The Tropospheric 14CO2 Level in Mid-Latitudes of the Northern Hemisphere (1959–2003) | Radiocarbon | Cambridge Core (original) (raw)

Article contents

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A comprehensive tropospheric 14CO2 data set of quasi-continuous observations covering the time span from 1959 to 2003 is presented. Samples were collected at 3 European mountain sites at height levels of 1205 m (Schauinsland), 1800 m (Vermunt), and 3450 m asl (Jungfraujoch), and analyzed in the Heidelberg Radiocarbon Laboratory. The data set from Jungfraujoch (1986–2003) is considered to represent the free tropospheric background level at mid-latitudes of the Northern Hemisphere, as it compares well with recent (yet unpublished) measurements made at the marine baseline station Mace Head (west coast of Ireland). The Vermunt and Schauinsland records are significantly influenced by regional European fossil fuel CO2 emissions. The respective Δ14CO2 depletions, on an annual mean basis, are, however, only 5 less than at Jungfraujoch. Vermunt and Schauinsland both represent the mean continental European troposphere.

Type

Articles

Copyright

Copyright © The Arizona Board of Regents on behalf of the University of Arizona

References

Broecker, WS, Peng, T-H, Engh, R. 1980. Modeling the carbon system. Radiocarbon 22(3):565–98.Google Scholar

Dörr, H, Münnich, KO. 1989. Downward movement of soil organic matter and its influence on trace-element transport (210Pb, 137Cs) in the soil. Radiocarbon 31(3): 655–63.CrossRefGoogle Scholar

Harrison, KG, Broecker, WS, Bonani, G. 1993. The effect of changing land use on soil radiocarbon. Science 262: 725–6.CrossRefGoogle ScholarPubMed

Hesshaimer, V. 1997. Tracing the global carbon cycle with bomb radiocarbon . Heidelberg: University of Heidelberg.Google Scholar

Hesshaimer, V, Heimann, M, Levin, I. 1994. Radiocarbon evidence for a smaller oceanic carbon dioxide sink than previously believed. Nature 370:201–3.Google Scholar

Levin, I, Münnich, KO, Weiss, W. 1980. The effect of anthropogenic CO2 and 14C sources on the distribution of 14CO2 in the atmosphere. Radiocarbon 22(2):379–91.CrossRefGoogle Scholar

Levin, I, Kromer, B, Schoch-Fischer, H, Bruns, M, Münnich, M, Berdau, B, Vogel, JC, Münnich, KO. 1985. 25 years of tropospheric 14C observations in central Europe. Radiocarbon 27(1):1–19.CrossRefGoogle Scholar

Levin, I, Schuchard, J, Kromer, B, Münnich, KO. 1989. The continental European Suess effect. Radiocarbon 31(3):431–40.Google Scholar

Levin, I, Bösinger, R, Bonani, G, Francey, RJ, Kromer, B, Münnich, KO, Suter, M, Trivett, NBA, Wölfli, W. 1992. Radiocarbon in atmospheric carbon dioxide and methane: global distribution and trends. In: Taylor, RE, Long, A, Kra, RS, editors. Radiocarbon After Four Decades: An Interdisciplinary Perspective. New York: Springer-Verlag. p 503–17.Google Scholar

Levin, I, Kromer, B. 1997. Twenty years of atmospheric 14CO2 observations at Schauinsland station, Germany. Radiocarbon 39(2):205–18.Google Scholar

Levin, I, Hesshaimer, V. 2000. Radiocarbon—a unique tracer of global carbon cycle dynamics. Radiocarbon 42(1):69–80.CrossRefGoogle Scholar

Levin, I, Kromer, B, Schmidt, M, Sartorius, H. 2003. A novel approach for independent budgeting of fossil fuels CO2 over Europe by 14CO2 observations. Geophysical Research Letters 30(23):2194; .Google Scholar

Manning, MR, Lowe, CM, Melhuish, WH, Sparks, RJ, Wallace, G, Brenninkmeijer, CAM, McGill, RC. 1990. The use of radiocarbon measurements in atmospheric studies. Radiocarbon 32(1):37–58.Google Scholar

Nakazawa, T, Ishizawa, M, Higuchi, K, Trivett, NBA. 1997. Two curve fitting methods applied to CO2 flask data. EnvironMetrics 8:197–218.3.0.CO;2-C>CrossRefGoogle Scholar

Nydal, R, Lövseth, K. 1983. Tracing bomb 14C in the atmosphere 1962–1980. Journal of Geophysical Research 88(C6):3621–42.CrossRefGoogle Scholar

Oeschger, H, Siegenthaler, U, Schotterer, U, Gugelmann, A. 1975. A box diffusion model to study the carbon dioxide exchange in nature. Tellus XXVII:168–92.Google Scholar

Randerson, JT, Enting, IG, Schuur, EAG, Caldeira, K, Fung, I Y. 2002. Seasonal and latitudinal variability of troposphere Δ14CO2: post-bomb contributions from fossil fuels, oceans, the stratosphere, and the terrestrial biosphere. Global Biogeochemical Cycles 16:59-1–59-19; .CrossRefGoogle Scholar

Rozanski, K, Levin, I, Stock, J, Guevara Falcon, RE, Rubio, F. 1995. Atmospheric 14CO2 variations in the equatorial region. Radiocarbon 37(2):509–15.Google Scholar

Schoch, H, Bruns, M, Münnich, KO, Münnich, M. 1980. A multicounter system for high precision 14C measurements. Radiocarbon 22(2):442–7.CrossRefGoogle Scholar

Siegenthaler, U. 1983. Uptake of excess CO2 by an outcrop-diffusion model of the ocean. Journal of Geophysical Research 88(C6):3599–608.Google Scholar

Stuiver, M, Polach, H. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355–63.Google Scholar

Tans, PP, de Jong, AFM, Mook, WG. 1979. Natural atmospheric 14C variation and the Suess effect. Nature 280: 826–7.CrossRefGoogle Scholar

Trumbore, SE, Chadwick, OA, Amundson, R. 1996. Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change. Science 272: 393–6.CrossRefGoogle Scholar

Wanninkhof, R. 1992. Relationship between wind speed and gas-exchange over the ocean. Journal of Geophysical Research 97(C5):7373–82.CrossRefGoogle Scholar