. Chim.) 29, 230–259.Google ScholarPubMed

Schellman, J. A. (1978). Solvent denaturation. Biopolymers 17, 1305–1322.Google Scholar

Schinkle, J. (1983). Protein hydration dependence of the amide hydrogen exchange of lysozyme. Ph.D. Dissertation, University of Arizona, Tucson.Google Scholar

Schoemaker, H. J. P., Gamble, R. C., Budzik, G. P. & Schimmel, P. R. (1976). Comparison of isotope labelling of purines in three specific transfer RNA's. Biochemistry 15, 2800–2809.CrossRefGoogle Scholar

Schoenborn, B. P., Hanson, J. C., Darling, G. D. & Norvell, J. C. (1978). Real space refinement of neutron diffraction data from carbon monoxide sperm whale myoglobin. Acta. crystallogr. 34 A (Suppl. 4), 65.Google Scholar

Schrier, A. A. & Baldwin, R. L. (1976). Concentration dependent hydrogen exchange kinetics of 3H-labeled S-peptide in ribonuclease S. J. molec. Biol. 105, 409–426.Google Scholar

Schrier, A. A. & Baldwin, R. L. (1977). Mechanism of dissociation of S-peptide from ribonuclease S. Biochemistry 16, 4203–4209.Google Scholar

Schultz, G. E. & Schirmer, R. H. (1979). Principles of Protein Structure, pp. 252–261. New York, Heidelberg: Springer-Verlag.CrossRefGoogle Scholar

Schwartz, G. & Seelig, J. (1968). Kinetic properties and the electric field effect of the helix-coil transition of poly-benzyl-L-glutamate determined from dielectric relaxation measurements. Biopolymers 6, 1263–1277.Google Scholar

Segawa, S., Nakayama, M. & Sakane, M. (1981). Rates of structural fluctuations of lysozyme in the range of thermal unfolding transition. Biopolymers 20, 1691–1705.Google Scholar

Sheridan, R. P., Levy, R. M. & Englander, S. W. (1983). Normal mode paths for hydrogen exchange in the peptide ferrichrome. Proc. natn. Acad. Sci. U.S.A. 80 (in the Press).Google Scholar

Shire, S. J., Hanania, G. I. H. & Gurd, F. R. N. (1974). Electrostatic effects in myoglobin. Hydrogen ion equilibria in sperm whale ferri-myglobin. Biochemistry 13, 2967–2974.CrossRefGoogle Scholar

Sternberg, M. J. E., Grace, D. E. P. & Phillips, D. C. (1979). Dynamic information from protein crystallography: an analysis of temperature factors from refinement of the hen egg-white lysozyme structure. J. molec. Biol. 130, 231–253.Google Scholar

Takahashi, T., Nakanishi, M. & Tsuboi, M. (1978). Hydrogen-deuterium exchange study of amino acids and proteins by 200–230 nm spectro-scopy. Bull. chetn. Soc. Japan 51, 1988–1990.CrossRefGoogle Scholar

Takano, T. (1977). Structure of myoglobin refined at 2·0 Å resolution. II. Structure of deoxymyoglobin from sperm whale. J. molec. Biol. 110, 569–584.Google Scholar

Tanford, C. (1970). Protein denaturation. Adv. Protein Chem. 24, 1–95.Google Scholar

Tanford, C. & Kirkwood, J. G. (1957). Theory of protein titration curves. J. Am. chem. Soc. 79, 5333–5339.CrossRefGoogle Scholar

Tonelli, A. E. (1971). Approximate treatment of the conformational characteristics of a cyclic nonapeptide, cyclolinopeptide A. Proc. natn. Acad. Sci. U.S.A. 68, 1203–1207.Google Scholar

Tsuboi, M. & Nakanishi, M. (1979). Overall and localized fluctuation in the structure of a protein molecule. Adv. Biophys. 12, 101–130.Google ScholarPubMed

Tuchsen, E. & Ottesen, M. (1979). A simple hydrogen exchange method for cross-linked protein crystals. Carlsberg Res. Commun. 44, 1–10.Google Scholar

Van Gunsteren, W. F. & Karplus, M. (1982). Protein dynamics in solution and in a crystalline environment: a molecular dynamics study. Biochemistry 21, 2259–2274.CrossRefGoogle Scholar

Vincent, J., Chicheportiche, R. & Lazdunski, M. (1971). The conformational properties of the basic pancreatic trypsin inhibitor. Eur. J. Biochem. 23, 401–411.Google Scholar

Waelder, S. F. & Redfield, A. G. (1977). Nuclear magnetic resonance studies of exchangeable protons. II. The solvent exchange rate of the indole nitrogen proton of tryptophan derivatives. Biopolymers 16, 623–629.Google Scholar

Wagner, G. (1980). A novel application of nuclear overhauser enhancement in proteins: analysis of correlated events in the exchange of internal labile protons. Biochem biophys Res. Commun. 97, 614.Google Scholar

Wagner, G. (1982). Internal mobility in globular proteins. Comments Molec. Cell. Biophysics 1, 261–280.Google Scholar

Wagner, G. (1983). Characterization of the distribution of internal motions in BPTI using a large number of internal NMR probes. Q. Rev. Biophys. 16, 1–87.Google Scholar

Wagner, G., DeMarco, A. & Wüthrich, K. (1976). Dynamics of the aromatic amino acid residues in the globular conformation of the basic pancreatic trypsin inhibitor (BPTI). I. 1H-NMR studies. Biophys. Struct. & Mechanism 2, 139–158.Google Scholar

Wagner, G. & Wüthrich, K. (1982). Amide proton exchange and surface conformation of the basic pancreatic trypsin inhibitor (BPTI) in solution: studies with two dimensional NMR. J. molec. Biol. 160, 343–361.CrossRefGoogle Scholar

Wagner, G. & Wüthrich, K. (1978). Dynamic model of globular protein conformations based on NMR studies in solution. Nature, Lond. 275, 247–248.Google Scholar

Wagner, G. & Wüthrich, K. (1979 a). Correlation between the amide proton exchange rates and the denaturation temperatures in globular proteins related to the basic pancreatic trypsin inhibitor. J. molec. Biol. 130, 31–37.Google Scholar

Wagner, G. & Wüthrich, K. (1979 b). Structural interpretation of the amide proton exchange in the basic pancreatic trypsin inhibitor and related proteins. J. molec. Biol. 134, 75–94.Google Scholar

Wagner, G. & Wüthrich, K. (1982). Amide proton exchange and surface conformation of the basic pancreatic trypsin inhibitor (BPTI) in solution studies with two dimensional NMR. J. molec. Biol. 160, 343–301.Google Scholar

Wang, A. C. & Kallenbach, N. R. (1971). Helical complexes of poly(rl) with copolymers of poly(rC) containing I, A and U residues. J. molec. Biol. 62, 591–607.Google Scholar

Warshel, A. (1981). Electrostatic basis of structure-function correlation in proteins. Acct chem. Res. 14, 284–290.Google Scholar

Wedin, R. E., Delepierre, M., Dobson, C. M. & Poulsen, F. M. (1982). Mechanisms of hydrogen exchange from nuclear magnetic resonance studies of individual tryptophan indole NH hydrogens in lysozyme. Biochemistry 21, 1098–1103.Google Scholar

Welch, W. H. Jr. & Fasman, G. D. (1974). Hydrogen-tritium exchange in polypeptides. Models of alpha-helical and beta conformations. Biochemistry 13, 2455–2466.CrossRefGoogle ScholarPubMed

Welch, G. R., Somogyi, B. & Damjanovich, S. (1982). The role of protein fluctuations in enzyme action: a review. Prog. Biophys. molec. Biol. 39, 109–146.CrossRefGoogle ScholarPubMed

Wemmer, D. E. & Kallenbach, N. R. (1983). The structure of apamin in solution: 2D NMR study. Biochemistry 22, 1901–1906.Google Scholar

Williams, M. N. & Crothers, D. M. (1975). Binding kinetics of mercury (II) to polynucleotides. J. molec. Biol. 14, 1944–1951.Google Scholar

Wills, P. R. & Georgalls, Y. (1981). Concentration dependence of the diffusion coefficient of a dimerizing protein: BPTI. J. phys. Chem. 85, 3978–3984.CrossRefGoogle Scholar

Willumsen, L. (1971). Hydrogen isotope exchange in the study of protein conformation. C. r. Trav. Lab. Carlsberg 38, 223–295.Google Scholar

Wlodawer, A. & Sjolin, L. (1982). Hydrogen exchange in ribonuclease A: neutron diffraction study. Proc. natn. Acad. Sci. U.S.A. 79, 1418–1422.CrossRefGoogle ScholarPubMed

Woodward, C. K. (1977). Dynamic solvent accessibility in the soybean trypsin inhibitor–trypsin complex. J. molec. Biol. 11, 509–515.Google Scholar

Woodward, C. K., Ellis, L. M. & Rosenberg, A. (1975 a). Solvent accessibility in folded proteins: studies of hydrogen exchange in trypsin. J. biol. Chem. 250, 432–439.Google Scholar

Woodward, C. K., Ellis, L. M. & Rosenberg, A. (1975 b). The solvent dependence of hydrogen exchange kinetics of folded proteins. J. biol. Chem. 250, 440–444.Google Scholar

Woodward, C. K. & Hilton, B. D. (1979). Hydrogen exchange kinetics and internal motions in proteins and nucleic acids. A. Rev. Biophys. Bioengng 8, 99–127.CrossRefGoogle ScholarPubMed

Woodward, C. K. & Hilton, B. D. (1980). Hydrogen isotope exchange kinetics of single protons in bovine pancreatic trypsin inhibitor. Biophys. J. 32, 561–575.Google Scholar

Woodward, C. K. & Rosenberg, A. (1970). Oxidized RNase as a protein model having no contribution to the hydrogen exchange rate from conformational restrictions. Proc. natn. Acad. Sci. U.S.A. 66, 1067–1074.Google Scholar

Woodward, C. K. & Rosenberg, A. (1971 a). Urea effects on hydrogen exchange kinetics leading to a general model for hydrogen exchange from folded proteins. J. biol. Chem. 246, 4114–4121.Google Scholar

Woodward, C. K. & Rosenberg, A. (1971 a). The correlation of ribo-nuclease exchange kinetics with the temperature induced transition. J. biol. Chem. 246, 4105–4113.CrossRefGoogle Scholar

Woodward, C. K., Simon, I. & Tuchsen, E. (1982). Hydrogen exchange and the dynamic structure of proteins. Mol. & Cell. Biochem. 48, 135–160.Google Scholar

Wüthrich, K., Röder, H. & Wagner, G. (1980). Internal mobility and unfolding of globular proteins. In Protein Folding (ed. Jaenicke, R.), pp. 549–564. Amsterdam: Elsevier-North Holland Biomedical Press.Google Scholar

Wüthrich, K. & Wagner, G. (1979). Nuclear magnetic resonance of labile protons in the basic pancreatic trypsin inhibitor. J. molec. Biol. 130, 1–18.Google Scholar

Wüthrich, K., Wagner, G. & Richarz, R. (1978). A dynamic model for globular protein conformations based on high resolution NMR data. In Protein: Structure, Function and Industrial Applications, Proceedings of the I2th FEES Meeting, Dresden 1978 (ed. E. Hofmann, W. Pfeil and H. Aurich).Google Scholar

Wüthrich, K., Wagner, G., Richarz, R. & Braun, W. (1980). Correlations between internal mobility and stability of globular proteins. Biophys. J. 32, 549–560.Google Scholar

Wyckoff, H. W., Tsernoglou, D., Hanson, D., Knox, J. R., Lee, B. & Richards, F. M. (1970). The 3-dimensional structuring of ribo-nuclease S. Interpretation of an electron density map at nominal resolution of 2 Å. J. biol. Chem. 245, 305–328.Google Scholar

Wyman, J. J. (1964). Linked functions and reciprocal effects in hemoglobin: a second look. Adv. Protein Chem. 19, 223–286.Google Scholar

Yee, R. Y., Englander, S. W. & Von Hippel, P. H. (1974). Native collagen has a two-bonded structure. J. molec. Biol. 83, 1–16.Google Scholar

Young, P. R. & Kallenbach, N. R. (1978). Secondary structure in polyuridylic acid. J. molec. Biol. 166, 467–479.CrossRefGoogle Scholar

Zalkin, A., Forrester, J. D. & Templeton, D. H. (1966). Ferrichrome A tetrahydrate. Determination of crystal and molecular structure. J. Am. chem. Soc. 88, 1810–1814.Google Scholar

Zimm, B. H. (1960). Theory of melting of chains of the helical form in double chains of the DNA type. J. chem. Phys. 33, 1349–1356.CrossRefGoogle Scholar

Zimm, B. H. & Bragg, J. K. (1959). Theory of the phase transition between helix and random coil in polypeptide chains. J. chem. Phys. 31, 526–535.CrossRefGoogle Scholar