Patterns of morphologic diversification among the Rostroconchia | Paleobiology | Cambridge Core (original) (raw)

Abstract

Morphologic diversification among rostroconch molluscs is explored using multiple phylogenies derived from different methods. In addition to strict parsimony, phylogenetic estimates were derived using four different methods that employ stratigraphic data. The resultant phylogenies are generally very similar to one another and to the phylogeny proposed by Pojeta and Runnegar (1976). All estimates (including the Pojeta and Runnegar estimate) imply much lower morphologic separations among post-Ordovician rostroconchs (measured here as the frequency of character state change per branch) than among Cambro-Ordovician rostroconchs. However, the data do not suggest that morphologic evolution became more constrained among rostroconchs as a whole, but instead suggest a reduced characteristic rate of morphologic change in the clade that happened to survive the end-Ordovician extinction. Likelihood ratio tests provide strongest support for the hypothesis that morphologic evolution was more constrained within a derived subclade (corresponding to previous definitions of the Conocardioidea, minus the Eopteriidae) than it was in a broad paraphylum (corresponding to the Ribeirioidea + Eopteriidae). Estimates from each of the phylogenetic methods lead to the same conclusions. Various metrics indicate that the pattern is not due to poor sampling of Cambro-Ordovician species and thus merits a biological explanation. Nonphylogenetic analyses of morphologic disparity suggest a similar history of morphologic evolution, including the apparent difference in characteristic rates of morphologic evolution between paraclade and subclade.

References

Alroy, J. 1994. Four permutation tests for the presence of phylogenetic structure. Systematic Biology 43:430–437.CrossRefGoogle Scholar

Alroy, J. In press. Equilibrial diversity dynamics in North American mammals. In McKinney, M. L. and Drake, J. A., eds. Biodiversity dynamics: turnover of populations, taxa and communities.Google Scholar

Anstey, R. L., and Pachut, J. L. 1995. Phylogeny, diversity history and speciation in Paleozoic bryozoans. pp. 239–284_In_ Erwin, D. H. and Anstey, R. L., eds. New approaches to studying speciation in the fossil record. Columbia University Press, New York.Google Scholar

Baumiller, T. K. 1993. Survivorship analysis of Paleozoic Crinoidea: effect of filter morphology on evolutionary rates. Paleobiology 19:304–321.CrossRefGoogle Scholar

Benton, M. J., and Storrs, G. W. 1994. Testing the quality of the fossil record: paleontological knowledge is improving. Geology 22:111–114.2.3.CO;2>CrossRefGoogle Scholar

Briggs, D. E. G., Fortey, R. A., and Wills, M. A. 1992. Morphological disparity in the Cambrian. Science 256:1670–1673.CrossRefGoogle ScholarPubMed

Caldwell, M. W., and Chatterton, B. D. E. 1995. Phylogenetic analysis of some Silurian rostroconchs (Mollusca) from northwestern Canada. Canadian Journal of Earth Sciences 32:806–827.CrossRefGoogle Scholar

Campbell, K. S. W., and Marshall, C. R. 1987. Rates of evolution among Paleozoic echinoderms. pp. 61–100_In_ Campbell, K. S. W. and Day, M. F., eds. Rates of evolution. Allen and Unwin, London.Google Scholar

de Queiroz, K., and Gauthier, J. A. 1990. Phylogeny as a central principle in taxonomy: phylogenetic definitions of taxon names. Systematic Zoology 39:307–322.CrossRefGoogle Scholar

de Queiroz, K., and Gauthier, J. A. 1992. Phylogenetic taxonomy. Annual Review of Ecology and Systematics 23:449–480.CrossRefGoogle Scholar

de Queiroz, K., Donoghue, M. J., and Kim, J. 1995. Separate versus combined analysis of phylogenetic evidence. Annual Reviews of Ecology and Systematics 26:657–681.CrossRefGoogle Scholar

Doyle, J. A., and Donoghue, M. J. 1993. Phylogenies and angiosperm diversification. Paleobiology 19:141–167.CrossRefGoogle Scholar

Eble, G. J. In press. Approaching the role of development in evolutionary radiations. In McKinney, M. L. and Drake, J. A., eds. Biodiversity dynamics: turnover of populations, taxa and communities.Google Scholar

Edgecombe, G. D. 1992. Trilobite phylogeny and the Cambrian-Ordovician “event”: a cladistic reappraisal. pp. 144–177_In_ Novacek, M. J. and Wheeler, Q. D., eds. Extinction and phylogeny. Columbia University Press, New York.Google Scholar

Erwin, D. H. 1990. Carboniferous–Triassic gastropod diversity patterns and the Permo-Triassic mass extinction. Paleobiology 16:187–203.CrossRefGoogle Scholar

Erwin, D. H., Valentine, J. W., and Sepkoski, J. J. Jr. 1987. A comparative study of diversification events: the Early Paleozoic versus the Mesozoic. Evolution 41:1177–1186.CrossRefGoogle ScholarPubMed

Felsenstein, J. 1978. Cases in which parsimony or compatibility methods will be positively misleading. Systematic Zoology 27:401–410.CrossRefGoogle Scholar

Fisher, D. C. 1991. Phylogenetic analysis and its implication in evolutionary paleobiology. In Gilinsky, N. L. and Signor, P. W., eds. Analytical paleobiology. Paleontological Society Short Courses in Paleontology No. 4:103–122. University of Tennessee, Knoxville.Google Scholar

Fisher, D. C. 1994. Stratocladistics: morphological and temporal patterns and their relation to phylogenetic process. pp. 133–171_In_ Grande, L. and Rieppel, O., eds. Interpreting the hierarchy of nature—from systematic patterns to evolutionary theories. Academic Press, Orlando, Fla.Google Scholar

Foote, M. 1990. Nearest-neighbor analysis of trilobite morphospace. Systematic Zoology 39:371–382.CrossRefGoogle Scholar

Foote, M. 1991. Morphological and taxonomic diversity in a clade's history: the blastoid record and stochastic simulations. Contributions from the Museum of Paleontology, University of Michigan 28:101–140.Google Scholar

Foote, M. 1992. Paleozoic record of morphological diversity in blastozoan echinoderms. Proceedings of the National Academy of Science USA 89:7325–7329.CrossRefGoogle ScholarPubMed

Foote, M. 1993. Discordance and concordance between morphological and taxonomic diversity. Paleobiology 19:185–204.CrossRefGoogle Scholar

Foote, M. 1994. Morphological disparity in Ordovician-Devonian crinoids and the early saturation of morphological space. Paleobiology 20:320–344.CrossRefGoogle Scholar

Foote, M. 1995. Morphological diversification of Paleozoic crinoids. Paleobiology 21:273–299.CrossRefGoogle Scholar

Foote, M. 1996b. Models of morphological diversification. pp. 62–86_In_ Jablonski, D., Erwin, D. H. and Lipps, J. H., eds. Evolutionary paleobiology. University of Chicago Press, Chicago.Google Scholar

Foote, M., and Raup, D. M. 1996. Fossil preservation and the stratigraphic ranges of taxa. Paleobiology 22:121–140.CrossRefGoogle ScholarPubMed

Gingerich, P. D. 1979. The stratophenetic approach to phylogeny reconstruction in vertebrate paleontology. pp. 41–77_In_ Cracraft, J. and Eldredge, N., eds. Phylogenetic analysis and paleontology. Columbia University Press, New York.CrossRefGoogle Scholar

Gould, S. J. 1991. The disparity of the Burgess Shale arthropod fauna and the limits of cladistic analysis: why we must strive to quantify morphospace. Paleobiology 17:411–423.CrossRefGoogle Scholar

Gould, S. J., and Calloway, C. B. 1980. Clams and brachiopods—ships that pass in the night. Paleobiology 6:383–396.CrossRefGoogle Scholar

Harland, W. B., Armstrong, R. L., Cox, A. V., Craig, L. E., Smith, A. G., and Smith, D. G. 1990. A geologic time scale 1989. Cambridge University Press, Cambridge.Google Scholar

Hillis, D. M., Bull, J. J., White, M. E., Badgett, M. R., and Molineux, I. J. 1992. Experimental phylogenetics—generation of a known phylogeny. Science 255:589–592.CrossRefGoogle ScholarPubMed

Hoare, R. D., Mapes, R. H., and Brown, C. J. 1982. Some Mississippian and Pennsylvanian rostroconchs from the midcontinent region. Journal of Paleontology 56:123–131.Google Scholar

Hoare, R. D., Steinker, P. J., and Mapes, R. H. 1988. New Carboniferous species of Hippocardia (Rostroconchia, Mollusca) from the midcontinent, USA. Journal of Paleontology 62:865–868.CrossRefGoogle Scholar

Huelsenbeck, J. P. 1991. Tree-length distribution skewness: an indicator of phylogenetic information. Systematic Zoology 40:257–270.CrossRefGoogle Scholar

Huelsenbeck, J. P. 1994. Comparing the stratigraphic record to estimates of phylogeny. Paleobiology 20:470–483.CrossRefGoogle Scholar

Huelsenbeck, J. P., and Bull, J. J. 1996. A likelihood ratio test to detect conflicting phylogenetic signal. Systematic Biology 45:92–98.CrossRefGoogle Scholar

Huelsenbeck, J. P., and Hillis, D. M. 1993. Success of phylogenetic methods in the four-taxon case. Systematic Biology 42:247–264.CrossRefGoogle Scholar

Huelsenbeck, J. P., Bull, J. J., and Cunningham, C. W. 1996. Combining data in phylogenetic analysis. Trends in Ecology and Evolution 11:152–158.CrossRefGoogle ScholarPubMed

Jablonski, D. 1989. The biology of mass extinction: a palaeontological point of view. Philosophical Transactions of the Royal Society of London B 325:357–568.Google Scholar

Jablonski, D., and Bottjer, D. J. 1990. Onshore-offshore trends in marine invertebrate evolution. pp. 21–75_In_ Ross, R. M. and Allmon, W. D., eds. Causes of evolution—a paleontological perspective. University of Chicago Press, Chicago.Google Scholar

Jackson, J. B. C., and Cheetham, A. H. 1994. Phylogeny reconstruction and the tempo of speciation in cheilostome Bryozoa. Paleobiology 20:407–423.CrossRefGoogle Scholar

Johnston, D. I., and Chatterton, B. D. E. 1982. Some silicified Middle Silurian rostroconchs (Mollusca) from the Mackenzie Mountains, N.W.T., Canada. Canadian Journal of Earth Sciences 20:844–858.CrossRefGoogle Scholar

Kerber, M. 1988. Mikrofossilien aus Unterkambrischen Gesteinen der Montagne Noire, Frankreich. Palaeontographica A 202:127–203.Google Scholar

Kim, J. 1993. Improving the accuracy of phylogenetic estimation by combining different methods. Systematic Biology 42:331–340.CrossRefGoogle Scholar

Levinton, J. S. 1974. Trophic group and evolution of bivalve molluscs. Palaeontology 23:579–585.Google Scholar

Li, W., Tanimura, M., and Sharp, P. M. 1987. An evaluation of the molecular clock hypothesis using mammalian DNA sequences. Journal of Molecular Evolution 25:330–342.CrossRefGoogle ScholarPubMed

MacKinnon, D. I. 1985. New Zealand late Middle Cambrian molluscs and the origin of Rostroconchia and Bivalvia. Alcheringa 9:65–81.CrossRefGoogle Scholar

Maddison, W. P. 1995. Calculating the probability distributions of ancestral states reconstructed by parsimony on phylogenetic trees. Systematic Biology 44:474–481.CrossRefGoogle Scholar

Marshall, C. R. 1990. Confidence intervals on stratigraphic ranges. Paleobiology 16:1–10.CrossRefGoogle Scholar

Mooers, A. Ø., Page, R. D. M., Purvis, A., and Harvey, P. H. 1995. Phylogenetic noise leads to unbalanced cladistic tree reconstructions. Systematic Biology 44:332–342.CrossRefGoogle Scholar

Morris, N. J. 1990. Early radiation of the Mollusca. pp. 73–90_In_ Taylor, P. D. and Larwood, G. P., eds. Major evolutionary radiations. Clarendon, Oxford.Google Scholar

Müller, K. J. 1975. ‘Heraultia’ varensalensis Cobbold (Crustacea) aus dem unteren Kambrium, der älteste Fall von Geschlechts-dimorphismus. Paläontologicishe Zeitschrift 49:168–180.CrossRefGoogle Scholar

Norell, M. A. 1992. Taxic origin and temporal diversity: the effect of phylogeny. pp. 89–118_In_ Novacek, M. J. and Wheeler, Q. D., eds. Extinction and phylogeny. Columbia University Press, New York.Google Scholar

Norell, M. A. 1993. Tree-based approaches to understanding history: comments on ranks, rules, and the quality of the fossil record. American Journal of Science 293-A:407–417.CrossRefGoogle Scholar

Paul, C. R. C. 1977. Evolution of primitive echinoderms. pp. 123–158_in_ Hallam, A., ed. Patterns of evolution. Elsevier, Amsterdam.Google Scholar

Paul, C. R. C. 1988. The phylogeny of the cystoids. Pp.199–213_In_ Paul, C. R. C. and Smith, A. B., eds. Echinoderm phylogeny and evolutionary biology. Clarendon, Oxford.Google Scholar

Peel, J. S. 1991a. The Classes Tergomya and Helcionelloida, and early molluscan evolution. Gr⊘nlands Geologiske Unders⊘gelse Bulletin 161:11–65.Google Scholar

Peel, J. S. 1991b. Functional morphology of the Class Helcionelloida nov., and the early evolution of the Mollusca. pp. 157–177_In_ Simonetta, A. and Conway Morris, S., eds. The early evolution of the Metazoa and the significance of problematic taxa. Cambridge University Press, Cambridge.Google Scholar

Pojeta, J. Jr. 1976. Geographic distribution of Cambrian and Ordovician rostroconch mollusks. pp. 27–36_In_ Gray, J. and Boucot, A. J., eds. Historical biogeography, plate tectonics and the changing environment. Oregon State University Press, Corvallis.Google Scholar

Pojeta, J. Jr., and Runnegar, B. 1976. The paleontology of rostroconch mollusks and the early history of the phylum Mollusca. Geological Survey Professional Paper 968:1–88.Google Scholar

Pojeta, J. Jr., and Runnegar, B. 1985. The early evolution of diasome molluscs. The Mollusca 10:295–336.Google Scholar

Pojeta, J. Jr., Runnegar, B., Morris, N. J., and Newell, N. D. 1972. Rostroconchia: a new class of bivalved mollusks. Science 177:264–267.CrossRefGoogle ScholarPubMed

Pojeta, J. Jr., Gilbert-Tomlinson, J., and Shergold, J. H. 1977. Cambrian and Ordovician rostroconch molluscs from northern Australia. Bureau of Mineral Resources, Geology and Geophysics 171:1–54.Google Scholar

Purvis, A., Nee, S., and Harvey, P. H. 1995. Macroevolutionary inferences from primate phylogeny. Proceedings of the Royal Society of London B 260:329–333.Google ScholarPubMed

Raup, D. M., and Gould, S. J. 1974. Stochastic simulation and evolution of morphology—towards a nomothetic paleontology. Systematic Zoology 23:305–322.CrossRefGoogle Scholar

Rice, J. A. 1988. Mathematical statistics and data analysis. Wadsworth and Brooks, Pacific Grove, Calif.Google Scholar

Rohlf, F. J., Chang, W. S., Sokal, R. R., and Kim, J. 1990. Accuracy of estimated phylogenies: effects of tree topology and evolutionary model. Evolution 44:1671–1684.CrossRefGoogle ScholarPubMed

Runnegar, B. 1978. Origin and evolution of the Class Rostroconchia. Philosophical Transactions of the Royal Society of London B 284:319–333.Google Scholar

Runnegar, B. 1983. Molluscan phylogeny revisited. Memoirs of the Association of Australasian Palaeontologists 1:121–144.Google Scholar

Runnegar, B. 1996. Early evolution of the Mollusca: the fossil record. pp. 77–87_in_ Taylor, J. D., ed. Origin and evolutionary radiation of the Mollusca. Oxford University Press, Oxford.Google Scholar

Sanderson, M. J., and Donoghue, M. J. 1994. Shifts in diversification rate with the origin of angiosperms. Science 264:1590–1593.CrossRefGoogle ScholarPubMed

Sanderson, M. J., and Donoghue, M. J. 1996. Reconstructing shifts in diversification rates on phylogenetic trees. Trends in Ecology and Evolution 11:15–20.CrossRefGoogle ScholarPubMed

Siddall, M. E. 1996. Stratigraphic consistency and the shape of things. Systematic Biology 45:111–115.CrossRefGoogle Scholar

Simpson, G. G. 1944. Tempo and mode in evolution. Columbia University Press, New York.Google Scholar

Smith, A. B. 1988. Patterns of diversification and extinction in early Palaeozoic echinoderms. Palaeontology 31:799–828.Google Scholar

Smith, A. B. 1994. Systematics and the fossil record—documenting evolutionary patterns. Blackwell Scientific, Oxford.CrossRefGoogle Scholar

Smith, A. B., Lafay, B., and Christen, R. 1992. Comparative variation of morphological and molecular evolution through geologic time: 28S ribosomal RNA versus morphology in echinoids. Philosophical Transactions of the Royal Society of London B 338:365–382.Google ScholarPubMed

Smith, A. B., and Littlewood, D. T. J. 1994. Paleontological data and molecular phylogenetic analysis. Paleobiology 20:259–273.CrossRefGoogle Scholar

Sneath, P. H. A., and Sokal, R. R. 1973. Numerical taxonomy. W. H. Freeman, San Francisco.Google Scholar

Sober, E. 1988. Reconstructing the past. MIT Press, Cambridge.Google Scholar

Sokal, R. R., and Rohlf, F. J. 1981. Biometry, 2d ed. W. H. Freeman, New York.Google Scholar

Steiner, G. 1992. Phylogeny and classification of Scaphopoda. Journal of Molluscan Studies 58:385–400.CrossRefGoogle Scholar

Strait, D. S., Moniz, M. A., and Strait, P. T. 1996. Finite mixture coding: a new approach to coding continuous characters. Systematic Biology 45:67–78.CrossRefGoogle Scholar

Strauss, D., and Sadler, P. M. 1989. Classical confidence intervals and Bayesian probability estimates for ends of local taxon ranges. Mathematical Geology 21:411–427.CrossRefGoogle Scholar

Swofford, D. L. 1993. PAUP: Phylogenetic Analysis Using Parsimony, Version 3.1.1. Computer program distributed by the Illinois Natural History Survey, Champaign.Google Scholar

Thorpe, R. S. 1984. Coding morphometric characters for constructing distance Wagner networks. Evolution 38:244–255.CrossRefGoogle ScholarPubMed

Valentine, J. W. 1969. Patterns of taxonomic and ecological structure of the shelf benthos during Phanerozoic time. Palaeontology 12:684–709.Google Scholar

Valentine, J. W. 1980. Determinants of diversity in higher taxonomic categories. Paleobiology 6:444–450.CrossRefGoogle Scholar

Valentine, J. W. 1986. Fossil record of the origin of Baupläne and its implications. pp. 209–222_In_ Raup, D. M. and Jablonski, D., eds. Patterns and processes in the history of life. Springer, Berlin and Heidelberg.CrossRefGoogle Scholar

Valentine, J. W., and Campbell, C. A. 1975. Genetic regulation and the fossil record. American Scientist 63:673–680.Google ScholarPubMed

Valentine, J. W., and Erwin, D. H. 1987. Interpreting great developmental experiments: the fossil record. pp. 71–107_In_ Raff, R. A. and Raff, E. C., eds. Development as an evolutionary process. Liss, New York.Google Scholar

Valentine, J. W., and Walker, T. D. 1986. Diversity trends within a model taxonomic hierarchy. Physica 22:31–42.Google Scholar

Van Valen, L. 1978. Why not to be a cladist. Evolutionary Theory 3:285–299.Google Scholar

Van Valen, L. 1985. A theory of origination and extinction. Evolutionary Theory 7:133–142.Google Scholar

Wagner, P. J. 1995a. Stratigraphic tests of cladistic hypotheses. Paleobiology 21:153–178.CrossRefGoogle Scholar

Wagner, P. J. 1995b. Testing evolutionary constraint hypotheses with early Paleozoic gastropods. Paleobiology 21:248–272.CrossRefGoogle Scholar

Wagner, P. J. In press. Phylogenetics of the earliest gastropods. Smithsonian Institution Contributions to Paleobiology.Google Scholar

Walker, T. D., and Valentine, J. W. 1984. Equilibrium models of evolutionary species diversity and the number of empty niches. American Naturalist 124:887–899.CrossRefGoogle Scholar

Wills, M. A., Briggs, D. E. G., and Fortey, R. A. 1994. Disparity as an evolutionary index: a comparison of Cambrian and Recent arthropods. Paleobiology 20:93–131.CrossRefGoogle Scholar