Beginnings of biospheric evolution and their biogeochemical consequences | Paleobiology | Cambridge Core (original) (raw)

Abstract

The beginnings of biospheric evolution had far-reaching biogeochemical consequences for the related evolutions of atmosphere, hydrosphere, and lithosphere. Feedback to the sedimentary record from these several simultaneously interacting aspects of crustal evolution provides the evidence from which historical biogeology is reconstructed. The interpretation of that evidence, however, is beset with pitfalls. Both biogenicity and a primary origin need to be demonstrated, or confidence limits established for each supposed morphological and biochemical fossil. Relevance to biospheric or related evolutions must be critically evaluated for every geochemical and sedimentological anomaly.

Indirect evidence suggests primitive, oxygen-generating autotrophy by ∼ 3.8 × 109 years ago (3.8 Gyr or gigayears), while free O2 first began to accumulate only ∼ 2 Gyr ago. Various reduced substances in the atmosphere and in solution functioned as oxygen sinks, keeping photolytic and biogenic O2 at levels tolerable by primitive anaerobic and microaerophilic procaryotes.

The oldest demonstrably biogenic and certainly primary microstructures are procaryotes from ∼ or > 2 Gyr old strata around Lake Superior. Improved biologic O2 mediation, continued carbon segregation, and filling of O2 sinks initiated atmospheric O2 buildup, leading to an ozone screen ∼ or < 2 Gyr ago. Consequences were essential termination of banded iron formation, onset of red beds, and O2 shielding of anaerobic intracellular processes, heralding the eucaryotic cell.

Probable eucaryotes appear in ∼ 1.3 Gyr old rocks in California as large unicells and large-diameter, branched, septate filaments. Likely consequences of eucaryotic evolution were increased atmospheric O2, increased carbonate and sulfate ion, and the rise of sexuality. Meiosis had definitely evolved > 0.7 Gyr ago and probably > 1.3 Gyr ago, perhaps simultaneously with the mitosing cell. Whatever the timing, it completed the evolution of the eucaryotic heredity mechanism and foreshadowed (given sufficient free O2) the differentiation of tissues, organs, and advanced forms of life—with all their potential for biogeochemical feedback to sedimentary, diagenetic, and metallogenic processes. The first Metazoa appeared ∼ 0.7 Gyr ago. Being dependent on simple diffusion for O2, they lacked exoskeletons. The latter appeared, perhaps 0.6 Gyr ago, when increasing O2 levels favored the emergence of more advanced respiratory systems.

References

Ainsworth, G. C., Sparrow, F. K., and Sussman, A. S., eds. 1973. The Fungi. Vol. IV A. 621 pp. Academic Press.Google Scholar

Alsopp, A. 1969. Phylogenetic relationships of the Procaryota and the origin of the eucaryotic cell. New Phytol. 68:591–612.CrossRefGoogle Scholar

Anderson, M. M. 1972. A possible time span for the late Precambrian of the Avalon Peninsula, southeastern Newfoundland in the light of worldwide correlation of fossils, tillites, and rock units within the succession. Can. J. Earth Sci. 9:1710–1726.Google Scholar

Anderson, M. M. and Misra, S. B. 1969. Fossils found in the pre-Cambrian Conception Group of southeastern Newfoundland. Nature. 220:680–681.CrossRefGoogle Scholar

Aswathanarayana, V. 1968. Metamorphic chronology of the Precambrian provinces of South India. Can. J. Earth Sci. 5:591–601.CrossRefGoogle Scholar

Banin, A. and Navrot, J. 1975. Origin of life: Clues from relations between chemical compositions of living organisms and natural environments. Science. 189:550–551.CrossRefGoogle ScholarPubMed

Banks, H. P. 1970. Evolution and plants of the Past. 170 pp. Wadsworth Publ. Co., Inc.Google Scholar

Barghoorn, E. S. and Schopf, J. W. 1966. Microorganisms three billion years old from the Precambrian of South Africa. Science. 152:758–764.CrossRefGoogle ScholarPubMed

Barghoorn, E. S. and Tyler, S. A. 1965. Microorganisms from the Gunflint chert. Science. 147:563–577.Google Scholar

Becker, R. H. and Clayton, R. N. 1972. Carbon isotopic evidence for the origin of a banded iron-formation in Western Australia. Geochim. et Cosmochim. Acta. 36:577–595.Google Scholar

Berkner, L. V. and Marshall, L. C. 1964. The history of oxygenic concentration in the earth's atmosphere. Discuss. Faraday Soc. 37:122–141.CrossRefGoogle Scholar

Bernal, J. G. 1967. The Origin of Life. 345 pp. World Publishing Co.; Cleveland and New York.Google Scholar

Bickle, M. J., Martin, A., and Nisbet, E. G. 1975. Basaltic and peridotitic komatiites and stromatolites above a basal unconformity in the Belingwe greenstone belt, Rhodesia. Earth & Planet. Sci. Lett. 27:155–162.CrossRefGoogle Scholar

Bradley, W. H. 1962. Chloroplast in Spirogyra from the Green River Formation of Wyoming. Am. J. Sci. 260:455–459.CrossRefGoogle Scholar

Broda, E. 1970. The evolution of bioenergetic processes. Prog. in Biophys. and Molec. Biol. 21:145–208.Google Scholar

Broecker, W. S. 1970. A boundary condition on the evolution of atmospheric oxygen. J. Geophys. Res. 75:3553–3557.CrossRefGoogle Scholar

Brooks, J. and Shaw, G. 1973. Origin and Development of Living Systems. 412 pp. Academic Press.Google Scholar

Brown, M. R. and Bold, H. C. 1964. Comparative studies of the algal genera Tetracystis and Chlorococcum. . 213 pp.Google Scholar

Burger, A. I. and Coertze, F. J. 1973. Radiometric age measurements in rocks from southern Africa to the end of 1971. South Afr. Geol. Surv. Bull. 58:1–46.Google Scholar

Cairns-Smith, G. 1972. The life puzzle: (On crystals and organisms and on the possibility of a crystal as an ancestor). 165 pp. Univ. of Toronto Press; Toronto, Canada.Google Scholar

Calder, J. A. and Parker, P. L. 1973. Geochemical implications of induced changes in C13 fractionation by blue-green algae. Geochim. et Cosmochim. Acta. 37:133–140.CrossRefGoogle Scholar

Carr, N. G. and Whitton, B. A., eds. 1973. The biology of blue green algae. Univ. Calif., Botan. Monogr. 9:1–676.Google Scholar

Cavalier-Smith, T. 1975. The origin of nuclei and of eucaryotic cells. Nature. 256:463–468.Google Scholar

Chang, L. M. S. 1976. Phylogeny of DNA polymerase-β. Science. 191:1183–1185.Google Scholar

Chatton, E. 1938. Titres et Travaux Scientifiques de Edouard Chatton 1906–1937. 405 pp. Imprimerie E. Sottano, Sete, Paris.Google Scholar

Cloud, P. 1948. Some problems and patterns of evolution exemplified by fossil invertebrates. Evolution. 2:322–350.CrossRefGoogle ScholarPubMed

Cloud, P. 1968a. Atmospheric and hydrospheric evolution on the primitive earth. Science. 160:729–736.Google Scholar

Cloud, P. 1968b. Pre-metazoan evolution and the origins of the Metazoa. In: Drake, E. T., ed. Evolution and Environment. 72 pp. Yale Univ. Press; New Haven, Conn.Google Scholar

Cloud, P. 1973a. Paleoecological significance of the banded iron formation. Econ. Geol. 68:1135–1143.Google Scholar

Cloud, P. 1973b. Some early microbiotas and their bearing on the evolution of the primitive earth. pp. 91–94. In: Neishtadt, M. I., ed. Akad. Nauk. USSR, .Google Scholar

Cloud, P. 1974a. Evolution of ecosystems. Am. Sci. 62:54–66.Google Scholar

Cloud, P. 1974b. Dating the beginnings of photosynthesis (response to a critique by E. S. Barghoorn, I. H. Troughton, and L. Margulis). Am. Sci. 62:389–390.Google Scholar

Cloud, P. 1976. Major features of crustal evolution. Geol. Soc. South Afr. Trans. Annexure to Vol. 79, 32 pp.Google Scholar

Cloud, P. and Abelson, P. H. 1961. Woodring conference on major biologic innovations and the geologic record. Proc. Natl. Acad. Sci. 47:1705–1712.Google Scholar

Cloud, P., Gruner, J. W., and Hagen, H. 1965. Carbonaceous rocks of the Soudan Iron Formation (Early Precambrian). Science. 148:1713–1716.CrossRefGoogle ScholarPubMed

Cloud, P. and Hagen, H. 1965. Electron microscopy of the Gunflint microflora: Preliminary results. Proc. Natl. Acad. Sci. 54:1–8.Google Scholar

Cloud, P. and Licari, G. R. 1968a. Microbiotas of the banded iron formations. Proc. Natl. Acad. Sci. 61:779–786.Google Scholar

Cloud, P. and Licari, G. R. 1968b. Morphological criteria for biogeochemical processes. p. 57.Google Scholar

Cloud, P., Licari, G. R., Wright, L. A., and Troxel, B. W. 1969. Proterozoic eucaryotes from eastern California. Proc. Natl. Acad. Sci. 62:623–631.Google Scholar

Cloud, P. and Semikhatov, M. A. 1969. Proterozoic stromatolite zonation. Am. J. Sci. 267:1017–1061.CrossRefGoogle Scholar

Cloud, P., Moorman, M., and Pierce, D. 1975. Sporulation and ultrastructure in a late Proterozoic cyanophyte: some implications for taxonomy and plant phylogeny. Q. Rev. Biol. 50:131–150.Google Scholar

Cloud, P., Wright, J., and Glover, L. III. 1976. Traces of animal life from 620 m.y. old rocks in North Carolina. Am. Sci. 64:396–406.Google Scholar

Cowie, J. W. and Rosanov, A. Yu. 1973. Account of the International Working Group of a Symposium on the problem of the Cambrian-Precambrian boundary. Izvestia Akad. Nauk. USSR, Geol. Ser. 12:72–82.Google Scholar

Crawford, A. R. 1969. India, Ceylon and Pakistan. New age data and comparisons with Australia. Nature. 223:380–384.Google Scholar

Darby, D. G. 1974. Reproductive modes of Huriospora microreticulata from cherts of the Precambrian Gunflint Iron-Formation. Geol. Soc. Am. Bull. 85:1595–1596.Google Scholar

Davies, R. D., Allsopp, H. L., Erlank, A. J., and Manton, W. I. 1970. Sr-isotope studies on various layered mafic intrusions in southern Africa. , pp. 576–593.Google Scholar

Dickens, F. and Neil, E., eds. 1964. Oxygen in the animal organism. 694 pp. . Vol. 31 . Pergamon Press, The Macmillan Co.Google Scholar

Drouet, F. and Daily, W. A. 1956. Revision of the coccoid Myxophycae. Butler Univ. Stud. 12:1–218.Google Scholar

Dunn, P. R., Plumb, K. A., and Roberts, H. G. 1966. A proposal for time-stratigraphic subdivision of the Australian Precambrian. Geol. Soc. Aust. J. 13:593–608.CrossRefGoogle Scholar

Echlin, P. 1966. The blue-green algae. Sci. Am. 214:74–81.Google Scholar

Edhorn, A-S. 1973. Further investigation of fossils from the Animikie, Thunder Bay, Ontario. Geol. Assoc. Can. Proc. 25:37–66.Google Scholar

Evans, A. M., Ford, T. D., and Allen, I. R. L. 1968. Precambrian rocks. pp. 1–19. In: Sylvester-Bradley, P. C. and Ford, T. D., eds. The geology of the East Midlands. Leicester Univ. Press.Google Scholar

Feux, A. Z. and Baker, D. R. 1973. Stable carbon isotopes in selected granitic, mafic, and ultramafic igneous rocks. Geochim. et Cosmochim. Acta. 37:2509–2521.CrossRefGoogle Scholar

Ford, T. D. 1958. Precambrian fossils from Charnwood Forest. Proc. Yorkshire Geol. Soc. 31:pt. 3(8). pp. 211–217.Google Scholar

Fox, S. W. and Yuyama, S. 1963. Abiotic production of primitive protein and formed microparticles. N.Y. Acad. Sci., Ann. 108:487–494.CrossRefGoogle ScholarPubMed

Fridovich, I. 1975. Oxygen: boon and bane. Am. Sci. 63:54–59.Google Scholar

Germs, G. B. 1972. New shelly fossils from the Nama Group, South West Africa. Am. J. Sci. 272:752–761.Google Scholar

Germs, G. B. 1974. The Nama Group in South West Africa and its relationship to the Pan-African geosyncline. J. Geol. 82:301–317.Google Scholar

Gerschman, R. 1962. The biological effects of increased oxygen tension. pp. 171–179. In: Schaefer, K. E., ed. Man's Dependence on the Earthly Atmosphere. The Macmillan Co.Google Scholar

Gilbert, D. L. 1964. Atmosphere and evolution. pp. 641–654. In: Dickens, F. and Neil, E., eds. Oxygen in the Animal Organism. Pergamon Press, The Macmillan Co.Google Scholar

Glaessner, M. F. 1966. Precambrian paleontology. Earth-Sci. Rev. 1:29–50.Google Scholar

Glaessner, M. F. 1971. Geographic distribution and time range of the Ediacara Precambrian fauna. Geol. Soc. Am. Bull. 82:509–514.Google Scholar

Glaessner, M. F. 1972. Precambrian paleozoology. Univ. Adelaide, , pp. 43–52.Google Scholar

Glaessner, M. F. and Daily, B. 1959. The geology and late Precambrian fauna of the Ediacara fossil reserve. South Aust. Mus. Rec. 13:369–401.Google Scholar

Gnilovskaya, M. B. 1971. Ancient aquatic plants of the Vendian from the Russian Platform (latest Precambrian) (in Russian). Paleontol. J. 3:101–107.Google Scholar

Gowda, S. S. and Sreenivasa, T. N. 1969. Microfossils from the Archean Complex of Mysore. J. Geol. Soc. India. 10:201–208.Google Scholar

Gray, J. and Boucot, A. J. 1971. Early Silurian spore tetrads from New York: Earliest new world evidence for vascular plants? Science. 173:918–921.Google Scholar

Gray, J. and Boucot, A. J. 1972. Palynological evidence bearing on the Ordovician-Silurian para-conformity in Ohio. Geol. Sci. Am. Bull. 83:1299–1314.Google Scholar

Hallbauer, D. K. 1975. The plant origin of the Witwatersrand “carbon.” Min. Sci. Eng. 7:111–131.Google Scholar

Hallbauer, D. K. and van Warmelo, K. T. 1974. Fossilized plants in thucholite from Precambrian rocks of the Witwatersrand, South Africa. Precambrian Res. 1:199–212.CrossRefGoogle Scholar

Hawkesworth, C. I., Moorbath, S., O'Nions, R. K., and Wilson, I. E. 1975. Age relationships between greenstone belts and “granites” in the Rhodesian Archean craton. Earth and Planet. Sci. Lett. 25:251–262.CrossRefGoogle Scholar

Hayaishi, O., ed. 1974. Topics in Molecular Oxygen Research. 367 pp. North-Holland Publ. Co. and American Elsevier Publ. Co.Google Scholar

Hirsch, P. 1974. The budding bacteria. Annu. Rev. Microbiol. 28:391–444.Google Scholar

Hofmann, H. J. 1969. Attributes of stromatolites. , 58 pp.Google Scholar

Hofmann, H. J. 1973. Stromatolites: Characteristics and utility. Earth-Sci. Rev. 9:339–373.Google Scholar

Hofmann, H. J. and Jackson, G. D. 1969. Precambrian (Aphebian) microfossils from Belcher Islands, Hudson Bay. Can. J. Earth Sci. 6:1137–1144.Google Scholar

Huber-Pestalozzi, G. 1962. Das Phytoplankton des Susswassers: Die Binnengewasser. Vol. 16, , 365 pp. E. Schweizerbart'sche Verlags-buchhandlung; Stuttgart.Google Scholar

Hurley, P. M., Pinson, W. H. Jr., Nagy, B., and Teska, T. M. 1971. Ancient age of the Middle marker horizon, Onverwacht Group, Swaziland sequence, South Africa. , pp. 1–4.Google Scholar

James, H. L. and Sims, P. K., eds. 1973. Precambrian iron-formations of the world. Econ. Geol. 68:913–1179.Google Scholar

Kazmierczak, J. 1967. Devonian and modern relatives of the Precambrian Eosphaera: possible significance for the early eucaryotes. Lethaia. 9:39–50.Google Scholar

Keller, V. M. 1959. Problems of the later Precambrian (in Russian). Priroda. 9:30–38.Google Scholar

Keller, B. M., Aksenov, E. M., Korolev, B. G., Krylov, I. N., Rosanov, A. Yu., Semikhatov, M. A., and Chumakov, N. M. 1974. Vendomian (terminal Riphean) and its regional subdivisions (in Russian). All-Union Inst. Sci. Technol. Inf. USSR, Itorgi Nauk i Techniki. Stratig. Paleont. Ser. 5:1–126.Google Scholar

Kevan, P. G., Chaloner, W. G., and Savile, D. B. O. 1975. Interrelationships of early terrestrial arthropods and plants. Palaeontology 18:391–417.Google Scholar

Klein, R. M. 1970. Relationships between blue-green and red algae. pp. 623–633. In: Frederick, J. T. and Klein, R. M., eds. Phylogenesis and Morphogenesis in the Algae. Ann. N.Y. Acad. Sci. 175:.Google Scholar

Kline, G. L. 1975. Proterozoic budding bacteria from Australia and Canada. 92 pp. , Univ. Calif., Santa Barbara, Calif.Google Scholar

Knoll, A. H. and Barghoorn, E. S. 1974. Ambient pyrite in Precambrian chert: new evidence and a theory. Proc. Natl. Acad. Sci. 71:2329–2331.Google Scholar

Knoll, A. H. and Barghoorn, E. S. 1975. Precambrian eucaryotic organisms: a reassessment of the evidence. Science. 190:52–54.Google Scholar

Kolosov, P. N. 1975. Stratigraphy of the upper Precambrian of Southern Yakutia (in Russian). 156 pp. Inst. Geol. Akad. Nauk. USSR, Siberian Branch, Yakutian Affiliate.Google Scholar

Krylov, I. N. 1968. The earliest traces of life on earth (in Russian). Priroda. 11:41–54.Google Scholar

Leventhal, J., Suess, S. E., and Cloud, P. 1975. Non-prevalence of biochemical fossils in kerogens from pre-Phanerozoic sediments. Proc. Natl. Acad. Sci. 72:4706–4710.Google Scholar

Licari, G. R. 1971. Paleontology of the Beck Spring Dolomite of Eastern California. 174 pp. , Univ. Calif., Los Angeles. .Google Scholar

Licari, G. R. and Cloud, P. 1968. Reproductive structures and taxonomic affinities of some nannofossils from the Gunflint Iron Formation. Proc. Natl. Acad. Sci. USA. 59:1053–1060.Google Scholar

Licari, G. R., Cloud, P., and Smith, W. D. 1969. A new chroococcacean alga from the Proterozoic of Queensland. Proc. Natl. Acad. Sci. 62:56–62.Google Scholar

Licari, G. R. and Cloud, P. 1972. Procaryotic algae associated with Australian Proterozoic stromatolites. Proc. Natl. Acad. Sci. USA. 69:2500–2504.Google Scholar

Lovering, T. S. 1959. Geological significance of accumulator plants in rock weathering. Geol. Soc. Am. Bull. 70:781–800.Google Scholar

Macgregor, A. M. 1941. A pre-Cambrian algal limestone in Southern Rhodesia. Geol. Soc. South Afr. Trans. 43:9–16.Google Scholar

MacGregor, I. M., Trusswell, I. F., and Eriksson, K. A. 1974. Filamentous algae from the 2,300 m.y. old Transvaal Dolomite. Nature. 247:538–540.Google Scholar

Margulis, L. 1970. Origin of Eucaryotic Cells. 349 pp. Yale Univ. Press; New Haven, Conn.Google Scholar

Marshall, C. G. A., May, J. W., and Perret, C. J. 1964. Fossil microorganisms: possible presence in Precambrian shield of Western Australia. Science. 144:290–292.Google Scholar

Martin, G. W. 1968. The origin and status of fungi (with a note on the fossil record). pp. 635–648. In: Ainsworth, G. C. and Sussman, A. S., eds. The Fungi: An Advanced Treatise. Vol. 3. Academic Press.Google Scholar

Mason, T. R. and von Brunn, V.. 3.0 G.y. old stromatolites from South Africa. Nature.Google Scholar

McCord, I. M., Keele, B. B. Jr., and Fridovich, I. 1971. An enzyme-based theory of obligate anaerobiosis: the physiological function of superoxide dismutase. Proc. Natl. Acad. Sci. 68:1024–1027.Google Scholar

Mereschkowsky, C. 1905. Über Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biol. Zentralbl. 25:593–604.Google Scholar

Milton, D. J. 1966. Drifting organisms in the Precambrian sea. Science. 153:293–294.Google Scholar

Moorbath, S., O'Nions, R. K., and Pankhurst, R. J. 1973. Early Archean age for the Isua iron formation, West Greenland. Nature. 245:138–139.Google Scholar

Moorman, M. 1974. Microbiota of the late Proterozoic Hector Formation, Southwestern Alberta, Canada. J. Paleontol. 48:524–539.Google Scholar

Muir, M. D. 1974. X-ray microanalysis in the SEM for the determination of elements in modern and fossil micro-organisms. . 2:104–105.Google Scholar

Nagy, L. A. 1974. Transvaal stromatolite; first evidence for the diversification of cells about 2.2 × 109 years ago. Science. 183:514–516.CrossRefGoogle ScholarPubMed

Nicolaysen, L. O., de Villiers, J. W. L., Burger, A. J., and Strelow, F. W. E. 1958. New measurements relating to the absolute age of the Transvaal System and of the Bushveld Igneous Complex. Geol. Soc. South Afr. Trans. 61:137–168.Google Scholar

Oberlies, F. and Prashnowsky, A. A. 1968. Biogeochemische und elektronenmikroskopische Untersuchung präkambrischer Gesteine. Die Naturwissenschaften. 1:25–28.Google Scholar

Oehler, D. Z. 1976. Transmission electron microscopy of organic microfossils from the late Precambrian Bitter Springs formation of Australia: Techniques and survey of preserved ultrastructure. J. Paleontol. 50:90–106.Google Scholar

Oehler, D. Z., Schopf, J. W., and Kvenvolden, K. A. 1972. Carbon isotope studies of organic matter in Precambrian rocks. Science. 175:1246–1248.Google Scholar

Oehler, J. H., Oehler, D. Z., and Muir, M. D. 1976. On the significance of tetrahedral tetrads of Precambrian algal cells. Precambrian Res. 4:.Google Scholar

Perfil'ev, B. A., Gabe, D. R., Gal'perina, A. M., Rabinovich, V. A., Sapotnitskii, A. A., Sherman, E. E., and Troshanov, E. P. 1965. Applied capillary microscopy: the role of microorganisms in the formation of iron-manganese deposits. 122 pp. .Google Scholar

Perry, E. C. Jr. and Tan, F. C. 1973. Significance of carbon isotope variations in carbonates from the Biwabik Iron Formation, Minnesota. pp. 229–305. In: UNESCO, Genesis of Precambrian Iron and Manganese Deposits. .Google Scholar

Perry, E. C. Jr., Tan, F. C., and Morey, G. B. 1973. Geology and stable isotope geochemistry of the Biwabik Iron Formation, Northern Minnesota. Econ. Geol. 68:1110–1125.CrossRefGoogle Scholar

Pflug, H. D. 1966. Structured organic remains from the Fig Tree series of the Barberton Mountain Land. Univ. Witwatersrand, , 14 pp.Google Scholar

Pichamuthu, C. S. 1971. Precambrian geochronology of peninsular India. Geol. Soc. India J. 12:262–273.Google Scholar

Prashnowsky, A. A. and Oberlies, F. 1972. Uber Lebenszeugnisse im Präkambrium Afrikas und Sudamerikas. pp. 683–698. In: von Gaertner, H. R. and Wehner, H., eds. Advances in Organic Geochemistry. . Pergamon Press.Google Scholar

Raff, R. A. and Raff, E. C. 1970. Respiratory mechanisms and the metazoan fossil record. Nature. 228:1003–1005.Google Scholar

Raff, R. A. and Mahler, H. R. 1972. The non-symbiotic origin of mitochondria. Science. 177:575–582.Google Scholar

Ramdohr, P. 1958. New observations on the ores of the Witwatersrand and their genetic significance. Geol. Soc. South Afr. Trans. Annexure to Vol. 61. 50 pp.Google Scholar

Reimer, T. O. 1975. The age of the Witwatersrand system and other gold-uranium placers: Implications on the origin of the mineralisation. , pp. 79–98.Google Scholar

Rhoads, G. C. and Morse, J. W. 1971. Evolution and ecologic significance of oxygen-deficient marine basins. Lethaia. 4:413–428.Google Scholar

Robertson, D. S. 1974. Basal Proterozoic units as fossil markers and their use in uranium prospection. . pp. 495–512.Google Scholar

Robertson, W. A. 1960. Stromatolites from the Paradise Creek area, north-western Queensland. , 12 pp.Google Scholar

Roscoe, S. M. 1969. Huronian rocks and uraniferous conglomerates in the Canadian Shield. , 205 pp.CrossRefGoogle Scholar

Ross, C. S. 1962. Microlites in glassy volcanic rocks. Am. Mineral. 47:723–740.Google Scholar

Rosanov, A. Yu. 1967. The Cambrian lower boundary problem. Geol. Mag. 104:415–434.Google Scholar

Rozanov, A. Yu., Missarzhevsky, V. V., Volkova, N. A., Voronova, L. G., Krylov, I. N., Keller, B. M., Korolyuk, I. K., Lendzion, K., Michniak, R., Pychova, N. G., and Sidorov, A. G. 1969. Tommotian stage and the Cambrian lower boundary problem (in Russian). Akad. Nauk. USSR, Trans. Geol. Inst. 206:1–380.Google Scholar

Salop, L. J. 1972. Some geological aspects of the problem of the Au-U conglomerates of Precambrian (in Russian). Trudi VSEIGI (USSR) New Ser. 178:150–174.Google Scholar

Schidlowski, M. 1970. Elektronenoptische Identifizierung zellartiger Mikrostrukturen aus dem Präkambrium des Witwatersrand System. Palaeontol. Z. 44:128–133.Google Scholar

Schidlowski, M., Eichmann, R., and Junge, C. E. 1975. Precambrian sedimentary carbonates: Carbon and oxygen isotope geochemistry and implications for the terrestrial oxygen budget. Precambrian Res. 2:1–69.Google Scholar

Schopf, J. W. 1968. Microflora of the Bitter Springs Formation, late Precambrian, central Australia. J. Paleontol. 42:651–668.Google Scholar

Schopf, J. W. 1970. Precambrian microorganisms and evolutionary events prior to the origin of vascular plants. Biol. Rev. 45:319–352.Google Scholar

Schopf, J. W. 1972. Evolutionary significance of the Bitter Springs (Late Precambrian) microflora. , pp. 68–77.Google Scholar

Schopf, J. W. 1974. The development and diversification of Precambrian life. Origins of life. 5:119–135.Google Scholar

Schopf, J. W. 1975. Precambrian paleobiology: problems and perspectives. Annu. Rev. Earth and Planet. Sci. 3:213–249.Google Scholar

Schopf, J. W. and Blacic, J. M. 1971. New microorganisms from the Bitter Springs Formation (late Precambrian) of the north-central Amadeus Basin, Australia. J. Paleontol. 45:925–960.Google Scholar

Schopf, J. W., Oehler, D. Z., Horodyski, R. J., and Kvenvolden, K. A. 1971. Biogenicity and significance of the oldest known stromatolites. J. Paleontol. 45:477–485.Google Scholar

Schopf, J. W., Haugh, B. N., Molnar, R. E., and Satterthwait, D. F. 1973. On the development of metaphytes and metazoans. J. Paleontol. 47:1–9.Google Scholar

Schopf, J. W. and Oehler, D. Z. 1976. How old are the eukaryotes? Science. 193:47–49.Google Scholar

Semikhatov, M. A. 1974. Proterozoic stratigraphy and geochronology (in Russian). Akad. Nauk. USSR, Trans. Geol. Inst. 256:1–302.Google Scholar

Singer, T. P. and Edmondson, D. E. 1974. Biological reduction of O2 to H2O2. pp. 315–337. In: Hayaishi, O., ed. Molecular Oxygen in Biology. North Holland Publishing Co., American Elsevier Publ. Co.Google Scholar

Sokolov, B. S. 1972. The Vendian stage in earth history. pp. 78–84.Google Scholar

Spjeldnaes, N. 1963. A new fossil (Papillomembrana sp.) from the upper pre-Cambrian of Norway. Nature. 200:63–65.Google Scholar

Stanley, S. M. 1976. Fossil data and the Precambrian-Cambrian evolutionary transition. Am. J. Sci. 276:56–76.Google Scholar

Stewart, W. D. P. and Pearson, H. W. 1970. Effects of aerobic and anaerobic conditions on growth and metabolism of blue-green algae. Proc. Roy. Soc. London. 175:293–311.Google Scholar

Tappan, H. 1976. Possible eucaryotic algae (Bangiophycidae) among early Proterozoic microfossils. Geol. Soc. Am. Bull. 87:633–639.Google Scholar

Taylor, F. J. R. 1974. Implications and extensions of the serial endosymbiosis theory of the origin of eukaryotes. Taxon. 23:229–258.Google Scholar

Timofeev, B. V. 1969. Proterozoic Sphaeromorphitidae (in Russian). Akad. Nauk. USSR, Inst. Geol. Geophys. Precambrian. 146 pp.Google Scholar

Timofeev, B. V. 1973a. Microscopical plant fossils of the Ukrainian Precambrian (in Russian). Akad. Nauk. USSR, Inst. Geol. Geophys. Precambrian. 99 pp.Google Scholar

Timofeev, B. V. 1973b. Proterozoic and early Paleozoic microfossils (in Russian, English summary). pp. 7–12. Akad. Nauk. USSR, Siberian Branch, Inst. Geol. and Geophys., . Google Scholar

Trendall, A. F. 1973. Varve cycles in the Weeli Wolli Formation of the Precambrian Hamersley Group, Western Australia. Econ. Geol. 68:1089–1097.Google Scholar

Tyagi, V. V. S. 1975. The heterocysts of blue-green algae (Myxophyceae). Biol. Rev. 50:247–248.Google Scholar

Tyler, S. A. and Barghoorn, E. S. 1954. Occurrence of structurally preserved plants in pre-Cambrian rocks of the Canadian shield. Science 119:606–608.Google Scholar

UNESCO. 1973. Genesis of Precambrian iron and manganese deposits. , UNESCO, Paris. 382 pp.Google Scholar

Vologdin, A. G. and Drozdova, N. A. 1964. Several species of algae from the Gonam Suite of the Proterozoic Uchur Series, Ayan-Maya District, Far East (in Russian). Doklady Akad. Nauk. USSR. 159:114–116.Google Scholar

Wald, G. 1964. The origin of life. Proc. Natl. Acad. Sci. 52:595–611.Google Scholar

Walter, M. R., Bauld, J., and Brock, T. D. 1972. Siliceous algal and bacterial stromatolites in hot springs and geyser effluents of Yellowstone National Park. Science. 178:402–405.Google Scholar

Walter, M. R., Oehler, J. H., and Oehler, D. Z. 1976. Megascopic algae 1300 million years old from the Belt Supergroup, Montana: a reinter-pretation of Walcott's Helminthoidichnites. Paleontol. Soc. .Google Scholar

Walter, M. R., Goode, A. D. T., and Hall, W. D. M. 1976. Microfossils from a newly discovered Precambrian stromatolitic iron formation in Western Australia. Nature. 261:221–223.Google Scholar

Weller, D., Doemel, W., and Brock, T. D.. Requirement of low oxidation-reduction potential for photosynthesis in a blue-green alga (Phormidium sp.). Arch. Microbiol.Google Scholar

Windley, B. F., ed. 1975. The early history of the earth. . NATO Adv. Study Inst. Leicester, England.Google Scholar

Windley, B. F., ed. 1976. The Early History of the Earth. John Wiley and Sons, 619 pp.Google Scholar

Young, F. G. 1972. Early Cambrian and older trace fossils from the southern Cordillera of Canada. Can. J. Earth Sci. 9:1–17.Google Scholar

Young, G. M. 1976. Iron-formation and glaciogenic rocks of the Rapitan Group, Northwest territories, Canada. Precambrian Res. 3:137–158.Google Scholar

Zhuravleva, I. T. 1970. Marine faunas and Lower Cambrian stratigraphy. Am. J. Sci. 269:417–445.Google Scholar