Iterative evolution of hypercarnivory in canids (Mammalia: Carnivora): evolutionary interactions among sympatric predators | Paleobiology | Cambridge Core (original) (raw)
Abstract
Convergent evolution of hypercarnivorous adaptations in canids has occurred a number of times in the last 40 m.y. among distantly related taxa. The adaptations include an increase in carnassial blade length, reduction or loss of post-carnassial molars, and transformation of the talonid of the lower first molar from a basinlike depression into a trenchant, bladelike cusp. Although the diversity of these specialized canids is typically low in past and present communities, it was unusually high during the Late Oligocene of North America and the Pleistocene of South America. These two comparable events provide an opportunity for exploring possible causes of the evolution of hypercarnivory in canids. Plots of generic diversity against time for North American predators reveal a roughly inverse relationship between the number of hypercarnivorous canid taxa and the numbers of other hypercarnivores, such as creodonts, nimravids, mustelids, and amphicyonids. Similarly, the radiation of hypercarnivorous canids in South America occurred at a time of relatively low diversity of other hypercarnivores. Analysis of trophic diversity within the North American carnivore paleoguild before, during, and after the Late Oligocene reveals considerable taxonomic turnover among carnivores because of immigration and speciation. Late Oligocene hypercarnivorous canids appear to have been replaced first by amphicyonids and large mustelids, and then by felids.
Despite the repeated tendency of canids to evolve adaptations for hypercarnivory, a canid has yet to appear that is completely catlike, that is, without any post-carnassial molars. This possible constraint on morphological evolution in canids is argued to have resulted, paradoxically, in increased flexibility over evolutionary time and a great potential for rapid diversification and clade survivorship. Finally, it is suggested that the iterative pattern of specialization of the lower molars for meat-slicing that is seen in all families of carnivores, past and present, is probably a result of intraspecific competition for food, perhaps among littermates. This intraspecific selective force is countered by competition among species, since there are limits on the number of sympatric hypercarnivorous species within a single community.
References
Bakker, R. T. 1983. The deer flees, the wolf pursues: incongruencies in predator-prey coevolution. Pp. 350–382. In Futuyma, D. J., and Slatkin, M. (eds.), Coevolution. Sinauer Associates; Sunderland, Massachusetts.Google Scholar
Barbour, E. H., and Schultz, C. B. 1935. A new Miocene dog, Mesocyon geringensis, sp, nov. Bulletin of the Nebraska State Museum 43:411–418.Google Scholar
Baskin, J. A. 1981. Barbourofelis (Nimravidae) and Nimravides (Felidae), with a description of two new species from the late Miocene of Florida. Journal of Mammalogy 62:122–139.CrossRefGoogle Scholar
Baskin, J. A. 1982. Tertiary Procyoninae (Mammalia: Carnivora) of North America. Journal of Vertebrate Paleontology 2:71–93.CrossRefGoogle Scholar
Baskin, J.. North American Tertiary Mustelidae. In Janis, C., Scott, K., and Jacobs, L. (eds.), Tertiary Mammals of North America. Cambridge University Press; Cambridge.Google Scholar
Benton, M. J. 1987. Progress and competition in macroevolution. Biological Reviews of the Cambridge Philosophical Society 62:305–338.CrossRefGoogle Scholar
Berta, A. 1981a. Evolution of large canids in South America, Anais II Congresso Latino Americano de Paleontologia, Porto Alegre 2:835–845.Google Scholar
Berta, A. 1981b. The Plio-Pleistocene hyaena Chasmaporthetes ossifragus from Florida. Journal of Vertebrate Paleontology 1:341–356.CrossRefGoogle Scholar
Berta, A. 1983. A new species of small cat (Felidae) from the late Pliocene-Early Pleistocene (Uquian) of Argentina. Journal of Mammalogy 64:720–725.CrossRefGoogle Scholar
Berta, A. 1984. The Pleistocene bush dog, Speothos pacivorus (Canidae) from the Lagoa Santa Caves, Brazil. Journal of Mammalogy 65:549–559.CrossRefGoogle Scholar
Berta, A. 1985. The status of Smilodon in North and South America. Natural History Museum of Los Angeles County, Contributions in Science 370:1–15.Google Scholar
Berta, A. 1987a. Origin, diversification, and zoogeography of the South American Canidae. Fieldiana: Zoology, New Series 39:455–471.Google Scholar
Berta, A. 1987b. The sabercat Smilodon gracilis from Florida and a discussion of its relationships (Mammalia, Felidae, Smilodontini). Bulletin of the Florida State Museum, Biological Sciences 31:1–63.Google Scholar
Berta, A. 1988. Quaternary evolution and biogeography of the large South American Canidae (Mammalia: Carnivora). , University of California Press; Berkeley, California.Google Scholar
Berta, A., and Marshall, L. G. 1978. South American Carnivora. . W. Junk; The Hague.Google Scholar
Biknevicius, A. R. 1990. Biomechanical design of the mandibular corpus in carnivores. , The Johns Hopkins University, Baltimore, Maryland.Google Scholar
Bryant, L. J. 1976. A mandible of Beckia (Mammalia: Mustelidae) from Contra Costa County, California. Paleobios 20:1–6.Google Scholar
Bryant, L. J. 1978. A new genus of mustelid from the Ellensburg Formation, Washington. Los Angeles County Museum Contributions in Science 139:1–6.Google Scholar
Bryant, L. J. 1984. Skeletons of the diminutive sabertooth Eusmilus from the Arikareean of South Dakota. Carnegie Museum of Natural History, Special Publication 9:161–170.Google Scholar
Butler, P. M. 1946. The evolution of carnassial dentitions in the Mammalia. Proceedings of the Zoological Society of London 116:198–220.CrossRefGoogle Scholar
Clark, J., Beerbower, J. R., and Kietzke, K. K. 1967. Oligocene sedimentation, stratigraphy, paleoecology and paleoclimatology in the Big Badlands of South Dakota. Fieldiana: Geological Memoirs 5:1–158.Google Scholar
Clutton-Brock, T. H., Guinness, F. E., and Albon, S. D. 1982. Red Deer. University of Chicago Press; Chicago.Google Scholar
Cope, E. D. 1884. The vertebrata of the Tertiary formations of the West. Book 1. United States Geological Survey of the Territories Report 3:1–1009.Google Scholar
Crusafont-Pairo, M., and Truyols-Santonja, J. 1956. A biometric study of the evolution of fissiped carnivores. Evolution 10:314–332.CrossRefGoogle Scholar
Dalquest, W. W. 1968. The bone-eating dog, Borophagus diversidens Cope. Quarterly Journal of the Florida Academy of Sciences 31:115–129.Google Scholar
Denison, R. H. 1938. The broad-skulled Pseudocreodi. Annals of the New York Academy of Sciences 37:163–257.Google Scholar
Eaton, R. L. 1979. Interference competition among carnivores: a model for the evolution of social behavior. Carnivore 2:9–16.Google Scholar
Emerson, S., and Radinsky, L. 1980. Functional analysis of sabertooth cranial morphology. Paleobiology 6:295–312.CrossRefGoogle Scholar
Emry, R. J., Bjork, P. R., and Russell, L. S. 1987. The Chadronian, Orellan, and Whitneyan North American land mammal ages. Pp. 118–152. In Woodburne, M. O. (ed.), Cenozoic Mammals of North America. University of California Press; Berkeley.Google Scholar
Ewer, R. F. 1973. The Carnivores. Cornell University Press; Ithaca, New York.Google Scholar
Fisher, D. C. 1985. Evolutionary morphology: beyond the analogous, the anecdotal, and the ad hoc. Paleobiology 11:120–138.CrossRefGoogle Scholar
Fuller, T. K. 1989. Population dynamics of wolves in north-central Minnesota. Wildlife Monographs 105:1–41.Google Scholar
Gidley, J. W., and Gazin, C. L. 1938. The Pleistocene vertebrate fauna from Cumberland Cave. Bulletin of the United States National Museum 171:1–99.Google Scholar
Gittleman, J. L. 1986. Carnivore life history patterns: allometric, phylogenetic, and ecological associations. American Naturalist 127:744–771.CrossRefGoogle Scholar
Harrison, J. A. 1983. The Carnivora of the Edson local fauna (late Hemphillian), Kansas. Smithsonian Contributions to Paleobiology 54:1–42.CrossRefGoogle Scholar
Hough, J. R. 1948. The auditory region in some members of the Procyonidae, Canidae, and Ursidae: its significance in the phylogeny of the Carnivora. Bulletin of the American Museum of Natural History 92:70–118.Google Scholar
Hunt, R. M. Jr. 1971. North American Amphicyonids. . Columbia University, New York.Google Scholar
Hunt, R. M. Jr. 1987. Evolution of the Aeluroid Carnivora: significance of auditory structure in the Nimravid cat Dinictis. American Museum Novitates 2886:1–74.Google Scholar
Hunt, R. M. Jr.. North American Tertiary Ursidae. In Janis, C., Scott, K., and Jacobs, L. (eds.), Tertiary Mammals of North America. Cambridge University Press; Cambridge.Google Scholar
Hunt, R. M. Jr., and Joeckel, R. M. 1988. Mammalian biozones in nonmarine rocks of the North American continental interior: biostratigraphic resolution within the “cat gap.” Rocky Mountain Section, Geological Society of America Abstracts with Programs 20:421.Google Scholar
Kitchell, J. A. 1985. Evolutionary paleoecology: recent contributions to evolutionary theory. Paleobiology 11:91–104.CrossRefGoogle Scholar
Krause, D. W. 1986. Competitive exclusion and taxonomic displacement in the fossil record: the case of rodents and multi-tuberculates in North America. Pp. 95–118. In Flanagan, K. M., and Lillegraven, J. A. (eds.), Vertebrates, Phylogeny, and Philosophy. Contributions to Geology, . Department of Geology and Geophysics, University of Wyoming, Laramie, Wyoming.Google Scholar
Kruuk, H. 1972. The Spotted Hyaena. University of Chicago Press; Chicago.Google Scholar
Kurtén, B. 1963. Return of a lost structure in the evolution of the felid dentition. Commentationes Biologicae 26:1–12.Google Scholar
Kurtén, B. 1966. Pleistocene bears of North America. 1. Genus Tremarctos, spectacled bears. Acta Zoologica Fennica 115:1–120.Google Scholar
Kurtén, B. 1967. Pleistocene bears of North America. 2. Genus Arctodus, short-faced bears. Acta Zoologica Fennica 117:1–60.Google Scholar
Kurtén, B. 1974. A history of coyote-like dogs (Canidae, Mammalia). Acta Zoologica Fennica 140:1–38.Google Scholar
Kurtén, B., and Anderson, E., 1980. Pleistocene Mammals of North America. Columbia University Press; New York.Google Scholar
Kurtén, B., and Werdelin, L. 1988. A review of the genus Chasmoporthetes Hay, 1921 (Carnivora, Hyaenidae). Journal of Vertebrate Paleontology 8:46–66.CrossRefGoogle Scholar
Macdonald, J. R. 1963. The Miocene faunas from the Wounded Knee area of western South Dakota. Bulletin of the American Museum of Natural History 125:143–238.Google Scholar
Macdonald, J. R. 1970. Review of the Miocene Wounded Knee faunas of southwestern South Dakota. Bulletin of the Los Angeles County Museum of Natural History 8:1–82.Google Scholar
Malcolm, J. R., and Marten, K. 1982. Natural selection and the communal rearing of pups in African wild dogs (Lycaon pictus) Behavior, Ecology, and Sociobiology 10:1–13.CrossRefGoogle Scholar
Marshall, L. G. 1976. Evolution of the Borhyaenidae, extinct South American predaceous marsupials. University of California Publications in Geological Sciences 117:1–89.Google Scholar
Marshall, L. G. 1977. Evolution of the carnivorous adaptive zone in South America. Pp. 709–721. In Hecht, M. K., Goody, P. C., and Hecht, B. M. (eds.), Major Patterns in Vertebrate Evolution. Plenum Press; New York.CrossRefGoogle Scholar
Marshall, L. G. 1985. Geochronology and land-mammal biochronology of the transamerican faunal interchange. Pp. 49–85. In Stehli, F. G., and Webb, S. D. (eds.), The Great American Biotic Interchange. Plenum Press; New York.CrossRefGoogle Scholar
Martin, L. D. 1989. Fossil history of the terrestrial Carnivora. Pp. 536–568. In Gittleman, J. L. (ed.), Carnivore Behavior, Ecology, and Evolution. Cornell University Press; Ithaca, New York.CrossRefGoogle Scholar
Matthew, W. D. 1907. A lower Miocene fauna from South Dakota. Bulletin of the American Museum of Natural History 23:169–219.Google Scholar
Matthew, W. D. 1924. Third contribution to the Snake Creek fauna. Bulletin of the American Museum of Natural History 50:59–210.Google Scholar
Matthew, W. D., and Gidley, J. W. 1904. New or little-known mammals from the Miocene of South Dakota, American Museum expedition of 1903. Bulletin of the American Museum of Natural History 20:241–268.Google Scholar
McCord, C. M., and Cardoza, J. E. 1982. Bobcat and lynx. Pp. 728–766. In Chapman, J. A., and Feldhammer, G. A. (eds.), Wild Mammals of North America. The Johns Hopkins University Press; Baltimore, Maryland.Google Scholar
McNab, B. K. 1971. On the ecological significance of Bergmann's rule. Ecology 52:845–854.CrossRefGoogle Scholar
Mech, L. D. 1977. Productivity, mortality, and population trends of wolves in northeastern Minnesota. Journal of Mammalogy 58:559–574.CrossRefGoogle Scholar
Mellett, J. S. 1977. Paleobiology of North American Hyaenodon (Mammalia: Creodonta). Contributions to Vertebrate Evolution 1:1–134. S. Karger; New York.Google Scholar
Merriam, J. C. 1906. Carnivora from the Tertiary Formations of the John Day region. University of California, Bulletin of the Department of Geology 5:1–64.Google Scholar
Merriam, J. C., and Stock, C. 1932. The Felidae of Rancho la Brea. Carnegie Institute of Washington, D.C. Publication 422:1–232.Google Scholar
Munthe, K.. Canidae. In Janis, C., Scott, K., and Jacobs, L. (eds.), Tertiary Mammals of North America. Cambridge University Press; Cambridge.Google Scholar
Olsen, S. J. 1956. The Caninae of the Thomas Farm Miocene. Breviora 66:3–12.Google Scholar
Patterson, B., and Pascual, R. 1972. The fossil mammal fauna of South America. Pp. 247–310. In Keast, A., Erk, F. C., and Glass, B. (eds.), Evolution, Mammals, and Southern Continents. State University of New York Press; Albany, New York.Google Scholar
Pratt, A. 1986. The taphonomy and paleoecology of the Thomas Farm local fauna. . University of Florida, Gainesville.Google Scholar
Radinsky, L. B. 1981a. Evolution of skull shape in carnivores. 1. Representative modern carnivores. Biological Journal of the Linnean Society 16:369–388.CrossRefGoogle Scholar
Radinsky, L. B. 1981b. Evolution of skull shape in carnivores. 2. Additional modern carnivores. Biological Journal of the Linnean Society 16:369–388.CrossRefGoogle Scholar
Riggs, E. S. 1945. Some early Miocene carnivores. Field Museum of Natural History, Geological Series 9:69–114.Google Scholar
Rosenzweig, M. L. 1966. Community structure in sympatric Carnivora. Journal of Mammalogy 47:602–612.CrossRefGoogle Scholar
Rosenzweig, M. L. 1968. The strategy of body size in mammalian carnivores. American Midland Naturalist 80:299–315.CrossRefGoogle Scholar
Savage, D. E. 1951. Late Cenozoic vertebrates of the San Francisco Bay region. University of California Publications in Geological Sciences 28:215–314.Google Scholar
Savage, D. E., and Russell, D. E. 1983. Mammalian Paleofaunas of the World. Addison-Wesley; Reading, Massachusetts.Google Scholar
Savage, R.J.G. 1977. Evolution in carnivorous mammals. Paleontology 20:237–271.Google Scholar
Schaller, G. B. 1972. The Serengeti Lion. University of Chicago Press; Chicago.Google Scholar
Schultz, C. B., and Martin, L. D. 1972. Two lynx-like cats from the Pliocene and Pleistocene. Bulletin of the Nebraska State Museum 9:197–203.Google Scholar
Scott, W. B., and Jepsen, G. 1941. The mammalian fauna of the White River Oligocene. Transactions of the American Philosophical Society 28:747–980.CrossRefGoogle Scholar
Silk, J. B. 1987. Social behavior in evolutionary perspective. Pp. 318–329. In Smuts, B. B., Cheney, D. L., Seyfarth, R. M., Wrangham, R. W., and Struhshaker, T. T. (eds.), Primate Societies. University of Chicago Press; Chicago.Google Scholar
Simpson, G. G. 1945. The principles of classification and a classification of the mammals. Yale University Press; New Haven, Connecticut.Google Scholar
Stains, H. J. 1975. Distribution and taxonomy of the Canidae. Pp. 3–26. In Fox, M. W. (ed.), The Wild Canids. Van Nostrand Reinhold; New York.Google Scholar
Stanley, S. M. 1974. A theory of evolution above the species level. Proceedings of the National Academy of Sciences 72:646–650.CrossRefGoogle Scholar
Stanley, S. M. 1979. Macroevolution: Pattern and Process. W. H. Freeman; San Francisco.Google Scholar
Stirton, R. A. 1947. Observations on evolutionary rates in hypsodonty. Evolution 1:32–41.CrossRefGoogle Scholar
Stock, C. 1933. Carnivora from the Sespe of the Las Posas Hills, California. Carnegie Institution of Washington Publication 440:29–41.Google Scholar
Stucky, R. K. 1990. Evolution of land mammal diversity in North America during the Cenozoic. Pp. 375–432. In Genoways, H. (ed.), Current Mammalogy, Volume 2. Plenum Press; New York.Google Scholar
Swisher, C. C., and Prothero, D. R. 1990. Single crystal 40Ar/39Ar dating of the Eocene-Oligocene transition in North America. Science 249:760–762.CrossRefGoogle ScholarPubMed
Tedford, R. H., and Frailey, D. 1976. Review of some Carnivora (Mammalia) from the Thomas Farm local fauna (Hemingfordian: Gilchrist County, Florida). American Museum Novitates 2610:1–9.Google Scholar
Tedford, R. H., Skinner, M. F., Fields, R. W., Rensberger, J. M., Whistler, D. P., Galusha, T., Taylor, B. E., MacDonald, J. R., and Webb, S. D. 1987. Faunal succession and biochronology of the Arikareean through Hemphillian interval (late Oligocene through earliest Pliocene epochs) in North America. Pp. 153–210. In Woodburne, M. O. (ed.), Cenozoic Mammals of North America. University of California Press; Berkeley.Google Scholar
Thorpe, M. R. 1922. Oregon Tertiary Canidae, with descriptions of new forms. American Journal of Science 3:162–176.CrossRefGoogle Scholar
Toohey, L. 1959. The species of Nimravus (Carnivora, Felidae). Bulletin of the American Museum of Natural History 118:75–112.Google Scholar
Van Ballenberghe, V., and Mech, D. 1975. Weights, growth, and survival of timber wolf pups in Minnesota. Journal of Mammalogy 56:44–63.CrossRefGoogle ScholarPubMed
Van Valkenburgh, B. 1988. Trophic diversity in past and present guilds of large predatory mammals. Paleobiology 14:155–173.CrossRefGoogle Scholar
Van Valkenburgh, B. 1989. Carnivore dental adaptations and diet: a study of trophic diversity within guilds. Pp. 410–436. In Gittleman, J. L. (ed.), Carnivore Behavior, Ecology, and Evolution. Cornell University Press; Ithaca, New York.CrossRefGoogle Scholar
Van Valkenburgh, B. 1990. Skeletal and dental predictors of body mass in carnivores. Pp. 181–205. In Damuth, J., and MacFadden, B. J. (eds.), Body Size in Mammalian Paleobiology. Cambridge University Press; Cambridge.Google Scholar
Vermeij, G. J. 1973. Biological versatility and earth history. Proceedings of the National Academy of Sciences 70:1936–1938.CrossRefGoogle ScholarPubMed
Vrba, E. S. 1980. Evolution, species and fossils: how does life evolve? South African Journal of Science 76:61–84.Google Scholar
Wayne, R. K. and O'Brien, S. J. 1987. Allozyme divergence within the Canidae. Systematic Zoology 36:339–355.CrossRefGoogle Scholar
Wayne, R. K., Benveniste, R. E., Janczewski, D. N., and O'Brien, S. J. 1989. Molecular and biochemical evolution of the Carnivora. Pp. 465–494. In Gittleman, J. L. (ed.), Carnivore Behavior, Ecology, and Evolution. Cornell University Press; Ithaca, New York.CrossRefGoogle Scholar
Webb, S. D. 1969. The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska. University of California Publications in Geological Sciences 78:1–191.Google Scholar
Webb, S. D. 1977. A history of savannah vertebrates in the New World. I. North America. Annual Review of Ecology and Systematics 8:355–380.CrossRefGoogle Scholar
Webb, S. D. 1978. A history of savannah vertebrates in the New World. II. South America and the great interchange. Annual Review of Ecology and Systematics 9:393–426.CrossRefGoogle Scholar
Webb, S. D. 1981. The Thomas Farm fossil site. The Plaster Jacket 37:6–25.Google Scholar
Webb, S. D. 1985. Late Cenozoic mammal dispersals between the Americas. Pp. 357–386. In Stehli, F. G., and Webb, S. D. (eds.), The Great American Biotic Interchange. Plenum Press; New York.CrossRefGoogle Scholar
Webb, S. D., MacFadden, B. J., and Baskin, J. A. 1981. Geology and paleontology of the Love Bone Bed from the late Miocene of Florida. American Journal of Science 281:513–544.CrossRefGoogle Scholar
Werdelin, L. 1985. Small Pleistocene felines of North America. Journal of Vertebrate Paleontology 5:194–210.CrossRefGoogle Scholar
Werdelin, L. 1987a. Supernumerary teeth in Lynx lynx and the irreversibility of evolution. Journal of Zoology 211:259–266.CrossRefGoogle Scholar
Werdelin, L. 1987b. Jaw geometry and molar morphology in marsupial carnivores: analysis of a constraint and its macroevolutionary consequences. Paleobiology 13:342–350.CrossRefGoogle Scholar
Werdelin, L. 1989. Constraint and adaptation in the bone-cracking canid Osteoborus (Mammalia: Canidae). Paleobiology 15:387–401.CrossRefGoogle Scholar
White, T. E. 1942. The lower Miocene mammal fauna of Florida. Bulletin of the Museum of Comparative Zoology 92:1–49.Google Scholar
White, T. E. 1947. Additions to the Miocene fauna of north Florida. Bulletin of the Museum of Comparative Zoology 99:497–515.Google Scholar
Woodburne, M. O. 1987. Cenozoic Mammals of North America. University of California Press; Berkeley.Google Scholar
Wortman, J. L., and Matthew, W. D. 1899. The ancestry of certain members of the Canidae, the Viverridae, and Procyonidae. Bulletin of the American Museum of Natural History 12:109–138.Google Scholar