Biophysical groundwork as a hinge to unravel the biology of α-synuclein aggregation and toxicity | Quarterly Reviews of Biophysics | Cambridge Core (original) (raw)

References

Abeliovich, A., Schmitz, Y., Farinas, I., Choi-Lundberg, D., Ho, W. H., Castillo, P. E., Shinsky, N., Verdugo, J. M., Armanini, M., Ryan, A., Hynes, M., Phillips, H., Sulzer, D. & Rosenthal, A. (2000). Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 25(1), 239–252.Google Scholar

Alim, M. A., Ma, Q. L., Takeda, K., Aizawa, T., Matsubara, M., Nakamura, M., Asada, A., Saito, T., Kaji, H., Yoshii, M., Hisanaga, S. & Ueda, K. (2004). Demonstration of a role for alpha-synuclein as a functional microtubule-associated protein. Journal of Alzheimer's Disease 6(4), 435–442; discussion 443–439.Google Scholar

Allison, J. R., Varnai, P., Dobson, C. M. & Vendruscolo, M. (2009). Determination of the free energy landscape of alpha-synuclein using spin label nuclear magnetic resonance measurements. Journal of American Chemical Socirty 131(51), 18314–18326.Google Scholar

Alvarez-Erviti, L., Couch, Y., Richardson, J., Cooper, J. M. & Wood, M. J. (2011a). Alpha-synuclein release by neurons activates the inflammatory response in a microglial cell line. Neuroscience Research 69(4), 337–342.CrossRefGoogle Scholar

Alvarez-Erviti, L., Seow, Y., Schapira, A. H., Gardiner, C., Sargent, I. L., Wood, M. J. & Cooper, J. M. (2011b). Lysosomal dysfunction increases exosome-mediated alpha-synuclein release and transmission. Neurobiology of Disease 42(3), 360–367.Google Scholar

Anderson, J. P., Walker, D. E., Goldstein, J. M., De Laat, R., Banducci, K., Caccavello, R. J., Barbour, R., Huang, J., Kling, K., Lee, M., Diep, L., Keim, P. S., Shen, X., Chataway, T., Schlossmacher, M. G., Seubert, P., Schenk, D., Sinha, S., Gai, W. P. & Chilcote, T. J. (2006). Phosphorylation of Ser-129 is the dominant pathological modification of alpha-synuclein in familial and sporadic Lewy body disease. Journal of Biological Chemistry 281(40), 29739–29752.Google Scholar

Apetri, M. M., Maiti, N. C., Zagorski, M. G., Carey, P. R. & Anderson, V. E. (2006). Secondary structure of alpha-synuclein oligomers: characterization by Raman and atomic force microscopy. Journal of Molecular Biology 355(1), 63–71.Google Scholar

Auluck, P. K., Caraveo, G. & Lindquist, S. (2010). alpha-Synuclein: membrane interactions and toxicity in Parkinson's disease. Annual Review of Cell and Developmental Biology 26, 211–233.CrossRefGoogle ScholarPubMed

Auluck, P. K., Chan, H. Y., Trojanowski, J. Q., Lee, V. M. & Bonini, N. M. (2002). Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson's disease. Science 295(5556), 865–868.CrossRefGoogle Scholar

Bartels, T., Ahlstrom, L. S., Leftin, A., Kamp, F., Haass, C., Brown, M. F. & Beyer, K. (2010). The N-terminus of the intrinsically disordered protein alpha-synuclein triggers membrane binding and helix folding. Biophysics Journal 99(7), 2116–2124.Google Scholar

Bartels, T., Choi, J. G. & Selkoe, D. J. (2011). alpha-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature 477(7362), 107–110.CrossRefGoogle ScholarPubMed

Berman, S. B. & Hastings, T. G. (1999). Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria: implications for Parkinson's disease. Journal of Neurochemistry 73(3), 1127–1137.Google Scholar

Bertoncini, C. W., Jung, Y. S., Fernandez, C. O., Hoyer, W., Griesinger, C., Jovin, T. M. & Zweckstetter, M. (2005). Release of long-range tertiary interactions potentiates aggregation of natively unstructured alpha-synuclein. Proceedings of the National Academy of Sciences United States of America 102(5), 1430–1435.CrossRefGoogle ScholarPubMed

Bhak, G., Lee, J. H., Hahn, J. S. & Paik, S. R. (2009). Granular assembly of alpha-synuclein leading to the accelerated amyloid fibril formation with shear stress. PLoS ONE 4(1), e4177.Google Scholar

Bieschke, J., Russ, J., Friedrich, R. P., Ehrnhoefer, D. E., Wobst, H., Neugebauer, K. & Wanker, E. E. (2010). EGCG remodels mature alpha-synuclein and amyloid-beta fibrils and reduces cellular toxicity. Proceedings of the National Academy of Sciences United States of America 107(17), 7710–7715.CrossRefGoogle ScholarPubMed

Binolfi, A., Theillet, F. X. & Selenko, P. (2012). Bacterial in-cell NMR of human alpha-synuclein: a disordered monomer by nature? Biochemical Society Transaction, 40(5), 950–954.Google Scholar

Bisaglia, M., Mammi, S. & Bubacco, L. (2007). Kinetic and structural analysis of the early oxidation products of dopamine: analysis of the interactions with alpha-synuclein. Journal of Biological Chemistry 282(21), 15597–15605.Google Scholar

Bisaglia, M., Tessari, I., Mammi, S. & Bubacco, L. (2009). Interaction between alpha-synuclein and metal ions, still looking for a role in the pathogenesis of Parkinson's disease. Neuromolecular Medicine 11(4), 239–251.Google Scholar

Borbat, P., Ramlall, T. F., Freed, J. H. & Eliezer, D. (2006). Inter-helix distances in lysophospholipid micelle-bound alpha-synuclein from pulsed ESR measurements. Journal of the American Chemical Society 128(31), 10004–10005.Google Scholar

Braak, H., Del Tredici, K., Rub, U., De Vos, R. A., Jansen Steur, E. N. & Braak, E. (2003). Staging of brain pathology related to sporadic Parkinson's disease. Neurobiology of Aging 24(2), 197–211.CrossRefGoogle ScholarPubMed

Brooks, D. J. (1998). The early diagnosis of Parkinson's disease. Annals of Neurology 44(3 Suppl 1), S10–S18.Google Scholar

Brucale, M., Sandal, M., Di Maio, S., Rampioni, A., Tessari, I., Tosatto, L., Bisaglia, M., Bubacco, L. & Samori, B. (2009). Pathogenic mutations shift the equilibria of alpha-synuclein single molecules towards structured conformers. ChemBioChem 10(1), 176–183.CrossRefGoogle ScholarPubMed

Burke, W. J., Kumar, V. B., Pandey, N., Panneton, W. M., Gan, Q., Franko, M. W., O'Dell, M., Li, S. W., Pan, Y., Chung, H. D. & Galvin, J. E. (2008). Aggregation of alpha-synuclein by DOPAL, the monoamine oxidase metabolite of dopamine. Acta Neuropathology 115(2), 193–203.Google Scholar

Burre, J., Sharma, M., Tsetsenis, T., Buchman, V., Etherton, M. R. & Sudhof, T. C. (2010). Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro . Science 329(5999), 1663–1667.Google Scholar

Bussell, R. Jr., Ramlall, T. F. & Eliezer, D. (2005). Helix periodicity, topology, and dynamics of membrane-associated alpha-synuclein. Protein Science 14(4), 862–872.Google Scholar

Butterfield, S. M. & Lashuel, H. A. (2010). Amyloidogenic protein–membrane interactions: mechanistic insight from model systems. Angewandte Chemie International Edition English 49(33), 5628–5654.Google Scholar

Buttner, S., Delay, C., Franssens, V., Bammens, T., Ruli, D., Zaunschirm, S., De Oliveira, R. M., Outeiro, T. F., Madeo, F., Buee, L., Galas, M. C. & Winderickx, J. (2010). Synphilin-1 enhances alpha-synuclein aggregation in yeast and contributes to cellular stress and cell death in a Sir2-dependent manner. PLoS ONE 5(10), e13700.Google Scholar

Cappai, R., Leck, S. L., Tew, D. J., Williamson, N. A., Smith, D. P., Galatis, D., Sharples, R. A., Curtain, C. C., Ali, F. E., Cherny, R. A., Culvenor, J. G., Bottomley, S. P., Masters, C. L., Barnham, K. J. & Hill, A. F. (2005). Dopamine promotes alpha-synuclein aggregation into SDS-resistant soluble oligomers via a distinct folding pathway. FASEB Journal 19(10), 1377–1379.Google Scholar

Casuso, I., Rico, F. & Scheuring, S. (2011). Biological AFM: where we come from – where we are – where we may go. Journal of Molecular Recognition 24(3), 406–413.Google Scholar

Chartier-Harlin, M. C., Kachergus, J., Roumier, C., Mouroux, V., Douay, X., Lincoln, S., Levecque, C., Larvor, L., Andrieux, J., Hulihan, M., Waucquier, N., Defebvre, L., Amouyel, P., Farrer, M. & Destee, A. (2004). Alpha-synuclein locus duplication as a cause of familial Parkinson's disease. Lancet 364(9440), 1167–1169.Google Scholar

Chen, M., Margittai, M., Chen, J. & Langen, R. (2007). Investigation of alpha-synuclein fibril structure by site-directed spin labeling. Journal of Biological Chemistry 282(34), 24970–24979.Google Scholar

Cho, M. K., Nodet, G., Kim, H. Y., Jensen, M. R., Bernado, P., Fernandez, C. O., Becker, S., Blackledge, M. & Zweckstetter, M. (2009). Structural characterization of alpha-synuclein in an aggregation prone state. Protein Science 18(9), 1840–1846.Google Scholar

Choi, B. K., Choi, M. G., Kim, J. Y., Yang, Y., Lai, Y., Kweon, D. H., Lee, N. K. & Shin, Y. K. (2013). Large alpha-synuclein oligomers inhibit neuronal SNARE-mediated vesicle docking. Proceedings of the National Academy of Sciences United States of America 110(10), 4087–4092.CrossRefGoogle ScholarPubMed

Clayton, D. F. & George, J. M. (1998). The synucleins: a family of proteins involved in synaptic function, plasticity, neurodegeneration and disease. Trends in Neuroscience 21(6), 249–254.Google Scholar

Codolo, G., Plotegher, N., Pozzobon, T., Brucale, M., Tessari, I., Bubacco, L. & De Bernard, M. (2013). Triggering of inflammasome by aggregated alpha-synuclein, an inflammatory response in synucleinopathies. PLoS ONE 8(1), e55375.Google Scholar

Cohlberg, J. A., Li, J., Uversky, V. N. & Fink, A. L. (2002). Heparin and other glycosaminoglycans stimulate the formation of amyloid fibrils from alpha-synuclein in vitro . Biochemistry 41(5), 1502–1511.CrossRefGoogle ScholarPubMed

Colla, E., Jensen, P. H., Pletnikova, O., Troncoso, J. C., Glabe, C. & Lee, M. K. (2012). Accumulation of toxic alpha-synuclein oligomer within endoplasmic reticulum occurs in alpha-synucleinopathy in vivo . Journal of Neuroscience 32(10), 3301–3305.Google Scholar

Comellas, G., Lemkau, L. R., Nieuwkoop, A. J., Kloepper, K. D., Ladror, D. T., Ebisu, R., Woods, W. S., Lipton, A. S., George, J. M. & Rienstra, C. M. (2011). Structured regions of alpha-synuclein fibrils include the early-onset Parkinson's disease mutation sites. Journal of Molecular Biology 411(4), 881–895.Google Scholar

Comellas, G., Lemkau, L. R., Zhou, D. H., George, J. M. & Rienstra, C. M. (2012). Structural intermediates during alpha-synuclein fibrillogenesis on phospholipid vesicles. Journal of the American Chemical Society 134(11), 5090–5099.Google Scholar

Conway, K. A., Harper, J. D. & Lansbury, P. T. Jr. (2000). Fibrils formed in vitro from alpha-synuclein and two mutant forms linked to Parkinson's disease are typical amyloid. Biochemistry 39(10), 2552–2563.Google Scholar

Cremades, N., Cohen, S. I., Deas, E., Abramov, A. Y., Chen, A. Y., Orte, A., Sandal, M., Clarke, R. W., Dunne, P., Aprile, F. A., Bertoncini, C. W., Wood, N. W., Knowles, T. P., Dobson, C. M. & Klenerman, D. (2012). Direct observation of the interconversion of normal and toxic forms of alpha-synuclein. Cell 149(5), 1048–1059.Google Scholar

Cuervo, A. M., Stefanis, L., Fredenburg, R., Lansbury, P. T. & Sulzer, D. (2004). Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 305(5688), 1292–1295.Google Scholar

Danzer, K. M., Kranich, L. R., Ruf, W. P., Cagsal-Getkin, O., Winslow, A. R., Zhu, L., Vanderburg, C. R. & Mclean, P. J. (2012). Exosomal cell-to-cell transmission of alpha synuclein oligomers. Molecular Neurodegeneration 7, 42.Google Scholar

Danzer, K. M., Krebs, S. K., Wolff, M., Birk, G. & Hengerer, B. (2009). Seeding induced by alpha-synuclein oligomers provides evidence for spreading of alpha-synuclein pathology. Journal of Neurochemistry 111(1), 192–203.CrossRefGoogle ScholarPubMed

Davidson, W. S., Jonas, A., Clayton, D. F. & George, J. M. (1998). Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes. Journal of Biological Chemistry 273(16), 9443–9449.Google Scholar

De Franceschi, G., Frare, E., Pivato, M., Relini, A., Penco, A., Greggio, E., Bubacco, L., Fontana, A. & De Laureto, P. P. (2011). Structural and morphological characterization of aggregated species of alpha-synuclein induced by docosahexaenoic acid. Journal of Biological Chemistry 286(25), 22262–22274.Google Scholar

Dedmon, M. M., Christodoulou, J., Wilson, M. R. & Dobson, C. M. (2005a). Heat shock protein 70 inhibits alpha-synuclein fibril formation via preferential binding to prefibrillar species. Journal of Biological Chemistry 280(15), 14733–14740.Google Scholar

Dedmon, M. M., Lindorff-Larsen, K., Christodoulou, J., Vendruscolo, M. & Dobson, C. M. (2005b). Mapping long-range interactions in alpha-synuclein using spin-label NMR and ensemble molecular dynamics simulations. Journal of the American Chemical Society 127(2), 476–477.Google Scholar

Der-Sarkissian, A., Jao, C. C., Chen, J. & Langen, R. (2003). Structural organization of alpha-synuclein fibrils studied by site-directed spin labeling. Journal of Biological Chemistry 278(39), 37530–37535.Google Scholar

Desplats, P., Lee, H. J., Bae, E. J., Patrick, C., Rockenstein, E., Crews, L., Spencer, B., Masliah, E. & Lee, S. J. (2009). Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein. Proceedings of the National Academy of Sciences United States of America 106(31), 13010–13015.Google Scholar

Devi, L., Raghavendran, V., Prabhu, B. M., Avadhani, N. G. & Anandatheerthavarada, H. K. (2008). Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. Journal of Biological Chemistry 283(14), 9089–9100.Google Scholar

Dickson, D. W. (2007). Linking selective vulnerability to cell death mechanisms in Parkinson's disease. American Journal of Pathology 170(1), 16–19.CrossRefGoogle ScholarPubMed

Dobson, C. M. (1999). Protein misfolding, evolution and disease. Trends in Biochemical Science 24(9), 329–332.Google Scholar

Duda, J. E., Giasson, B. I., Chen, Q., Gur, T. L., Hurtig, H. I., Stern, M. B., Gollomp, S. M., Ischiropoulos, H., Lee, V. M. & Trojanowski, J. Q. (2000). Widespread nitration of pathological inclusions in neurodegenerative synucleinopathies. American Journal of Pathology 157(5), 1439–1445.CrossRefGoogle ScholarPubMed

Dusa, A., Kaylor, J., Edridge, S., Bodner, N., Hong, D. P. & Fink, A. L. (2006). Characterization of oligomers during alpha-synuclein aggregation using intrinsic tryptophan fluorescence. Biochemistry 45(8), 2752–2760.Google Scholar

Ebrahimi-Fakhari, D., Wahlster, L. & Mclean, P. J. (2012). Protein degradation pathways in Parkinson's disease: curse or blessing. Acta Neuropathology 124(2), 153–172.Google Scholar

El-Agnaf, O. M., Paleologou, K. E., Greer, B., Abogrein, A. M., King, J. E., Salem, S. A., Fullwood, N. J., Benson, F. E., Hewitt, R., Ford, K. J., Martin, F. L., Harriott, P., Cookson, M. R. & Allsop, D. (2004). A strategy for designing inhibitors of alpha-synuclein aggregation and toxicity as a novel treatment for Parkinson's disease and related disorders. FASEB Journal 18(11), 1315–1317.CrossRefGoogle ScholarPubMed

Engelender, S., Kaminsky, Z., Guo, X., Sharp, A. H., Amaravi, R. K., Kleiderlein, J. J., Margolis, R. L., Troncoso, J. C., Lanahan, A. A., Worley, P. F., Dawson, V. L., Dawson, T. M. & Ross, C. A. (1999). Synphilin-1 associates with alpha-synuclein and promotes the formation of cytosolic inclusions. Nature Genetics 22(1), 110–114.Google Scholar

Esposito, A., Dohm, C. P., Kermer, P., Bahr, M. & Wouters, F. S. (2007). alpha-Synuclein and its disease-related mutants interact differentially with the microtubule protein tau and associate with the actin cytoskeleton. Neurobiology of Disease 26(3), 521–531.CrossRefGoogle ScholarPubMed

Fauvet, B., Fares, M. B., Samuel, F., Dikiy, I., Tandon, A., Eliezer, D. & Lashuel, H. A. (2012a). Characterization of semisynthetic and naturally Nalpha-acetylated alpha-synuclein in vitro and in intact cells: implications for aggregation and cellular properties of alpha-synuclein. Journal of Biological Chemistry 287(34), 28243–28262.Google Scholar

Fauvet, B., Mbefo, M. K., Fares, M. B., Desobry, C., Michael, S., Ardah, M. T., Tsika, E., Coune, P., Prudent, M., Lion, N., Eliezer, D., Moore, D. J., Schneider, B., Aebischer, P., El-Agnaf, O. M., Masliah, E. & Lashuel, H. A. (2012b). alpha-Synuclein in central nervous system and from erythrocytes, mammalian cells, and Escherichia coli exists predominantly as disordered monomer. Journal of Biological Chemistry 287(19), 15345–15364.Google Scholar

Feng, L. R., Federoff, H. J., Vicini, S. & Maguire-Zeiss, K. A. (2010). Alpha-synuclein mediates alterations in membrane conductance: a potential role for alpha-synuclein oligomers in cell vulnerability. European Journal of Neuroscience 32(1), 10–17.CrossRefGoogle ScholarPubMed

Ferreon, A. C., Gambin, Y., Lemke, E. A. & Deniz, A. A. (2009). Interplay of alpha-synuclein binding and conformational switching probed by single-molecule fluorescence. Proceedings of the National Academy of Sciences United States of America 106(14), 5645–5650.Google Scholar

Fredenburg, R. A., Rospigliosi, C., Meray, R. K., Kessler, J. C., Lashuel, H. A., Eliezer, D. & Lansbury, P. T. Jr. (2007). The impact of the E46K mutation on the properties of alpha-synuclein in its monomeric and oligomeric states. Biochemistry 46(24), 7107–7118.CrossRefGoogle ScholarPubMed

Freeman, D., Cedillos, R., Choyke, S., Lukic, Z., Mcguire, K., Marvin, S., Burrage, A. M., Sudholt, S., Rana, A., O'Connor, C., Wiethoff, C. M. & Campbell, E. M. (2013). Alpha-synuclein induces lysosomal rupture and cathepsin dependent reactive oxygen species following endocytosis. PLoS ONE 8(4), e62143.Google Scholar

Freundt, E. C., Maynard, N., Clancy, E. K., Roy, S., Bousset, L., Sourigues, Y., Covert, M., Melki, R., Kirkegaard, K. & Brahic, M. (2012). Neuron-to-neuron transmission of alpha-synuclein fibrils through axonal transport. Annals of Neurology 72(4), 517–524.CrossRefGoogle ScholarPubMed

Fuchs, J., Tichopad, A., Golub, Y., Munz, M., Schweitzer, K. J., Wolf, B., Berg, D., Mueller, J. C. & Gasser, T. (2008). Genetic variability in the SNCA gene influences alpha-synuclein levels in the blood and brain. FASEB Journal 22(5), 1327–1334.Google Scholar

Fujiwara, H., Hasegawa, M., Dohmae, N., Kawashima, A., Masliah, E., Goldberg, M. S., Shen, J., Takio, K. & Iwatsubo, T. (2002). alpha-Synuclein is phosphorylated in synucleinopathy lesions. Nature Cell Biology 4(2), 160–164.Google Scholar

Funayama, M., Hasegawa, K., Kowa, H., Saito, M., Tsuji, S. & Obata, F. (2002). A new locus for Parkinson's disease (PARK8) maps to chromosome 12p11.2-q13.1. Annals of Neurology 51(3), 296–301.Google Scholar

Georgieva, E. R., Ramlall, T. F., Borbat, P. P., Freed, J. H. & Eliezer, D. (2010). The lipid-binding domain of wild type and mutant alpha-synuclein: compactness and interconversion between the broken and extended helix forms. Journal of Biological Chemistry 285(36), 28261–28274.Google Scholar

Giasson, B. I., Duda, J. E., Murray, I. V., Chen, Q., Souza, J. M., Hurtig, H. I., Ischiropoulos, H., Trojanowski, J. Q. & Lee, V. M. (2000). Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science 290(5493), 985–989.Google Scholar

Giasson, B. I., Murray, I. V., Trojanowski, J. Q. & Lee, V. M. (2001). A hydrophobic stretch of 12 amino acid residues in the middle of alpha-synuclein is essential for filament assembly. Journal of Biological Chemistry 276(4), 2380–2386.Google Scholar

Giehm, L., Lorenzen, N. & Otzen, D. E. (2011a). Assays for alpha-synuclein aggregation. Methods 53(3), 295–305.Google Scholar

Giehm, L. & Otzen, D. E. (2010). Strategies to increase the reproducibility of protein fibrillization in plate reader assays. Analytical Biochemistry 400(2), 270–281.Google Scholar

Giehm, L., Svergun, D. I., Otzen, D. E. & Vestergaard, B. (2011b). Low-resolution structure of a vesicle disrupting _α_-synuclein oligomer that accumulates during fibrillation. Proceedings of the National Academy of Sciences United States of America 108(8), 3246–3251.Google Scholar

Goers, J., Uversky, V. N. & Fink, A. L. (2003). Polycation-induced oligomerization and accelerated fibrillation of human alpha-synuclein in vitro . Protein Science 12(4), 702–707.CrossRefGoogle ScholarPubMed

Gosavi, N., Lee, H. J., Lee, J. S., Patel, S. & Lee, S. J. (2002). Golgi fragmentation occurs in the cells with prefibrillar alpha-synuclein aggregates and precedes the formation of fibrillar inclusion. Journal of Biological Chemistry 277(50), 48984–48992.CrossRefGoogle ScholarPubMed

Gousset, K., Schiff, E., Langevin, C., Marijanovic, Z., Caputo, A., Browman, D. T., Chenouard, N., De Chaumont, F., Martino, A., Enninga, J., Olivo-Marin, J. C., Mannel, D. & Zurzolo, C. (2009). Prions hijack tunnelling nanotubes for intercellular spread. Nature Cell Biology 11(3), 328–336.Google Scholar

Greten-Harrison, B., Polydoro, M., Morimoto-Tomita, M., Diao, L., Williams, A. M., Nie, E. H., Makani, S., Tian, N., Castillo, P. E., Buchman, V. L. & Chandra, S. S. (2010). alphabetagamma-Synuclein triple knockout mice reveal age-dependent neuronal dysfunction. Proceedings of the National Academy of Sciences United States of America 107(45), 19573–19578.Google Scholar

Groenning, M. (2010). Binding mode of Thioflavin T and other molecular probes in the context of amyloid fibrils-current status. Journal of Chemical Biology 3(1), 1–18.CrossRefGoogle ScholarPubMed

Gurry, T., Ullman, O., Fisher, C. K., Perovic, I., Pochapsky, T. & Stultz, C. M. (2013). The dynamic structure of alpha-synuclein multimers. Journal of the American Chemical Society 135(10), 3865–3872.Google Scholar

Halle, A., Hornung, V., Petzold, G. C., Stewart, C. R., Monks, B. G., Reinheckel, T., Fitzgerald, K. A., Latz, E., Moore, K. J. & Golenbock, D. T. (2008). The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nature Immunology 9(8), 857–865.Google Scholar

Hansen, C., Angot, E., Bergstrom, A. L., Steiner, J. A., Pieri, L., Paul, G., Outeiro, T. F., Melki, R., Kallunki, P., Fog, K., Li, J. Y. & Brundin, P. (2011). alpha-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. Journal of Clinical Investigation 121(2), 715–725.Google Scholar

Hearps, A. C., Pryor, M. J., Kuusisto, H. V., Rawlinson, S. M., Piller, S. C. & Jans, D. A. (2007). The biarsenical dye Lumio exhibits a reduced ability to specifically detect tetracysteine-containing proteins within live cells. Journal of Fluorescence 17(6), 593–597.Google Scholar

Heise, H., Hoyer, W., Becker, S., Andronesi, O. C., Riedel, D. & Baldus, M. (2005). Molecular-level secondary structure, polymorphism, and dynamics of full-length alpha-synuclein fibrils studied by solid-state NMR. Proceedings of the National Academy of Sciences United States of America 102(44), 15871–15876.Google Scholar

Hervas, R., Oroz, J., Galera-Prat, A., Goni, O., Valbuena, A., Vera, A. M., Gomez-Sicilia, A., Losada-Urzaiz, F., Uversky, V. N., Menendez, M., Laurents, D. V., Bruix, M. & Carrion-Vazquez, M. (2012). Common features at the start of the neurodegeneration cascade. PLoS Biology 10(5), e1001335.Google Scholar

Hirsch, E., Graybiel, A. M. & Agid, Y. A. (1988). Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson's disease. Nature 334(6180), 345–348.Google Scholar

Hoyer, W., Antony, T., Cherny, D., Heim, G., Jovin, T. M. & Subramaniam, V. (2002). Dependence of alpha-synuclein aggregate morphology on solution conditions. Journal of Molecular Biology 322(2), 383–393.Google Scholar

Hudson, S. A., Ecroyd, H., Kee, T. W. & Carver, J. A. (2009). The thioflavin T fluorescence assay for amyloid fibril detection can be biased by the presence of exogenous compounds. FEBS Journal 276(20), 5960–5972.Google Scholar

Jao, C. C., Hegde, B. G., Chen, J., Haworth, I. S. & Langen, R. (2008). Structure of membrane-bound alpha-synuclein from site-directed spin labeling and computational refinement. Proceedings of the National Academy of Sciences United States of America 105(50), 19666–19671.Google Scholar

Kaminski Schierle, G. S., Bertoncini, C. W., Chan, F. T., Van Der Goot, A. T., Schwedler, S., Skepper, J., Schlachter, S., Van Ham, T., Esposito, A., Kumita, J. R., Nollen, E. A., Dobson, C. M. & Kaminski, C. F. (2011). A FRET sensor for non-invasive imaging of amyloid formation in vivo . Chemphyschem 12(3), 673–680.Google Scholar

Kang, L., Moriarty, G. M., Woods, L. A., Ashcroft, A. E., Radford, S. E. & Baum, J. (2012). N-terminal acetylation of alpha-synuclein induces increased transient helical propensity and decreased aggregation rates in the intrinsically disordered monomer. Protein Science 21(7), 911–917.Google Scholar

Kasten, M. & Klein, C. (2013). The many faces of alpha-synuclein mutations. Movment Disorders 28(6), 697–701.Google Scholar

Kaylor, J., Bodner, N., Edridge, S., Yamin, G., Hong, D. P. & Fink, A. L. (2005). Characterization of oligomeric intermediates in alpha-synuclein fibrillation: FRET studies of Y125W/Y133F/Y136F alpha-synuclein. Journal of Molecular Biology 353(2), 357–372.CrossRefGoogle ScholarPubMed

Khurana, R., Coleman, C., Ionescu-Zanetti, C., Carter, S. A., Krishna, V., Grover, R. K., Roy, R. & Singh, S. (2005). Mechanism of thioflavin T binding to amyloid fibrils. Journal of Structural Biology 151(3), 229–238.Google Scholar

Khurana, R., Ionescu-Zanetti, C., Pope, M., Li, J., Nielson, L., Ramirez-Alvarado, M., Regan, L., Fink, A. L. & Carter, S. A. (2003). A general model for amyloid fibril assembly based on morphological studies using atomic force microscopy. Biophysics Journal 85(2), 1135–1144.Google Scholar

Khurana, R., Uversky, V. N., Nielsen, L. & Fink, A. L. (2001). Is Congo red an amyloid-specific dye? Journal of Biological Chemistry, 276(25), 22715–22721.Google Scholar

Kiely, A. P., Asi, Y. T., Kara, E., Limousin, P., Ling, H., Lewis, P., Proukakis, C., Quinn, N., Lees, A. J., Hardy, J., Revesz, T., Houlden, H. & Holton, J. L. (2013). alpha-Synucleinopathy associated with G51D SNCA mutation: a link between Parkinson's disease and multiple system atrophy? Acta Neuropathology, 125(5), 753–769.Google Scholar

Kim, C., Ho, D. H., Suk, J. E., You, S., Michael, S., Kang, J., Joong Lee, S., Masliah, E., Hwang, D., Lee, H. J. & Lee, S. J. (2013). Neuron-released oligomeric alpha-synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia. Nature Communications 4, 1562.Google Scholar

Kim, H. Y., Cho, M. K., Kumar, A., Maier, E., Siebenhaar, C., Becker, S., Fernandez, C. O., Lashuel, H. A., Benz, R., Lange, A. & Zweckstetter, M. (2009). Structural properties of pore-forming oligomers of alpha-synuclein. Journal of the American Chemical Society 131(47), 17482–17489.Google Scholar

Kim, H. Y., Cho, M. K., Riedel, D., Fernandez, C. O. & Zweckstetter, M. (2008). Dissociation of amyloid fibrils of alpha-synuclein in supercooled water. Angewandte Chemie International Edition English 47(27), 5046–5048.Google Scholar

Klucken, J., Outeiro, T. F., Nguyen, P., Mclean, P. J. & Hyman, B. T. (2006). Detection of novel intracellular alpha-synuclein oligomeric species by fluorescence lifetime imaging. FASEB Journal 20(12), 2050–2057.Google Scholar

Klucken, J., Shin, Y., Masliah, E., Hyman, B. T. & Mclean, P. J. (2004). Hsp70 Reduces alpha-Synuclein Aggregation and Toxicity. Journal of Biological Chemistry 279(24), 25497–25502.Google Scholar

Kokhan, V. S., Afanasyeva, M. A. & Van'kin, G. I. (2012). alpha-Synuclein knockout mice have cognitive impairments. Behavioural Brain Research 231(1), 226–230.Google Scholar

Kordower, J. H., Chu, Y., Hauser, R. A., Freeman, T. B. & Olanow, C. W. (2008). Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson's disease. Nature Medicine 14(5), 504–506.CrossRefGoogle ScholarPubMed

Kostka, M., Hogen, T., Danzer, K. M., Levin, J., Habeck, M., Wirth, A., Wagner, R., Glabe, C. G., Finger, S., Heinzelmann, U., Garidel, P., Duan, W., Ross, C. A., Kretzschmar, H. & Giese, A. (2008). Single particle characterization of iron-induced pore-forming alpha-synuclein oligomers. Journal of Biological Chemistry 283(16), 10992–11003.Google Scholar

Krebs, M. R., Bromley, E. H. & Donald, A. M. (2005). The binding of thioflavin-T to amyloid fibrils: localisation and implications. Journal of Structural Biology 149(1), 30–37.Google Scholar

Kruger, R., Kuhn, W., Muller, T., Woitalla, D., Graeber, M., Kosel, S., Przuntek, H., Epplen, J. T., Schols, L. & Riess, O. (1998). Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson's disease. Nature Genetics 18(2), 106–108.CrossRefGoogle ScholarPubMed

Lashuel, H. A. & Lansbury, P. T. Jr. (2006). Are amyloid diseases caused by protein aggregates that mimic bacterial pore-forming toxins? Quartely Review of Biophysics, 39(2), 167–201.Google Scholar

Lashuel, H. A., Petre, B. M., Wall, J., Simon, M., Nowak, R. J., Walz, T. & Lansbury, P. T. Jr. (2002). Alpha-synuclein, especially the Parkinson's disease-associated mutants, forms pore-like annular and tubular protofibrils. Journal of Molecular Biology 322(5), 1089–1102.Google Scholar

Lee, H. J., Choi, C. & Lee, S. J. (2002). Membrane-bound alpha-synuclein has a high aggregation propensity and the ability to seed the aggregation of the cytosolic form. Journal of Biological Chemistry 277(1), 671–678.Google Scholar

Lemkau, L. R., Comellas, G., Kloepper, K. D., Woods, W. S., George, J. M. & Rienstra, C. M. (2012). Mutant protein A30P alpha-synuclein adopts wild-type fibril structure, despite slower fibrillation kinetics. Journal of Biological Chemistry 287(14), 11526–11532.Google Scholar

Lemkau, L. R., Comellas, G., Lee, S. W., Rikardsen, L. K., Woods, W. S., George, J. M. & Rienstra, C. M. (2013). Site-specific perturbations of alpha-synuclein fibril structure by the Parkinson's disease associated mutations A53T and E46K. PLoS ONE 8(3), e49750.Google Scholar

Levine, H. III. (1993). Thioflavine T interaction with synthetic Alzheimer's disease beta-amyloid peptides: detection of amyloid aggregation in solution. Protein Science 2(3), 404–410.Google Scholar

Li, J., Uversky, V. N. & Fink, A. L. (2001). Effect of familial Parkinson's disease point mutations A30P and A53T on the structural properties, aggregation, and fibrillation of human alpha-synuclein. Biochemistry 40(38), 11604–11613.Google Scholar

Li, J. Y., Englund, E., Holton, J. L., Soulet, D., Hagell, P., Lees, A. J., Lashley, T., Quinn, N. P., Rehncrona, S., Bjorklund, A., Widner, H., Revesz, T., Lindvall, O. & Brundin, P. (2008). Lewy bodies in grafted neurons in subjects with Parkinson's disease suggest host-to-graft disease propagation. Nature Medicine 14(5), 501–503.Google Scholar

Liu, I. H., Uversky, V. N., Munishkina, L. A., Fink, A. L., Halfter, W. & Cole, G. J. (2005). Agrin binds alpha-synuclein and modulates alpha-synuclein fibrillation. Glycobiology 15(12), 1320–1331.Google Scholar

Liu, S., Ninan, I., Antonova, I., Battaglia, F., Trinchese, F., Narasanna, A., Kolodilov, N., Dauer, W., Hawkins, R. D. & Arancio, O. (2004). alpha-Synuclein produces a long-lasting increase in neurotransmitter release. EMBO Journal 23(22), 4506–4516.Google Scholar

Lowe, R., Pountney, D. L., Jensen, P. H., Gai, W. P. & Voelcker, N. H. (2004). Calcium(II) selectively induces alpha-synuclein annular oligomers via interaction with the C-terminal domain. Protein Science 13(12), 3245–3252.Google Scholar

Luk, K. C., Hyde, E. G., Trojanowski, J. Q. & Lee, V. M. (2007). Sensitive fluorescence polarization technique for rapid screening of alpha-synuclein oligomerization/fibrillization inhibitors. Biochemistry 46(44), 12522–12529.Google Scholar

Luk, K. C., Kehm, V., Carroll, J., Zhang, B., O'BRIEN, P., Trojanowski, J. Q. & Lee, V. M. (2012). Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338(6109), 949–953.Google Scholar

Luk, K. C., Song, C., O'Brien, P., Stieber, A., Branch, J. R., Brunden, K. R., Trojanowski, J. Q. & Lee, V. M. (2009). Exogenous alpha-synuclein fibrils seed the formation of Lewy body-like intracellular inclusions in cultured cells. Proceedings of the National Academy of Sciences United States of America 106(47), 20051–20056.Google Scholar

Maguire-Zeiss, K. A. & Federoff, H. J. (2010). Future directions for immune modulation in neurodegenerative disorders: focus on Parkinson's disease. Journal of Neural Transmission 117(8), 1019–1025.Google Scholar

Mak, S. K., Mccormack, A. L., Manning-Bog, A. B., Cuervo, A. M. & Di Monte, D. A. (2010). Lysosomal degradation of alpha-synuclein in vivo . Journal of Biological Chemistry 285(18), 13621–13629.Google Scholar

Mbefo, M. K., Paleologou, K. E., Boucharaba, A., Oueslati, A., Schell, H., Fournier, M., Olschewski, D., Yin, G., Zweckstetter, M., Masliah, E., Kahle, P. J., Hirling, H. & Lashuel, H. A. (2010). Phosphorylation of synucleins by members of the Polo-like kinase family. Journal of Biological Chemistry 285(4), 2807–2822.CrossRefGoogle ScholarPubMed

Mcclendon, S., Rospigliosi, C. C. & Eliezer, D. (2009). Charge neutralization and collapse of the C-terminal tail of alpha-synuclein at low pH. Protein Science 18(7), 1531–1540.Google Scholar

Mclean, P. J., Kawamata, H. & Hyman, B. T. (2001). Alpha-synuclein-enhanced green fluorescent protein fusion proteins form proteasome sensitive inclusions in primary neurons. Neuroscience 104(3), 901–912.Google Scholar

Middleton, E. R. & Rhoades, E. (2010). Effects of curvature and composition on alpha-synuclein binding to lipid vesicles. Biophysics Journal 99(7), 2279–2288.Google Scholar

Miller, L. M., Bourassa, M. W. & Smith, R. J. (2013). FTIR spectroscopic imaging of protein aggregation in living cells. Biochimica et Biophysica Acta 1828(10), 2339–2346.Google Scholar

Morris, A. M., Watzky, M. A. & Finke, R. G. (2009). Protein aggregation kinetics, mechanism, and curve-fitting: a review of the literature. Biochimica et Biophysica Acta 1794(3), 375–397.Google Scholar

Mosharov, E. V., Staal, R. G., Bove, J., Prou, D., Hananiya, A., Markov, D., Poulsen, N., Larsen, K. E., Moore, C. M., Troyer, M. D., Edwards, R. H., Przedborski, S. & Sulzer, D. (2006). Alpha-synuclein overexpression increases cytosolic catecholamine concentration. Journal of Neuroscience 26(36), 9304–9311.Google Scholar

Nakamura, K., Nemani, V. M., Azarbal, F., Skibinski, G., Levy, J. M., Egami, K., Munishkina, L., Zhang, J., Gardner, B., Wakabayashi, J., Sesaki, H., Cheng, Y., Finkbeiner, S., Nussbaum, R. L., Masliah, E. & Edwards, R. H. (2011). Direct membrane association drives mitochondrial fission by the Parkinson disease-associated protein alpha-synuclein. Journal of Biological Chemistry 286(23), 20710–20726.CrossRefGoogle ScholarPubMed

Nakamura, K., Nemani, V. M., Wallender, E. K., Kaehlcke, K., Ott, M. & Edwards, R. H. (2008). Optical reporters for the conformation of alpha-synuclein reveal a specific interaction with mitochondria. Journal of Neuroscience 28(47), 12305–12317.Google Scholar

Nasstrom, T., Fagerqvist, T., Barbu, M., Karlsson, M., Nikolajeff, F., Kasrayan, A., Ekberg, M., Lannfelt, L., Ingelsson, M. & Bergstrom, J. (2011). The lipid peroxidation products 4-oxo-2-nonenal and 4-hydroxy-2-nonenal promote the formation of alpha-synuclein oligomers with distinct biochemical, morphological, and functional properties. Free Radical Biology and Medicine 50(3), 428–437.Google Scholar

Nath, S., Meuvis, J., Hendrix, J., Carl, S. A. & Engelborghs, Y. (2010). Early aggregation steps in alpha-synuclein as measured by FCS and FRET: evidence for a contagious conformational change. Biophysics Journal 98(7), 1302–1311.Google Scholar

Necula, M., Chirita, C. N. & Kuret, J. (2003). Rapid anionic micelle-mediated alpha-synuclein fibrillization in vitro . Journal of Biological Chemistry 278(47), 46674–46680.Google Scholar

Nemani, V. M., Lu, W., Berge, V., Nakamura, K., Onoa, B., Lee, M. K., Chaudhry, F. A., Nicoll, R. A. & Edwards, R. H. (2010). Increased expression of alpha-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis. Neuron 65(1), 66–79.Google Scholar

Nonaka, T., Watanabe, S. T., Iwatsubo, T. & Hasegawa, M. (2010). Seeded aggregation and toxicity of {alpha}-synuclein and tau: cellular models of neurodegenerative diseases. Journal of Biological Chemistry 285(45), 34885–34898.Google Scholar

Olzscha, H., Schermann, S. M., Woerner, A. C., Pinkert, S., Hecht, M. H., Tartaglia, G. G., Vendruscolo, M., Hayer-Hartl, M., Hartl, F. U. & Vabulas, R. M. (2011). Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions. Cell 144(1), 67–78.Google Scholar

Orte, A., Birkett, N. R., Clarke, R. W., Devlin, G. L., Dobson, C. M. & Klenerman, D. (2008). Direct characterization of amyloidogenic oligomers by single-molecule fluorescence. Proceedings of the National Academy of Sciences United States of America 105(38), 14424–14429.Google Scholar

Outeiro, T. F., Putcha, P., Tetzlaff, J. E., Spoelgen, R., Koker, M., Carvalho, F., Hyman, B. T. & Mclean, P. J. (2008). Formation of toxic oligomeric alpha-synuclein species in living cells. PLoS ONE 3(4), e1867.CrossRefGoogle ScholarPubMed

Paleologou, K. E., Oueslati, A., Shakked, G., Rospigliosi, C. C., Kim, H. Y., Lamberto, G. R., Fernandez, C. O., Schmid, A., Chegini, F., Gai, W. P., Chiappe, D., Moniatte, M., Schneider, B. L., Aebischer, P., Eliezer, D., Zweckstetter, M., Masliah, E. & Lashuel, H. A. (2010). Phosphorylation at S87 is enhanced in synucleinopathies, inhibits alpha-synuclein oligomerization, and influences synuclein-membrane interactions. Journal of Neuroscience 30(9), 3184–3198.Google Scholar

Paleologou, K. E., Schmid, A. W., Rospigliosi, C. C., Kim, H. Y., Lamberto, G. R., Fredenburg, R. A., Lansbury, P. T. Jr., Fernandez, C. O., Eliezer, D., Zweckstetter, M. & Lashuel, H. A. (2008). Phosphorylation at Ser-129 but not the phosphomimics S129E/D inhibits the fibrillation of alpha-synuclein. Journal of Biological Chemistry 283(24), 16895–16905.Google Scholar

Palomaki, J., Valimaki, E., Sund, J., Vippola, M., Clausen, P. A., Jensen, K. A., Savolainen, K., Matikainen, S. & Alenius, H. (2011). Long, needle-like carbon nanotubes and asbestos activate the NLRP3 inflammasome through a similar mechanism. ACS Nano 5(9), 6861–6870.Google Scholar

Pinotsi, D., Buell, A. K., Dobson, C. M., Kaminski Schierle, G. S. & Kaminski, C. F. (2013). A label-free, quantitative assay of amyloid fibril growth based on intrinsic fluorescence. ChemBioChem 14(7), 846–850.Google Scholar

Pivato, M., De Franceschi, G., Tosatto, L., Frare, E., Kumar, D., Aioanei, D., Brucale, M., Tessari, I., Bisaglia, M., Samori, B., De Laureto, P. P. & Bubacco, L. (2012). Covalent alpha-synuclein dimers: chemico-physical and aggregation properties. PLoS ONE 7(12), e50027.Google Scholar

Plotegher, N. & Civiero, L. (2012). Neuronal autophagy, alpha-synuclein clearance, and LRRK2 regulation: a lost equilibrium in parkinsonian brain. Journal of Neuroscience 32(43), 14851–14853.Google Scholar

Polymenidou, M. & Cleveland, D. W. (2012). Prion-like spread of protein aggregates in neurodegeneration. Journal of Experimental Medicine 209(5), 889–893.Google Scholar

Polymeropoulos, M. H., Lavedan, C., Leroy, E., Ide, S. E., Dehejia, A., Dutra, A., Pike, B., Root, H., Rubenstein, J., Boyer, R., Stenroos, E. S., Chandrasekharappa, S., Athanassiadou, A., Papapetropoulos, T., Johnson, W. G., Lazzarini, A. M., Duvoisin, R. C., Di Iorio, G., Golbe, L. I. & Nussbaum, R. L. (1997). Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science 276(5321), 2045–2047.Google Scholar

Pountney, D. L., Lowe, R., Quilty, M., Vickers, J. C., Voelcker, N. H. & Gai, W. P. (2004). Annular alpha-synuclein species from purified multiple system atrophy inclusions. Journal of Neurochemistry 90(2), 502–512.Google Scholar

Pronchik, J., He, X., Giurleo, J. T. & Talaga, D. S. (2010). In vitro formation of amyloid from alpha-synuclein is dominated by reactions at hydrophobic interfaces. Journal of the American Chemical Society, 132(28), 9797–9803.Google Scholar

Proukakis, C., Dudzik, C. G., Brier, T., Mackay, D. S., Cooper, J. M., Millhauser, G. L., Houlden, H. & Schapira, A. H. (2013). A novel alpha-synuclein missense mutation in Parkinson disease. Neurology 80(11), 1062–1064.Google Scholar

Qin, Z., Hu, D., Han, S., Hong, D. P. & Fink, A. L. (2007a). Role of different regions of alpha-synuclein in the assembly of fibrils. Biochemistry 46(46), 13322–13330.Google Scholar

Qin, Z., Hu, D., Han, S., Reaney, S. H., Di Monte, D. A. & Fink, A. L. (2007b). Effect of 4-hydroxy-2-nonenal modification on alpha-synuclein aggregation. Journal of Biological Chemistry 282(8), 5862–5870.Google Scholar

Quist, A., Doudevski, I., Lin, H., Azimova, R., Ng, D., Frangione, B., Kagan, B., Ghiso, J. & Lal, R. (2005). Amyloid ion channels: a common structural link for protein-misfolding disease. Proceedings of the National Academy of Sciences United States of America 102(30), 10427–10432.Google Scholar

Rekas, A., Knott, R. B., Sokolova, A., Barnham, K. J., Perez, K. A., Masters, C. L., Drew, S. C., Cappai, R., Curtain, C. C. & Pham, C. L. (2010). The structure of dopamine induced alpha-synuclein oligomers. European Biophysics Journal 39(10), 1407–1419.CrossRefGoogle ScholarPubMed

Reynolds, N. P., Soragni, A., Rabe, M., Verdes, D., Liverani, E., Handschin, S., Riek, R. & Seeger, S. (2011). Mechanism of membrane interaction and disruption by alpha-synuclein. Journal of the American Chemical Society 133(48), 19366–19375.Google Scholar

Ries, J., Udayar, V., Soragni, A., Hornemann, S., Nilsson, K. P., Riek, R., Hock, C., Ewers, H., Aguzzi, A. A. & Rajendran, L. (2013). Superresolution imaging of amyloid fibrils with binding-activated probes. ACS Chemical Neuroscience 4(7), 1057–1061.Google Scholar

Roberti, M. J., Bertoncini, C. W., Klement, R., Jares-Erijman, E. A. & Jovin, T. M. (2007). Fluorescence imaging of amyloid formation in living cells by a functional, tetracysteine-tagged alpha-synuclein. Nature Methods 4(4), 345–351.Google Scholar

Roberti, M. J., Folling, J., Celej, M. S., Bossi, M., Jovin, T. M. & Jares-Erijman, E. A. (2012). Imaging nanometer-sized alpha-synuclein aggregates by superresolution fluorescence localization microscopy. Biophysics Journal 102(7), 1598–1607.Google Scholar

Roberti, M. J., Jovin, T. M. & Jares-Erijman, E. (2011). Confocal fluorescence anisotropy and FRAP imaging of alpha-synuclein amyloid aggregates in living cells. PLoS ONE 6(8), e23338.Google Scholar

Roostaee, A., Beaudoin, S., Staskevicius, A. & Roucou, X. (2013). Aggregation and neurotoxicity of recombinant alpha-synuclein aggregates initiated by dimerization. Molecular Neurodegeneration 8, 5.Google Scholar

Ross, C. A. & Poirier, M. A. (2004). Protein aggregation and neurodegenerative disease. Nature Medicine 10(Suppl), S10–S17.Google Scholar

Rustom, A., Saffrich, R., Markovic, I., Walther, P. & Gerdes, H. H. (2004). Nanotubular highways for intercellular organelle transport. Science 303(5660), 1007–1010.Google Scholar

Sandal, M., Valle, F., Tessari, I., Mammi, S., Bergantino, E., Musiani, F., Brucale, M., Bubacco, L. & Samori, B. (2008). Conformational equilibria in monomeric alpha-synuclein at the single-molecule level. PLoS Biology 6(1), e6.Google Scholar

Schmidt, F., Levin, J., Kamp, F., Kretzschmar, H., Giese, A. & Botzel, K. (2012). Single-channel electrophysiology reveals a distinct and uniform pore complex formed by alpha-synuclein oligomers in lipid membranes. PLoS ONE 7(8), e42545.Google Scholar

Serpell, L. C., Berriman, J., Jakes, R., Goedert, M. & Crowther, R. A. (2000). Fiber diffraction of synthetic alpha-synuclein filaments shows amyloid-like cross-beta conformation. Proceedings of the National Academy of Sciences United States of America 97(9), 4897–4902.Google Scholar

Shirakashi, Y., Kawamoto, Y., Tomimoto, H., Takahashi, R. & Ihara, M. (2006). alpha-Synuclein is colocalized with 14–3–3 and synphilin-1 in A53T transgenic mice. Acta Neuropathology 112(6), 681–689.CrossRefGoogle ScholarPubMed

Sievers, S. A., Karanicolas, J., Chang, H. W., Zhao, A., Jiang, L., Zirafi, O., Stevens, J. T., Munch, J., Baker, D. & Eisenberg, D. (2011). Structure-based design of non-natural amino-acid inhibitors of amyloid fibril formation. Nature 475(7354), 96–100.Google Scholar

Singleton, A. B., Farrer, M., Johnson, J., Singleton, A., Hague, S., Kachergus, J., Hulihan, M., Peuralinna, T., Dutra, A., Nussbaum, R., Lincoln, S., Crawley, A., Hanson, M., Maraganore, D., Adler, C., Cookson, M. R., Muenter, M., Baptista, M., Miller, D., Blancato, J., Hardy, J. & Gwinn-Hardy, K. (2003). alpha-Synuclein locus triplication causes Parkinson's disease. Science 302(5646), 841.Google Scholar

Smith, W. W., Jiang, H., Pei, Z., Tanaka, Y., Morita, H., Sawa, A., Dawson, V. L., Dawson, T. M. & Ross, C. A. (2005). Endoplasmic reticulum stress and mitochondrial cell death pathways mediate A53T mutant alpha-synuclein-induced toxicity. Human Molecular Genetics 14(24), 3801–3811.Google Scholar

Sousa, V. L., Bellani, S., Giannandrea, M., Yousuf, M., Valtorta, F., Meldolesi, J. & Chieregatti, E. (2009). {alpha}-synuclein and its A30P mutant affect actin cytoskeletal structure and dynamics. Molecular Biology of the Cell 20(16), 3725–3739.Google Scholar

Spillantini, M. G., Crowther, R. A., Jakes, R., Hasegawa, M. & Goedert, M. (1998). alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson's disease and dementia with Lewy bodies. Proceedings of the National Academy of Sciences United States of America 95(11), 6469–6473.Google Scholar

Spillantini, M. G., Schmidt, M. L., Lee, V. M., Trojanowski, J. Q., Jakes, R. & Goedert, M. (1997). Alpha-synuclein in Lewy bodies. Nature 388(6645), 839–840.Google Scholar

Steiner, J. A., Angot, E. & Brundin, P. (2011). A deadly spread: cellular mechanisms of alpha-synuclein transfer. Cell Death and Differentiation 18(9), 1425–1433.Google Scholar

Stroffekova, K., Proenza, C. & Beam, K. G. (2001). The protein-labeling reagent FLASH-EDT2 binds not only to CCXXCC motifs but also non-specifically to endogenous cysteine-rich proteins. Pflugers Arch 442(6), 859–866.Google Scholar

Suk, J. E., Lokappa, S. B. & Ulmer, T. S. (2010). The clustering and spatial arrangement of beta-sheet sequence, but not order, govern alpha-synuclein fibrillogenesis. Biochemistry 49(7), 1533–1540.Google Scholar

Sulatskaya, A. I., Kuznetsova, I. M. & Turoverov, K. K. (2011). Interaction of thioflavin T with amyloid fibrils: stoichiometry and affinity of dye binding, absorption spectra of bound dye. Journal of Physical Chemistry B 115(39), 11519–11524.Google Scholar

Takeda, A., Mallory, M., Sundsmo, M., Honer, W., Hansen, L. & Masliah, E. (1998). Abnormal accumulation of NACP/alpha-synuclein in neurodegenerative disorders. American Journal of Pathology 152(2), 367–372.Google Scholar

Tanaka, Y., Engelender, S., Igarashi, S., Rao, R. K., Wanner, T., Tanzi, R. E., Sawa, A., Dawson, V. L., Dawson, T. M. & Ross, C. A. (2001). Inducible expression of mutant alpha-synuclein decreases proteasome activity and increases sensitivity to mitochondria-dependent apoptosis. Human Molecular Genetics 10(9), 919–926.Google Scholar

Taschenberger, G., Toloe, J., Tereshchenko, J., Akerboom, J., Wales, P., Benz, R., Becker, S., Outeiro, T., Looger, L., Bahr, M., Zweckstetter, M. & Kugler, S. (2013). β-synuclein aggregates and induces neurodegeneration in dopaminergic neurons. Annals of Neurology 74(1), 109–118.Google Scholar

Thirunavukkuarasu, S., Jares-Erijman, E. A. & Jovin, T. M. (2008). Multiparametric fluorescence detection of early stages in the amyloid protein aggregation of pyrene-labeled alpha-synuclein. Journal of Molecular Biology 378(5), 1064–1073.Google Scholar

Tosatto, L., Andrighetti, A. O., Plotegher, N., Antonini, V., Tessari, I., Ricci, L., Bubacco, L. & Dalla Serra, M. (2012). Alpha-synuclein pore forming activity upon membrane association. Biochimica et Biophysica Acta 1818(11), 2876–2883.Google Scholar

Trexler, A. J. & Rhoades, E. (2009). Alpha-synuclein binds large unilamellar vesicles as an extended helix. Biochemistry 48(11), 2304–2306.Google Scholar

Trexler, A. J. & Rhoades, E. (2010). Single molecule characterization of alpha-synuclein in aggregation-prone states. Biophysics Journal 99(9), 3048–3055.Google Scholar

Trexler, A. J. & Rhoades, E. (2012). N-Terminal acetylation is critical for forming alpha-helical oligomer of alpha-synuclein. Protein Science 21(5), 601–605.Google Scholar

Trojanowski, J. Q. & Lee, V. M. (2003). Parkinson's disease and related alpha-synucleinopathies are brain amyloidoses. Annals of the New York Academy of Sciences 991, 107–110.Google Scholar

Tsigelny, I. F., Bar-On, P., Sharikov, Y., Crews, L., Hashimoto, M., Miller, M. A., Keller, S. H., Platoshyn, O., Yuan, J. X. & Masliah, E. (2007). Dynamics of alpha-synuclein aggregation and inhibition of pore-like oligomer development by beta-synuclein. FEBS Journal 274(7), 1862–1877.Google Scholar

Ulmer, T. S., Bax, A., Cole, N. B. & Nussbaum, R. L. (2005). Structure and dynamics of micelle-bound human alpha-synuclein. Journal of Biological Chemistry 280(10), 9595–9603.CrossRefGoogle ScholarPubMed

Uversky, V. N., Yamin, G., Souillac, P. O., Goers, J., Glaser, C. B. & Fink, A. L. (2002). Methionine oxidation inhibits fibrillation of human alpha-synuclein in vitro . FEBS Letter 517(1–3), 239–244.Google Scholar

Van Ham, T. J., Esposito, A., Kumita, J. R., Hsu, S. T., Kaminski Schierle, G. S., Kaminski, C. F., Dobson, C. M., Nollen, E. A. & Bertoncini, C. W. (2010). Towards multiparametric fluorescent imaging of amyloid formation: studies of a YFP model of alpha-synuclein aggregation. Journal of Molecular Biology 395(3), 627–642.Google Scholar

Van Raaij, M. E., Segers-Nolten, I. M. & Subramaniam, V. (2006). Quantitative morphological analysis reveals ultrastructural diversity of amyloid fibrils from alpha-synuclein mutants. Biophysics Journal 91(11), L96–L98.Google Scholar

Van Raaij, M. E., Van Gestel, J., Segers-Nolten, I. M., De Leeuw, S. W. & Subramaniam, V. (2008). Concentration dependence of alpha-synuclein fibril length assessed by quantitative atomic force microscopy and statistical-mechanical theory. Biophysics Journal 95(10), 4871–4878.Google Scholar

Van Rooijen, B. D., Claessens, M. M. & Subramaniam, V. (2009a). Lipid bilayer disruption by oligomeric alpha-synuclein depends on bilayer charge and accessibility of the hydrophobic core. Biochimica et Biophysica Acta 1788(6), 1271–1278.Google Scholar

Van Rooijen, B. D., Claessens, M. M. & Subramaniam, V. (2010). Membrane Permeabilization by Oligomeric alpha-Synuclein: In Search of the Mechanism. PLoS ONE, 5(12), e14292.Google Scholar

Van Rooijen, B. D., Van Leijenhorst-Groener, K. A., Claessens, M. M. & Subramaniam, V. (2009b). Tryptophan fluorescence reveals structural features of alpha-synuclein oligomers. Journal of Molecular Biology 394(5), 826–833.Google Scholar

Vilar, M., Chou, H. T., Luhrs, T., Maji, S. K., Riek-Loher, D., Verel, R., Manning, G., Stahlberg, H. & Riek, R. (2008). The fold of alpha-synuclein fibrils. Proceedings of the National Academy of Sciences United States of America 105(25), 8637–8642.Google Scholar

Volles, M. J. & Lansbury, P. T. Jr. (2002). Vesicle permeabilization by protofibrillar alpha-synuclein is sensitive to Parkinson's disease-linked mutations and occurs by a pore-like mechanism. Biochemistry 41(14), 4595–4602.Google Scholar

Volpicelli-Daley, L. A., Luk, K. C., Patel, T. P., Tanik, S. A., Riddle, D. M., Stieber, A., Meaney, D. F., Trojanowski, J. Q. & Lee, V. M. (2011). Exogenous alpha-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron 72(1), 57–71.Google Scholar

Wang, W., Perovic, I., Chittuluru, J., Kaganovich, A., Nguyen, L. T., Liao, J., Auclair, J. R., Johnson, D., Landeru, A., Simorellis, A. K., Ju, S., Cookson, M. R., Asturias, F. J., Agar, J. N., Webb, B. N., Kang, C., Ringe, D., Petsko, G. A., Pochapsky, T. C. & Hoang, Q. Q. (2011). A soluble alpha-synuclein construct forms a dynamic tetramer. Proceedings of the National Academy of Sciences United States of America 108(43), 17797–17802.Google Scholar

Waxman, E. A. & Giasson, B. I. (2010). A novel, high-efficiency cellular model of fibrillar alpha-synuclein inclusions and the examination of mutations that inhibit amyloid formation. Journal of Neurochemistry 113(2), 374–388.Google Scholar

Weinreb, P. H., Zhen, W., Poon, A. W., Conway, K. A. & Lansbury, P. T. Jr. (1996). NACP, a protein implicated in Alzheimer's disease and learning, is natively unfolded. Biochemistry 35(43), 13709–13715.Google Scholar

Winner, B., Jappelli, R., Maji, S. K., Desplats, P. A., Boyer, L., Aigner, S., Hetzer, C., Loher, T., Vilar, M., Campioni, S., Tzitzilonis, C., Soragni, A., Jessberger, S., Mira, H., Consiglio, A., Pham, E., Masliah, E., Gage, F. H. & Riek, R. (2011). In vivo demonstration that alpha-synuclein oligomers are toxic. Proceedings of the National Academy of Sciences United States of America, 108(10), 4194–4199.Google Scholar

Wolfe, L. S., Calabrese, M. F., Nath, A., Blaho, D. V., Miranker, A. D. & Xiong, Y. (2010). Protein-induced photophysical changes to the amyloid indicator dye thioflavin T. Proceedings of the National Academy of Sciences United States of America 107(39), 16863–16868.Google Scholar

Wood, S. J., Wypych, J., Steavenson, S., Louis, J. C., Citron, M. & Biere, A. L. (1999). alpha-synuclein fibrillogenesis is nucleation-dependent. Implications for the pathogenesis of Parkinson's disease. Journal of Biological Chemistry 274(28), 19509–19512.Google Scholar

Wu, K. P. & Baum, J. (2010). Detection of transient interchain interactions in the intrinsically disordered protein alpha-synuclein by NMR paramagnetic relaxation enhancement. Journal of the American Chemical Society 132(16), 5546–5547.Google Scholar

Wu, K. P., Weinstock, D. S., Narayanan, C., Levy, R. M. & Baum, J. (2009). Structural reorganization of alpha-synuclein at low pH observed by NMR and REMD simulations. Journal of Molecular Biology 391(4), 784–796.Google Scholar

Xia, Q., Liao, L., Cheng, D., Duong, D. M., Gearing, M., Lah, J. J., Levey, A. I. & Peng, J. (2008). Proteomic identification of novel proteins associated with Lewy bodies. Frontiers in Bioscience 13, 3850–3856.Google Scholar

Xu, J., Kao, S. Y., Lee, F. J., Song, W., Jin, L. W. & Yankner, B. A. (2002). Dopamine-dependent neurotoxicity of alpha-synuclein: a mechanism for selective neurodegeneration in Parkinson disease. Nature Medicine 8(6), 600–606.Google Scholar

Yamin, G., Munishkina, L. A., Karymov, M. A., Lyubchenko, Y. L., Uversky, V. N. & Fink, A. L. (2005). Forcing nonamyloidogenic beta-synuclein to fibrillate. Biochemistry 44(25), 9096–9107.Google Scholar

Yamin, G., Uversky, V. N. & Fink, A. L. (2003). Nitration inhibits fibrillation of human alpha-synuclein in vitro by formation of soluble oligomers. FEBS Letter 542(1–3), 147–152.Google Scholar

Yap, T. L., Pfefferkorn, C. M. & Lee, J. C. (2011). Residue-specific fluorescent probes of alpha-synuclein: detection of early events at the N- and C-termini during fibril assembly. Biochemistry 50(12), 1963–1965.Google Scholar

Yoritaka, A., Hattori, N., Uchida, K., Tanaka, M., Stadtman, E. R. & Mizuno, Y. (1996). Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson disease. Proceedings of the National Academy of Sciences United States of America 93(7), 2696–2701.Google Scholar

Yushchenko, D. A., Fauerbach, J. A., Thirunavukkuarasu, S., Jares-Erijman, E. A. & Jovin, T. M. (2010). Fluorescent ratiometric MFC probe sensitive to early stages of alpha-synuclein aggregation. Journal of the American Chemical Society 132(23), 7860–7861.Google Scholar

Zakharov, S. D., Hulleman, J. D., Dutseva, E. A., Antonenko, Y. N., Rochet, J. C. & Cramer, W. A. (2007). Helical alpha-synuclein forms highly conductive ion channels. Biochemistry 46(50), 14369–14379.Google Scholar

Zarranz, J. J., Alegre, J., Gomez-Esteban, J. C., Lezcano, E., Ros, R., Ampuero, I., Vidal, L., Hoenicka, J., Rodriguez, O., Atares, B., Llorens, V., Gomez Tortosa, E., Del Ser, T., Munoz, D. G. & De Yebenes, J. G. (2004). The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Annals of Neurology 55(2), 164–173.Google Scholar

Zibaee, S., Jakes, R., Fraser, G., Serpell, L. C., Crowther, R. A. & Goedert, M. (2007). Sequence determinants for amyloid fibrillogenesis of human alpha-synuclein. Journal of Molecular Biology 374(2), 454–464.Google Scholar

Zijlstra, N., Blum, C., Segers-Nolten, I. M., Claessens, M. M. & Subramaniam, V. (2012). Molecular composition of sub-stoichiometrically labeled alpha-synuclein oligomers determined by single-molecule photobleaching. Angewandte Chemie International Edition English 51(35), 8821–8824.Google Scholar

Zimprich, A., Benet-Pages, A., Struhal, W., Graf, E., Eck, S. H., Offman, M. N., Haubenberger, D., Spielberger, S., Schulte, E. C., Lichtner, P., Rossle, S. C., Klopp, N., Wolf, E., Seppi, K., Pirker, W., Presslauer, S., Mollenhauer, B., Katzenschlager, R., Foki, T., Hotzy, C., Reinthaler, E., Harutyunyan, A., Kralovics, R., Peters, A., Zimprich, F., Brucke, T., Poewe, W., Auff, E., Trenkwalder, C., Rost, B., Ransmayr, G., Winkelmann, J., Meitinger, T. & Strom, T. M. (2011). A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease. American Journal of Human Genetics 89(1), 168–175.Google Scholar