Electron tomography of cells | Quarterly Reviews of Biophysics | Cambridge Core (original) (raw)

References

Adrian, M., Dubochet, J., Lepault, J. & Mcdowall, A. W. (1984). Cryo-electron microscopy of viruses. Nature 308, 32–36.CrossRefGoogle ScholarPubMed

Al-Amoudi, A., Chang, J. J., Leforestier, A., Mcdowall, A., Salamin, L. M., Norlen, L. P., Richter, K., Blanc, N. S., Studer, D. & Dubochet, J. (2004). Cryo-electron microscopy of vitreous sections. EMBO Journal 23, 3583–3588.CrossRefGoogle ScholarPubMed

Al-Amoudi, A., Diez, D. C., Betts, M. J. & Frangakis, A. S. (2007). The molecular architecture of cadherins in native epidermal desmosomes. Nature 450, 832–837.CrossRefGoogle ScholarPubMed

Alon, U., Surette, M. G., Barkai, N. & Leibler, S. (1999). Robustness in bacterial chemotaxis. Nature 397, 168–171.CrossRefGoogle ScholarPubMed

Amat, F., Moussavi, F., Comolli, L. R., Elidan, G., Downing, K. H. & Horowitz, M. (2008). Markov random field based automatic image alignment for electron tomography. Journal of Structural Biology 161, 260–275.CrossRefGoogle ScholarPubMed

Beck, M., Forster, F., Ecke, M., Plitzko, J. M., Melchior, F., Gerisch, G., Baumeister, W. & Medalia, O. (2004). Nuclear pore complex structure and dynamics revealed by cryoelectron tomography. Science 306, 1387–1390.CrossRefGoogle ScholarPubMed

Beck, M., Lucic, V., Forster, F., Baumeister, W. & Medalia, O. (2007). Snapshots of nuclear pore complexes in action captured by cryo-electron tomography. Nature 449, 611–615.CrossRefGoogle ScholarPubMed

Beck, M., Malmstrom, J. A., Lange, V., Schmidt, A., Deutsch, E. W. & Aebersold, R. (2009). Visual proteomics of the human pathogen Leptospira interrogans. Nature Methods 6, 817–823.CrossRefGoogle ScholarPubMed

Belmont, A. S., Sedat, J. W. & Agard, D. A. (1987). A three-dimensional approach to mitotic chromosome structure: evidence for a complex hierarchical organization. Journal of Cell Biology 105, 77–92.CrossRefGoogle ScholarPubMed

Benjamin, J., Ganser-Pornillos, B. K., Tivol, W. F., Sundquist, W. I. & Jensen, G. J. (2005). Three-dimensional structure of HIV-1 virus-like particles by electron cryotomography. Journal of Molecular Biology 346, 577–588.CrossRefGoogle ScholarPubMed

Bennett, P. M. (1974). Decrease in section thickness on exposure to the electron beam; the use of tilted sections in estimating the amount of shrinkage. Journal of Cell Science 15(3), 693–701.CrossRefGoogle Scholar

Boggon, T. J., Murray, J., Chappuis-Flament, S., Wong, E., Gumbiner, B. M. & Shapiro, L. (2002). C-cadherin ectodomain structure and implications for cell adhesion mechanisms. Science 296, 1308–1313.CrossRefGoogle ScholarPubMed

Bottcher, B., Wynne, S. A. & Crowther, R. A. (1997). Determination of the fold of the core protein of hepatitis B virus by electron cryomicroscopy. Nature 386, 88–91.CrossRefGoogle ScholarPubMed

Bouchet-Marquis, C., Zuber, B., Glynn, A. M., Eltsov, M., Grabenbauer, M., Goldie, K. N., Thomas, D., Frangakis, A. S., Dubochet, J. & Chretien, D. (2007). Visualization of cell microtubules in their native state. Biology of the Cell 99, 45–53.CrossRefGoogle ScholarPubMed

Brandt, F., Carlson, L. A., Hartl, F. U., Baumeister, W. & Grunewald, K. (2010). The three-dimensional organization of polyribosomes in intact human cells. Molecular Cell 39, 560–569.CrossRefGoogle ScholarPubMed

Briegel, A., Dias, D. P., Li, Z., Jensen, R. B., Frangakis, A. S. & Jensen, G. J. (2006). Multiple large filament bundles observed in Caulobacter crescentus by electron cryotomography. Molecular Microbiology 62, 5–14.CrossRefGoogle ScholarPubMed

Briegel, A., Ding, H. J., Li, Z., Werner, J., Gitai, Z., Dias, D. P., Jensen, R. B. & Jensen, G. J. (2008). Location and architecture of the Caulobacter crescentus chemoreceptor array. Molecular Microbiology 69, 30–41.CrossRefGoogle ScholarPubMed

Briegel, A., Ortega, D. R., Tocheva, E. I., Wuichet, K., Li, Z., Chen, S., Muller, A., Iancu, C. V., Murphy, G. E., Dobro, M. J., Zhulin, I. B. & Jensen, G. J. (2009). Universal architecture of bacterial chemoreceptor arrays. Proceedings of the National Academy of Sciences of the United States of America 106(40), 17181–17186.CrossRefGoogle ScholarPubMed

Briggs, J. A., Grunewald, K., Glass, B., Forster, F., Krausslich, H. G. & Fuller, S. D. (2006). The mechanism of HIV-1 core assembly: insights from three-dimensional reconstructions of authentic virions. Structure 14, 15–20.CrossRefGoogle ScholarPubMed

Brumfield, S. K., Ortmann, A. C., Ruigrok, V., Suci, P., Douglas, T. & Young, M. J. (2009). Particle assembly and ultrastructural features associated with replication of the lytic archaeal virus sulfolobus turreted icosahedral virus. Journal of Virology 83, 5964–5970.CrossRefGoogle ScholarPubMed

Cambie, R., Downing, K. H., Typke, D., Glaeser, R. M. & Jin, J. (2007). Design of a microfabricated, two-electrode phase-contrast element suitable for electron microscopy. Ultramicroscopy 107(4–5), 329–339.CrossRefGoogle ScholarPubMed

Chang, J. T., Schmid, M. F., Haase-Pettingell, C., Weigele, P. R., King, J. A. & Chiu, W. (2010). Visualizing the structural changes of bacteriophage Epsilon15 and its Salmonella host during infection. Journal of Molecular Biology 402, 731–740.CrossRefGoogle ScholarPubMed

Chen, S., Beeby, M., Murphy, G. E., Leadbetter, J. R., Hendrixson, D. R., Briegel, A., Li, Z., Shi, J., Tocheva, E. I., Muller, A., Dobro, M. J. & Jensen, G. J. (2011). Structural diversity of bacterial flagellar motors. EMBO Journal 30, 2972–2981.CrossRefGoogle ScholarPubMed

Chen, S., Mcdowall, A., Dobro, M. J., Briegel, A., Ladinsky, M., Shi, J., Tocheva, E. I., Beeby, M., Pilhofer, M., Ding, H. J., Li, Z., Gan, L., Morris, D. M. & Jensen, G. J. (2010). Electron cryotomography of bacterial cells. Journal of Visualized Experiments (39), e1943.CrossRefGoogle ScholarPubMed

Chiu, S. W., Chen, S. Y. & Wong, H. C. (2008). Dynamic localization of MreB in Vibrio parahaemolyticus and in the ectopic host bacterium Escherichia coli. Applied and Environmental Microbiology 74, 6739–6745.CrossRefGoogle ScholarPubMed

Chretien, D., Fuller, S. D. & Karsenti, E. (1995). Structure of growing microtubule ends: two-dimensional sheets close into tubes at variable rates. Journal of Cell Biology 129, 1311–1328.Google Scholar

Clermont, Y., Rambourg, A. & Hermo, L. (1995). _Trans_-Golgi network (TGN) of different cell types: three-dimensional structural characteristics and variability. Anatomical Record 242, 289–301.CrossRefGoogle ScholarPubMed

Conway, J. F., Cheng, N., Zlotnick, A., Wingfield, P. T., Stahl, S. J. & Steven, A. C. (1997). Visualization of a 4-helix bundle in the hepatitis B virus capsid by cryo-electron microscopy. Nature 386, 91–94.CrossRefGoogle ScholarPubMed

Crowther, R. A., Derosier, D. J. & Klug, A. (1970). The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 317, 319–340.Google Scholar

Danev, R., Glaeser, R. M. & Nagayama, K. (2009). Practical factors affecting the performance of a thin-film phase plate for transmission electron microscopy. Ultramicroscopy 109, 312–325.CrossRefGoogle ScholarPubMed

Danev, R. & Nagayama, K. (2008). Single particle analysis based on Zernike phase contrast transmission electron microscopy. Journal of Structural Biology 161, 211–218.CrossRefGoogle ScholarPubMed

Deptuch, G., Besson, A., Rehak, P., Szelezniak, M., Wall, J., Winter, M. & Zhu, Y. (2007). Direct electron imaging in electron microscopy with monolithic active pixel sensors. Ultramicroscopy 107, 674–684.CrossRefGoogle ScholarPubMed

Diestra, E., Fontana, J., Guichard, P., Marco, S. & Risco, C. (2009). Visualization of proteins in intact cells with a clonable tag for electron microscopy. Journal of Structural Biology 165, 157–168.CrossRefGoogle ScholarPubMed

Ding, R., Mcdonald, K. L. & Mcintosh, J. R. (1993). Three-dimensional reconstruction and analysis of mitotic spindles from the yeast, Schizosaccharomyces pombe. Journal of Cell Biology 120, 141–151.CrossRefGoogle ScholarPubMed

Dominguez-Escobar, J., Chastanet, A., Crevenna, A. H., Fromion, V., Wedlich-Soldner, R. & Carballido-Lopez, R. (2011). Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria. Science 333, 225–228.CrossRefGoogle ScholarPubMed

Dubochet, J., Adrian, M., Chang, J. J., Homo, J. C., Lepault, J., Mcdowall, A. W. & Schultz, P. (1988). Cryo-electron microscopy of vitrified specimens. Quarterly Review of Biophysics 21, 129–228.CrossRefGoogle ScholarPubMed

Dubochet, J., Mcdowall, A. W., Menge, B., Schmid, E. N. & Lickfeld, K. G. (1983). Electron microscopy of frozen-hydrated bacteria. Journal of Bacteriology 155, 381–390.CrossRefGoogle ScholarPubMed

Dubochet, J., Zuber, B., Eltsov, M., Bouchet-Marquis, C., Al-Amoudi, A. & Livolant, F. (2007). How to ‘read’ a vitreous section. Methods in Cell Biology 79, 385–406.CrossRefGoogle Scholar

Erickson, H. P. (1997). FtsZ, a tubulin homologue in prokaryote cell division. Trends in Cell Biology 7, 362–367.CrossRefGoogle ScholarPubMed

Fan, G. Y., Mercurio, P. J., Young, S. J. & Ellisman, M. H. (1993). Telemicroscopy. Ultramicroscopy 52, 499–503.CrossRefGoogle ScholarPubMed

Fernandez, J. J., Li, S. & Crowther, R. A. (2006). CTF determination and correction in electron cryotomography. Ultramicroscopy 106, 587–596.Google Scholar

Figge, R. M., Divakaruni, A. V. & Gober, J. W. (2004). MreB, the cell shape-determining bacterial actin homologue, co-ordinates cell wall morphogenesis in Caulobacter crescentus. Molecular Microbiology 51, 1321–1332.CrossRefGoogle ScholarPubMed

Forster, F. (2005). Quantitative Analysis of Macromolecules in Cryoelectron Tomograms using Correlation Methods. Technical University of Munich, Munich, Germany.Google Scholar

Frangakis, A. S. & Hegerl, R. (2001). Noise reduction in electron tomographic reconstructions using nonlinear anisotropic diffusion. Journal of Structural Biology 135, 239–250.CrossRefGoogle ScholarPubMed

Frank, J. (2006). Electron Tomography: Methods for Three-Dimensional Visualization of Structures in the Cell, 2nd edn. London, New York: Springer.Google Scholar

Frederik, P. M. & Hubert, D. H. (2005). Cryoelectron microscopy of liposomes. Methods in Enzymology 391, 431–448.CrossRefGoogle ScholarPubMed

Fu, C. Y., Wang, K., Gan, L., Lanman, J., Khayat, R., Young, M. J., Jensen, G. J., Doerschuk, P. C. & Johnson, J. E. (2010). In vivo assembly of an archaeal virus studied with whole-cell electron cryotomography. Structure 18, 1579–1586.Google Scholar

Gaietta, G., Deerinck, T. J., Adams, S. R., Bouwer, J., Tour, O., Laird, D. W., Sosinsky, G. E., Tsien, R. Y. & Ellisman, M. H. (2002). Multicolor and electron microscopic imaging of connexin trafficking. Science 296, 503–507.CrossRefGoogle ScholarPubMed

Gan, L., Ladinsky, M. S. & Jensen, G. J. (2011). Organization of the smallest eukaryotic spindle. Current Biology 21, 1578–1583.CrossRefGoogle ScholarPubMed

Garner, E. C., Bernard, R., Wang, W., Zhuang, X., Rudner, D. Z. & Mitchison, T. (2011). Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments in B. subtilis. Science 333, 222–225.Google Scholar

Gilbert, P. (1972). Iterative methods for the three-dimensional reconstruction of an object from projections. Journal of Theoretical Biology 36, 105–117.CrossRefGoogle ScholarPubMed

Gilkey, J. C. & Staehelin, L. A. (1986). Advances in ultrarapid freezing for the preservation of cellular ultrastructure. Journal of Electron Microscopy Technique 3, 177–210.CrossRefGoogle Scholar

Gitai, Z. (2005). The new bacterial cell biology: moving parts and subcellular architecture. Cell 120, 577–586.Google Scholar

Grunewald, K., Desai, P., Winkler, D. C., Heymann, J. B., Belnap, D. M., Baumeister, W. & Steven, A. C. (2003). Three-dimensional structure of herpes simplex virus from cryo-electron tomography. Science 302, 1396–1398.CrossRefGoogle ScholarPubMed

Gruska, M., Medalia, O., Baumeister, W. & Leis, A. (2008). Electron tomography of vitreous sections from cultured mammalian cells. Journal of Structural Biology 161, 384–392.CrossRefGoogle ScholarPubMed

Harris, A., Cardone, G., Winkler, D. C., Heymann, J. B., Brecher, M., White, J. M. & Steven, A. C. (2006). Influenza virus pleiomorphy characterized by cryoelectron tomography. Proceedings of the National Academy of Sciences of the United States of America 103, 19123–19127.CrossRefGoogle ScholarPubMed

Hayles, M. F., Matthijs De Winter, D. A., Schneijdenberg, C. T., Meeldijk, J. D., Luecken, U., Persoon, H., De Water, J., De Jong, F., Humbel, B. M. & Verkleij, A. J. (2010). The making of frozen-hydrated, vitreous lamellas from cells for cryo-electron microscopy. Journal of Structural Biology 172, 180–190.CrossRefGoogle ScholarPubMed

He, W., Cowin, P. & Stokes, D. L. (2003). Untangling desmosomal knots with electron tomography. Science 302, 109–113.Google Scholar

He, W., Kivork, C., Machinani, S., Morphew, M. K., Gail, A. M., Tesar, D. B., Tiangco, N. E., Mcintosh, J. R. & Bjorkman, P. J. (2007). A freeze substitution fixation-based gold enlarging technique for EM studies of endocytosed nanogold-labeled molecules. Journal of Structural Biology 160, 103–113.CrossRefGoogle ScholarPubMed

He, W., Ladinsky, M. S., Huey-Tubman, K. E., Jensen, G. J., Mcintosh, J. R. & Bjorkman, P. J. (2008). FcRn-mediated antibody transport across epithelial cells revealed by electron tomography. Nature 455, 542–546.Google Scholar

Henderson, G. P., Gan, L. & Jensen, G. J. (2007). 3-D ultrastructure of O. tauri: electron cryotomography of an entire eukaryotic cell. PloS ONE 2, e749.CrossRefGoogle Scholar

Henderson, R., Baldwin, J. M., Ceska, T. A., Zemlin, F., Beckmann, E. & Downing, K. H. (1990). Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. Journal of Molecular Biology 213, 899–929.CrossRefGoogle ScholarPubMed

Herman, G. T., Lent, A. & Rowland, S. W. (1973). ART: mathematics and applications. A report on the mathematical foundations and on the applicability to real data of the algebraic reconstruction techniques. Journal of Theoretical Biology 42, 1–32.Google Scholar

Heymann, J. B., Cardone, G., Winkler, D. C. & Steven, A. C. (2008). Computational resources for cryo-electron tomography in Bsoft. Journal of Structural Biology 161, 232–242.CrossRefGoogle ScholarPubMed

Hoppe, W., Gassmann, J., Hunsmann, N., Schramm, H. J. & Sturm, M. (1974). Three-dimensional reconstruction of individual negatively stained yeast fatty-acid synthetase molecules from tilt series in the electron microscope. Hoppe-Seylers Zeitschrift für Physiologische Chemie 355, 1483–1487.Google ScholarPubMed

Hsieh, C. E., Marko, M., Frank, J. & Mannella, C. A. (2002). Electron tomographic analysis of frozen-hydrated tissue sections. Journal of Structural Biology 138, 63–73.CrossRefGoogle ScholarPubMed

Iancu, C. V., Morris, D. M., Dou, Z., Heinhorst, S., Cannon, G. C. & Jensen, G. J. (2010). Organization, structure, and assembly of alpha-carboxysomes determined by electron cryotomography of intact cells. Journal of Molecular Biology 396, 105–117.Google Scholar

Iancu, C. V., Tivol, W. F., Schooler, J. B., Dias, D. P., Henderson, G. P., Murphy, G. E., Wright, E. R., Li, Z., Yu, Z., Briegel, A., Gan, L., He, Y. & Jensen, G. J. (2006a). Electron cryotomography sample preparation using the Vitrobot. Nature Protocols 1, 2813–2819.CrossRefGoogle ScholarPubMed

Iancu, C. V., Wright, E. R., Benjamin, J., Tivol, W. F., Dias, D. P., Murphy, G. E., Morrison, R. C., Heymann, J. B. & Jensen, G. J. (2005). A ‘flip-flop’ rotation stage for routine dual-axis electron cryotomography. Journal of Structural Biology 151, 288–297.CrossRefGoogle ScholarPubMed

Iancu, C. V., Wright, E. R., Heymann, J. B. & Jensen, G. J. (2006b). A comparison of liquid nitrogen and liquid helium as cryogens for electron cryotomography. Journal of Structural Biology 153, 231–240.Google Scholar

Ingerson-Mahar, M., Briegel, A., Werner, J. N., Jensen, G. J. & Gitai, Z. (2010). The metabolic enzyme CTP synthase forms cytoskeletal filaments. Nature Cell Biology 12, 739–746.CrossRefGoogle ScholarPubMed

Jones, L. J., Carballido-Lopez, R. & Errington, J. (2001). Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis. Cell 104, 913–922.CrossRefGoogle ScholarPubMed

Khayat, R., Tang, L., Larson, E. T., Lawrence, C. M., Young, M. & Johnson, J. E. (2005). Structure of an archaeal virus capsid protein reveals a common ancestry to eukaryotic and bacterial viruses. Proceedings of the National Academy of Sciences of the United States of America 102, 18944–18949.CrossRefGoogle ScholarPubMed

Khursigara, C. M., Wu, X. & Subramaniam, S. (2008a). Chemoreceptors in Caulobacter crescentus: trimers of receptor dimers in a partially ordered hexagonally packed array. Journal of Bacteriology 190, 6805–6810.CrossRefGoogle Scholar

Khursigara, C. M., Wu, X., Zhang, P., Lefman, J. & Subramaniam, S. (2008b). Role of HAMP domains in chemotaxis signaling by bacterial chemoreceptors. Proceedings of the National Academy of Sciences, USA 105, 16555–16560.CrossRefGoogle ScholarPubMed

Komeili, A., Li, Z., Newman, D. K. & Jensen, G. J. (2006). Magnetosomes are cell membrane invaginations organized by the actin-like protein MamK. Science 311, 242–245.CrossRefGoogle ScholarPubMed

Koster, A. J., Grimm, R., Typke, D., Hegerl, R., Stoschek, A., Walz, J. & Baumeister, W. (1997). Perspectives of molecular and cellular electron tomography. Journal of Structural Biology 120, 276–308.CrossRefGoogle ScholarPubMed

Kremer, J. R., Mastronarde, D. N. & Mcintosh, J. R. (1996). Computer visualization of three-dimensional image data using IMOD. Journal of Structural Biology 116, 71–76.CrossRefGoogle ScholarPubMed

Kudryashev, M., Cyrklaff, M., Wallich, R., Baumeister, W. & Frischknecht, F. (2010). Distinct in situ structures of the Borrelia flagellar motor. Journal of Structural Biology 169, 54–61.CrossRefGoogle ScholarPubMed

Kurner, J., Frangakis, A. S. & Baumeister, W. (2005). Cryo-electron tomography reveals the cytoskeletal structure of Spiroplasma melliferum. Science 307, 436–438.CrossRefGoogle ScholarPubMed

Ladinsky, M. S. & Howell, K. E. (2007). Electron tomography of immunolabeled cryosections. Methods in Cell Biology 79, 543–558.CrossRefGoogle ScholarPubMed

Ladinsky, M. S., Mastronarde, D. N., Mcintosh, J. R., Howell, K. E. & Staehelin, L. A. (1999). Golgi structure in three dimensions: functional insights from the normal rat kidney cell. Journal of Cell Biology 144, 1135–1149.CrossRefGoogle ScholarPubMed

Ladinsky, M. S., Pierson, J. M. & Mcintosh, J. R. (2006). Vitreous cryo-sectioning of cells facilitated by a micromanipulator. Journal of Microscopy 224, 129–134.CrossRefGoogle ScholarPubMed

Lawrence, A., Bouwer, J. C., Perkins, G. & Ellisman, M. H. (2006). Transform-based backprojection for volume reconstruction of large format electron microscope tilt series. Journal of Structural Biology 154, 144–167.CrossRefGoogle ScholarPubMed

Lee, E., Fahimian, B. P., Iancu, C. V., Suloway, C., Murphy, G. E., Wright, E. R., Castano-Diez, D., Jensen, G. J. & Miao, J. (2008). Radiation dose reduction and image enhancement in biological imaging through equally-sloped tomography. Journal of Structural Biology 164, 221–227.CrossRefGoogle ScholarPubMed

Lenzi, D., Crum, J., Ellisman, M. H. & Roberts, W. M. (2002). Depolarization redistributes synaptic membrane and creates a gradient of vesicles on the synaptic body at a ribbon synapse. Neuron 36, 649–659.Google Scholar

Lenzi, D., Runyeon, J. W., Crum, J., Ellisman, M. H. & Roberts, W. M. (1999). Synaptic vesicle populations in saccular hair cells reconstructed by electron tomography. Journal of Neuroscience 19, 119–132.CrossRefGoogle ScholarPubMed

Li, Z., Trimble, M. J., Brun, Y. V. & Jensen, G. J. (2007). The structure of FtsZ filaments in vivo suggests a force-generating role in cell division. EMBO Journal 26(22), 4694–4708.CrossRefGoogle ScholarPubMed

Liu, H., Jin, L., Koh, S. B., Atanasov, I., Schein, S., Wu, L. & Zhou, Z. H. (2010). Atomic structure of human adenovirus by cryo-EM reveals interactions among protein networks. Science 329, 1038–1043.Google Scholar

Liu, J., Lin, T., Botkin, D. J., Mccrum, E., Winkler, H. & Norris, S. J. (2009). Intact flagellar motor of Borrelia burgdorferi revealed by cryo-electron tomography: evidence for stator ring curvature and rotor/C-ring assembly flexion. Journal of Bacteriology 191, 5026–5036.CrossRefGoogle ScholarPubMed

Lucic, V., Forster, F. & Baumeister, W. (2005). Structural studies by electron tomography: from cells to molecules. Annual Review of Biochemistry 74, 833–865.Google Scholar

Majorovits, E., Barton, B., Schultheiss, K., Perez-Willard, F., Gerthsen, D. & Schroder, R. R. (2007). Optimizing phase contrast in transmission electron microscopy with an electrostatic (Boersch) phase plate. Ultramicroscopy 107, 213–226.CrossRefGoogle ScholarPubMed

Mandelkow, E. M., Mandelkow, E. & Milligan, R. A. (1991). Microtubule dynamics and microtubule caps: a time-resolved cryo-electron microscopy study. Journal of Cell Biology 114, 977–991.Google Scholar

Marko, M., Hsieh, C., Schalek, R., Frank, J. & Mannella, C. (2007). Focused-ion-beam thinning of frozen-hydrated biological specimens for cryo-electron microscopy. Nature Methods 4, 215–217.Google Scholar

Marsh, B. J. (2007). Reconstructing mammalian membrane architecture by large area cellular tomography. Methods in Cell Biology 79, 193–220.Google Scholar

Marsh, B. J., Mastronarde, D. N., Buttle, K. F., Howell, K. E. & Mcintosh, J. R. (2001). Organellar relationships in the Golgi region of the pancreatic beta cell line, HIT-T15, visualized by high resolution electron tomography. Proceedings of the National Academy of Sciences of the United States of America 98, 2399–2406.CrossRefGoogle ScholarPubMed

Marsh, B. J., Volkmann, N., Mcintosh, J. R. & Howell, K. E. (2004). Direct continuities between cisternae at different levels of the Golgi complex in glucose-stimulated mouse islet beta cells. Proceedings of the National Academy of Sciences of the United States of America 101, 5565–5570.CrossRefGoogle ScholarPubMed

Masich, S., Ostberg, T., Norlen, L., Shupliakov, O. & Daneholt, B. (2006). A procedure to deposit fiducial markers on vitreous cryo-sections for cellular tomography. Journal of Structural Biology 156(3), 461–468.Google Scholar

Mastronarde, D. N. (1997). Dual-axis tomography: an approach with alignment methods that preserve resolution. Journal of Structural Biology 120, 343–352.CrossRefGoogle ScholarPubMed

Mastronarde, D. N. (2005). Automated electron microscope tomography using robust prediction of specimen movements. Journal of Structural Biology 152, 36–51.Google Scholar

Mastronarde, D. N., Ladinsky, M. S. & Mcintosh, J. R. (2000). Super-thin serial sectioning for high resolution 3-D reconstruction of cellular structures. Microscopy and Microanalysis, 3, 221–222.CrossRefGoogle Scholar

Mcdonald, K. L. (2009). A review of high-pressure freezing preparation techniques for correlative light and electron microscopy of the same cells and tissues. Journal of microscopy 235, 273–281.CrossRefGoogle ScholarPubMed

Mcdonald, K. L. & Auer, M. (2006). High-pressure freezing, cellular tomography, and structural cell biology. Biotechniques 41, 137–143.Google Scholar

Mcewen, B. F., Downing, K. H. & Glaeser, R. M. (1995). The relevance of dose-fractionation in tomography of radiation-sensitive specimens. Ultramicroscopy 60, 357–373.CrossRefGoogle ScholarPubMed

Mcewen, B. F., Radermacher, M., Rieder, C. L. & Frank, J. (1986). Tomographic three-dimensional reconstruction of cilia ultrastructure from thick sections. Proceedings of the National Academy of Sciences of the United States of America 83, 9040–9044.CrossRefGoogle ScholarPubMed

Mcintosh, J. R., Grishchuk, E. L., Morphew, M. K., Efremov, A. K., Zhudenkov, K., Volkov, V. A., Cheeseman, I. M., Desai, A., Mastronarde, D. N. & Ataullakhanov, F. I. (2008). Fibrils connect microtubule tips with kinetochores: a mechanism to couple tubulin dynamics to chromosome motion. Cell 135, 322–333.CrossRefGoogle ScholarPubMed

Mcintosh, J. R., Roos, U. P., Neighbors, B. & Mcdonald, K. L. (1985). Architecture of the microtubule component of mitotic spindles from Dictyostelium discoideum. Journal of Cell Science 75, 93–129.Google Scholar

Mcmullan, G., Cattermole, D. M., Chen, S., Henderson, R., Llopart, X., Summerfield, C., Tlustos, L. & Faruqi, A. R. (2007). Electron imaging with Medipix2 hybrid pixel detector. Ultramicroscopy 107, 401–413.Google Scholar

Mcmullan, G., Clark, A. T., Turchetta, R. & Faruqi, A. R. (2009). Enhanced imaging in low dose electron microscopy using electron counting. Ultramicroscopy 109, 1411–1416.Google Scholar

Medalia, O., Weber, I., Frangakis, A. S., Nicastro, D., Gerisch, G. & Baumeister, W. (2002). Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography. Science 298, 1209–1213.Google Scholar

Mercogliano, C. P. & Derosier, D. J. (2007). Concatenated metallothionein as a clonable gold label for electron microscopy. Journal of Structural Biology 160, 70–82.CrossRefGoogle ScholarPubMed

Messaoudii, C., Boudier, T., Sanchez Sorzano, C. O. & Marco, S. (2007). TomoJ: tomography software for three-dimensional reconstruction in transmission electron microscopy. BMC Bioinformatics 8, 288.Google Scholar

Milazzo, A. C., Leblanc, P., Duttweiler, F., Jin, L., Bouwer, J. C., Peltier, S., Ellisman, M., Bieser, F., Matis, H. S., Wieman, H., Denes, P., Kleinfelder, S. & Xuong, N. H. (2005). Active pixel sensor array as a detector for electron microscopy. Ultramicroscopy 104, 152–159.Google Scholar

Milne, J. L. & Subramaniam, S. (2009). Cryo-electron tomography of bacteria: progress, challenges and future prospects. Nature Reviews Microbiology 7, 666–675.Google Scholar

Minton, A. P. (2006). How can biochemical reactions within cells differ from those in test tubes? Journal of Cell Science 119, 2863–2869.Google Scholar

Moor, H. (1987). Theory and Practice of High Pressure Freezing. Berlin: Springer-Verlag.Google Scholar

Moritz, M., Braunfeld, M. B., Guenebaut, V., Heuser, J. & Agard, D. A. (2000). Structure of the gamma-tubulin ring complex: a template for microtubule nucleation. Nature Cell Biology 2, 365–370.Google Scholar

Morphew, M., He, W., Bjorkman, P. J. & Mcintosh, J. R. (2008). Silver enhancement of Nanogold particles during freeze substitution for electron microscopy. Journal of Microscopy 230, 263–267.CrossRefGoogle ScholarPubMed

Murphy, G. E. & Jensen, G. J. (2005). Electron cryotomography of the E. coli pyruvate and 2-oxoglutarate dehydrogenase complexes. Structure 13, 1765–1773.Google Scholar

Murphy, G. E., Leadbetter, J. R. & Jensen, G. J. (2006). In situ structure of the complete Treponema primitia flagellar motor. Nature 442, 1062–1064.CrossRefGoogle ScholarPubMed

Murphy, G. E., Lowekamp, B. C., Zerfas, P. M., Chandler, R. J., Narasimha, R., Venditti, C. P. & Subramaniam, S. (2010). Ion-abrasion scanning electron microscopy reveals distorted liver mitochondrial morphology in murine methylmalonic acidemia. Journal of Structural Biology 171, 125–132.Google Scholar

Murphy, G. E., Matson, E. G., Leadbetter, J. R., Berg, H. C. & Jensen, G. J. (2008). Novel ultrastructures of Treponema primitia and their implications for motility. Molecular Microbiology 67, 1184–1195.Google Scholar

Nagayama, K. & Danev, R. (2009). Phase-plate electron microscopy: a novel imaging tool to reveal close-to-life nano-structures. Biophysical Reviews 1, 37–42.CrossRefGoogle ScholarPubMed

Nickell, S., Forster, F., Linaroudis, A., Net, W. D., Beck, F., Hegerl, R., Baumeister, W. & Plitzko, J. M. (2005). TOM software toolbox: acquisition and analysis for electron tomography. Journal of Structural Biology 149(3), 227–234.Google Scholar

Nickell, S., Kofler, C., Leis, A. P. & Baumeister, W. (2006). A visual approach to proteomics. Nature Reviews Molecular Cell Biology 7, 225–230.Google Scholar

Noske, A. B., Costin, A. J., Morgan, G. P. & Marsh, B. J. (2008). Expedited approaches to whole cell electron tomography and organelle mark-up in situ in high-pressure frozen pancreatic islets. Journal of Structural Biology 161, 298–313.CrossRefGoogle ScholarPubMed

O'toole, E. T., Mcdonald, K. L., Mantler, J., Mcintosh, J. R., Hyman, A. A. & Muller-Reichert, T. (2003). Morphologically distinct microtubule ends in the mitotic centrosome of Caenorhabditis elegans. Journal of Cell Biology 163, 451–456.CrossRefGoogle ScholarPubMed

O'toole, E. T., Winey, M. & Mcintosh, J. R. (1999). High-voltage electron tomography of spindle pole bodies and early mitotic spindles in the yeast Saccharomyces cerevisiae. Molecular Biology Cell 10, 2017–2031.Google Scholar

Olins, D. E., Olins, A. L., Levy, H. A., Durfee, R. C., Margle, S. M., Tinnel, E. P. & Dover, S. D. (1983). Electron microscope tomography: transcription in three dimensions. Science 220, 498–500.Google Scholar

Ortiz, J. O., Brandt, F., Matias, V. R., Sennels, L., Rappsilber, J., Scheres, S. H., Eibauer, M., Hartl, F. U. & Baumeister, W. (2010). Structure of hibernating ribosomes studied by cryoelectron tomography in vitro and in situ. Journal of Cell Biology 190, 613–621.CrossRefGoogle ScholarPubMed

Ortiz, J. O., Forster, F., Kurner, J., Linaroudis, A. A. & Baumeister, W. (2006). Mapping 70S ribosomes in intact cells by cryoelectron tomography and pattern recognition. Journal of Structural Biology 156, 334–341.CrossRefGoogle ScholarPubMed

Overby, A. K., Pettersson, R. F., Grunewald, K. & Huiskonen, J. T. (2008). Insights into bunyavirus architecture from electron cryotomography of Uukuniemi virus. Proceedings of the National Academy of Sciences of the United States of America 105, 2375–2379.CrossRefGoogle ScholarPubMed

Patla, I., Volberg, T., Elad, N., Hirschfeld-Warneken, V., Grashoff, C., Fassler, R., Spatz, J. P., Geiger, B. & Medalia, O. (2010). Dissecting the molecular architecture of integrin adhesion sites by cryo-electron tomography. Nature Cell Biology 12, 909–915.CrossRefGoogle ScholarPubMed

Penczek, P. A. (2010a). Fundamentals of three-dimensional reconstruction from projections. Methods in Enzymology 482, 1–33.Google Scholar

Penczek, P. A. (2010b). Image restoration in cryo-electron microscopy. Methods in Enzymology 482, 35–72.Google Scholar

Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C. & Ferrin, T. E. (2004). UCSF Chimera – a visualization system for exploratory research and analysis. Journal of Computational Chemistry 25, 1605–1612.Google Scholar

Pierson, J., Fernandez, J. J., Bos, E., Amini, S., Gnaegi, H., Vos, M., Bel, B., Adolfsen, F., Carrascosa, J. L. & Peters, P. J. (2010). Improving the technique of vitreous cryo-sectioning for cryo-electron tomography: electrostatic charging for section attachment and implementation of an anti-contamination glove box. Journal of Structural Biology 169, 219–225.CrossRefGoogle ScholarPubMed

Pilhofer, M., Ladinsky, M. S., Mcdowall, A. W. & Jensen, G. J. (2010). Bacterial TEM: new insights from cryo-microscopy. Methods in Cell Biology 96, 21–45.Google Scholar

Ress, D., Harlow, M. L., Schwarz, M., Marshall, R. M. & Mcmahan, U. J. (1999). Automatic acquisition of fiducial markers and alignment of images in tilt series for electron tomography. Journal of Electron Microscopy (Tokyo) 48, 277–287.CrossRefGoogle ScholarPubMed

Rigort, A., Bauerlein, F. J., Leis, A., Gruska, M., Hoffmann, C., Laugks, T., Bohm, U., Eibauer, M., Gnaegi, H., Baumeister, W. & Plitzko, J. M. (2010). Micromachining tools and correlative approaches for cellular cryo-electron tomography. Journal of Structural Biology 172, 169–179.Google Scholar

Salje, J., Zuber, B. & Lowe, J. (2009). Electron cryomicroscopy of E. coli reveals filament bundles involved in plasmid DNA segregation. Science 323, 509–512.Google Scholar

Sandberg, K. & Brega, M. (2007). Segmentation of thin structures in electron micrographs using orientation fields. Journal of Structural Biology 157, 403–415.Google Scholar

Saxton, W. O., Baumeister, W. & Hahn, M. (1984). Three-dimensional reconstruction of imperfect two-dimensional crystals. Ultramicroscopy 13, 57–70.CrossRefGoogle ScholarPubMed

Scheffel, A., Gruska, M., Faivre, D., Linaroudis, A., Plitzko, J. M. & Schuler, D. (2006). An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria. Nature 440, 110–114.CrossRefGoogle ScholarPubMed

Scheres, S. H., Melero, R., Valle, M. & Carazo, J. M. (2009). Averaging of electron subtomograms and random conical tilt reconstructions through likelihood optimization. Structure 17, 1563–1572.CrossRefGoogle ScholarPubMed

Schwartz, C. L., Sarbash, V. I., Ataullakhanov, F. I., Mcintosh, J. R. & Nicastro, D. (2007). Cryo-fluorescence microscopy facilitates correlations between light and cryo-electron microscopy and reduces the rate of photobleaching. Journal of Microscopy 227, 98–109.Google Scholar

Seybert, A., Herrmann, R. & Frangakis, A. S. (2006). Structural analysis of Mycoplasma pneumoniae by cryo-electron tomography. Journal of Structural Biology 156, 342–354.CrossRefGoogle ScholarPubMed

Shaikh, T. R., Gao, H., Baxter, W. T., Asturias, F. J., Boisset, N., Leith, A. & Frank, J. (2008). SPIDER image processing for single-particle reconstruction of biological macromolecules from electron micrographs. Nature Protocol 3, 1941–1974.Google Scholar

Shih, Y. L., Le, T. & Rothfield, L. (2003). Division site selection in Escherichia coli involves dynamic redistribution of Min proteins within coiled structures that extend between the two cell poles. Proceedings of the National Academy of Sciences, USA 100(13), 7865–7870.CrossRefGoogle ScholarPubMed

Sigworth, F. J. (1998). A maximum-likelihood approach to single-particle image refinement. Journal of Structural Biology 122, 328–339.Google Scholar

Skoglund, U., Andersson, K., Strandberg, B. & Daneholt, B. (1986). Three-dimensional structure of a specific pre-messenger RNP particle established by electron microscope tomography. Nature 319, 560–564.Google Scholar

Soto, G. E., Young, S. J., Martone, M. E., Deerinck, T. J., Lamont, S., Carragher, B. O., Hama, K. & Ellisman, M. H. (1994). Serial section electron tomography: a method for three-dimensional reconstruction of large structures. Neuroimage 1, 230–243.CrossRefGoogle ScholarPubMed

Sougrat, R., Bartesaghi, A., Lifson, J. D., Bennett, A. E., Bess, J. W., Zabransky, D. J. & Subramaniam, S. (2007). Electron tomography of the contact between T cells and SIV/HIV-1: implications for viral entry. PLoS Pathogen 3, e63.CrossRefGoogle ScholarPubMed

Srivastava, P., Demarre, G., Karpova, T. S., Mcnally, J. & Chattoraj, D. K. (2007). Changes in nucleoid morphology and origin localization upon inhibition or alteration of the actin homolog, MreB, of Vibrio cholerae. Journal of Bacteriology 189, 7450–7463.Google Scholar

Suloway, C., Shi, J., Cheng, A., Pulokas, J., Carragher, B., Potter, C. S., Zheng, S. Q., Agard, D. A. & Jensen, G. J. (2009). Fully automated, sequential tilt-series acquisition with Leginon. Journal of Structural Biology 167, 11–18.CrossRefGoogle ScholarPubMed

Swulius, M. T., Chen, S., Jane Ding, H., Li, Z., Briegel, A., Pilhofer, M., Tocheva, E. I., Lybarger, S. R., Johnson, T. L., Sandkvist, M. & Jensen, G. J. (2011). Long helical filaments are not seen encircling cells in electron cryotomograms of rod-shaped bacteria. Biochemical and Biophysical Research Communications 407, 650–655.Google Scholar

Tang, H., Braun, T. F. & Blair, D. F. (1996). Motility protein complexes in the bacterial flagellar motor. Journal of Molecular Biology 261, 209–221.CrossRefGoogle ScholarPubMed

Taylor, K. A. & Glaeser, R. M. (1974). Electron diffraction of frozen, hydrated protein crystals. Science 186, 1036–1037.Google Scholar

Thomas, D., Morgan, D. G. & Derosier, D. J. (2001). Structures of bacterial flagellar motors from two FliF–FliG gene fusion mutants. Journal of Bacteriology 183, 6404–6412.Google Scholar

Tocheva, E. I., Li, Z. & Jensen, G. J. (2010). Electron cryotomography. Cold Spring Harbor Perspectives in Biology 2, a003442.CrossRefGoogle ScholarPubMed

Tokuyasu, K. T. (1986). Application of cryoultramicrotomy to immunocytochemistry. Journal of Microscopy 143, 139–149.Google Scholar

Trucco, A., Polishchuk, R. S., Martella, O., Di Pentima, A., Fusella, A., Di Giandomenico, D., San Pietro, E., Beznoussenko, G. V., Polishchuk, E. V., Baldassarre, M., Buccione, R., Geerts, W. J., Koster, A. J., Burger, K. N., Mironov, A. A. & Luini, A. (2004). Secretory traffic triggers the formation of tubular continuities across Golgi sub-compartments. Nature Cell Biology 6, 1071–1081.Google Scholar

Urban, E., Jacob, S., Nemethova, M., Resch, G. P. & Small, J. V. (2010). Electron tomography reveals unbranched networks of actin filaments in lamellipodia. Nature Cell Biology 12, 429–435.Google Scholar

Van Der Heide, P., Xu, X. P., Marsh, B. J., Hanein, D. & Volkmann, N. (2007). Efficient automatic noise reduction of electron tomographic reconstructions based on iterative median filtering. Journal of Structural Biology 158, 196–204.Google Scholar

Vandenbeldt, K. J., Barnard, R. M., Hergert, P. J., Meng, X., Maiato, H. & Mcewen, B. F. (2006). Kinetochores use a novel mechanism for coordinating the dynamics of individual microtubules. Current Biology 16, 1217–1223.Google Scholar

Volkmann, N. (2002). A novel three-dimensional variant of the watershed transform for segmentation of electron density maps. Journal of Structural Biology 138, 123–129.CrossRefGoogle ScholarPubMed

Wang, Q., Mercogliano, C. P. & Lowe, J. (2011). A ferritin-based label for cellular electron cryotomography. Structure 19, 147–154.Google Scholar

Wei, D. Y. & Yin, C. C. (2010). An optimized locally adaptive non-local means denoising filter for cryo-electron microscopy data. Journal of Structural Biology 172, 211–218.Google Scholar

White, J. G., Southgate, E., Thomson, J. N. & Brenner, S. (1986). The structure of the nervous system of the nematode Caenorhabditis elegans. Philosophical Transactions of the Royal Society of London. B, Biological Sciences 314, 1–340.Google Scholar

White, T. A., Bartesaghi, A., Borgnia, M. J., Meyerson, J. R., De La Cruz, M. J., Bess, J. W., Nandwani, R., Hoxie, J. A., Lifson, J. D., Milne, J. L. & Subramaniam, S. (2010). Molecular architectures of trimeric SIV and HIV-1 envelope glycoproteins on intact viruses: strain-dependent variation in quaternary structure. PLoS Pathogens 6, e1001249.Google Scholar

Winey, M., Mamay, C. L., O'toole, E. T., Mastronarde, D. N., Giddings, T. H. Jr., Mcdonald, K. L. & Mcintosh, J. R. (1995). Three-dimensional ultrastructural analysis of the Saccharomyces cerevisiae mitotic spindle. Journal of Cell Biology 129, 1601–1615.Google Scholar

Winkler, H. (2007). 3D reconstruction and processing of volumetric data in cryo-electron tomography. Journal of Structural Biology 157, 126–137.Google Scholar

Winkler, H. & Taylor, K. A. (2006). Accurate marker-free alignment with simultaneous geometry determination and reconstruction of tilt series in electron tomography. Ultramicroscopy 106, 240–254.Google Scholar

Wolf, M., Garcea, R. L., Grigorieff, N. & Harrison, S. C. (2010). Subunit interactions in bovine papillomavirus. Proceedings of the National Academy of Sciences of the United States of America 107, 6298–6303.Google Scholar

Wright, E. R., Schooler, J. B., Ding, H. J., Kieffer, C., Fillmore, C., Sundquist, W. I. & Jensen, G. J. (2007). Electron cryotomography of immature HIV-1 virions reveals the structure of the CA and SP1 Gag shells. EMBO J 26, 2218–2226.Google Scholar

Xiong, Q., Morphew, M. K., Schwartz, C. L., Hoenger, A. H. & Mastronarde, D. N. (2009). CTF determination and correction for low dose tomographic tilt series. Journal of Structural Biology 168, 378–387.Google Scholar

Yang, Q., Rout, M. P. & Akey, C. W. (1998). Three-dimensional architecture of the isolated yeast nuclear pore complex: functional and evolutionary implications. Molecular Cell 1, 223–234.Google Scholar

Zanetti, G., Riches, J. D., Fuller, S. D. & Briggs, J. A. (2009). Contrast transfer function correction applied to cryo-electron tomography and sub-tomogram averaging. Journal of Structural Biology 168, 305–312.Google Scholar

Zhang, P., Bos, E., Heymann, J., Gnaegi, H., Kessel, M., Peters, P. J. & Subramaniam, S. (2004). Direct visualization of receptor arrays in frozen-hydrated sections and plunge-frozen specimens of E. coli engineered to overproduce the chemotaxis receptor Tsr. Journal of Microscopy 216, 76–83.Google Scholar

Zheng, Q. S., Braunfeld, M. B., Sedat, J. W. & Agard, D. A. (2004). An improved strategy for automated electron microscopic tomography. Journal of Structural Biology 147, 91–101.Google Scholar

Zheng, S. Q., Matsuda, A., Braunfeld, M. B., Sedat, J. W. & Agard, D. A. (2009). Dual-axis target mapping and automated sequential acquisition of dual-axis EM tomographic data. Journal of Structural Biology 168, 323–331.Google Scholar