Variation in dinosaur skeletochronology indicators: implications for age assessment and physiology | Paleobiology | Cambridge Core (original) (raw)

Abstract

Twelve different bones from the skeleton of the holotype specimen of the hadrosaurian dinosaur Hypacrosaurus stebingeri were thin-sectioned to evaluate the significance of lines of arrested growth (LAGs) in age assessments. The presence of an external fundamental system (EFS) at the external surface of the cortex and mature epiphyses indicate that the Hypacrosaurus specimen had reached adulthood and growth had slowed considerably from earlier stages. The number of LAGs varied from none in the pedal phalanx to as many as eight in the tibia and femur. Most elements had experienced considerable Haversian reconstruction that had most likely obliterated many LAGs. The tibia was found to have experienced the least amount of reconstruction, but was still not optimal for skeletochronology because the LAGs were difficult to count near the periosteal surface. Additionally, the numbers of LAGs within the EFS vary considerably around the circumference of a single element and among elements. Counting LAGs from a single bone to assess skeletochronology appears to be unreliable, particularly when a fundamental system exists.

Because LAGs are plesiomorphic for tetrapods, and because they are present in over a dozen orders of mammals, they have no particular physiological meaning that can be generalized to particular amniote groups without independent physiological evidence. Descriptions of dinosaur physiology as “intermediate” between the physiology of living reptiles and that of living birds and mammals may or may not be valid, but cannot be based reliably on the presence of LAGs.

References

Castenet, J., Meunier, F. J., and de Ricqlès, A. 1977. L'enregistrement de la croissance cyclique par le tissu osseux chez les Vertébrés poikilothermes: données comparatives et essai de synthèse. Bulletin Biologique de la France et Belgique 111:183–202.Google Scholar

Castanet, J., Francillon-Vieillot, H., Meunier, F. J., and de Ricqlès, A. 1993. Bone and individual aging. Pp. 245–283_in_ Hall, B. K., ed. Bone, Vol. 7. . CRC Press, London.Google Scholar

Chinsamy, A. 1990. Physiological implications of the bone histology of Syntarsus rhodesiensis (Saurischia: Theropoda). Paleontologia africana 27:77–82.Google Scholar

Chinsamy, A. 1993. Bone histology and growth trajectory of the prosauropod dinosaur Massospondylus carinatus Owen. Modern Geology 18:319–329.Google Scholar

Chinsamy, A. 1994. Dinosaur bone histology: implications and inferences. In Rosenberg, G. D. and Wolberg, D. L., eds. DinoFest. Paleontological Society Special Publication 7:213–227.Google Scholar

Chinsamy, A. 1995. Ontogenetic changes in the bone histology of the Late Jurassic ornithopod Dryosaurus lettowvorbecki. Journal of Vertebrate Paleontology 15:96–104.CrossRefGoogle Scholar

Chinsamy, A., and Dodson, P. 1995. Inside a dinosaur bone. American Scientist 83:174–180.Google Scholar

Chinsamy, A., Chiappe, L. M., and Dodson, P. 1995. Mesozoic avian bone microstructure: physiological implications. Paleobiology 21:561–574.Google Scholar

Chinsamy, A., Rich, T., and Vickers-Rich, P. 1998. Polar dinosaur bone histology. Journal of Vertebrate Paleontology 18:385–390.Google Scholar

Cormack, D. 1987. Ham's histology. Lippincott, New York.Google Scholar

Currie, P. J., and Padian, K. 1997. Encyclopedia of dinosaurs. Academic Press, San Diego.Google Scholar

Curry, K. A. 1998. Histological quantification of growth rates in Apatosaurus. Journal of Vertebrate Paleontology 18(Suppl. 3):36A.Google Scholar

Curry, K. A.. Histological quantification of growth rates in Apatosaurus. Journal of Vertebrate Paleontology.Google Scholar

de Buffrénil, V. 1982. Données préliminaries sur la présence de lignes d'arret de croissance périostiques dans la mandibule du marouin commun, Phocoena phocoena (L.), et leur utilisation comme indicature de l'age. Canadian Journal Zoology 60:2557–2567.CrossRefGoogle Scholar

Dodson, P. 1974. Dinosaurs as dinosaurs. Evolution 28:494–497.Google Scholar

Enlow, D. H., and Brown, S. O. 1956. A comparative histological study of fossil and recent bone tissues, Part I. Texas Journal of Science 8:403–443.Google Scholar

Enlow, D. H., and Brown, S. O. 1957. A comparative histological study of fossil and recent bone tissues, Part II. Texas Journal of Science 9:185–214.Google Scholar

Enlow, D. H., and Brown, S. O. 1958. A comparative histological study of fossil and recent bone tissues, Part III. Texas Journal of Science 10:187–230.Google Scholar

Eurell, J., and Sterchi, D. 1994. Microwavable toludine blue stain for surface staining of undecalcified bone sections. Journal of Histotechnology 17:357–359.Google Scholar

Farlow, J. O. 1990. Dinosaur paleobiology: dinosaur energetics and thermal biology. Pp. 43–55_in_ Weishampel, D. B., Dodson, P., and Osmólska, H., eds. The Dinosauria. University of California Press, Berkeley.Google Scholar

Francillon-Vieillot, H., Arntzen, J. W., and Geraudie, J. 1990. Age, growth and longevity of sympatric Triturus cristatus, T. marmoratus and their hybrids (Amphibia, Urodela): a skeletochronological comparison. Journal of Herpetology 24:13–22.Google Scholar

Horner, J. R., and Currie, P. J. 1994. Embryonic and neonatal morphology and ontogeny of a new species of Hypacrosaurus (Ornithischia, Lambeosauridae) from Montana and Alberta. Pp. 312–336_in_ Carpenter, K., Hirsch, K. F., and Horner, J. R., eds. Dinosaur eggs and babies. Cambridge University Press, New York.Google Scholar

Horner, J. R., Padian, K., and de Ricqlès, A. 1997. Histological analysis of a dinosaur skeleton: evidence of skeletal growth variation. Journal of Morphology 232(3):267.Google Scholar

Horner, J. R., de Ricqlès, A., and Padian, K.. Long bone histology of the hadrosaurid dinosaur Maiasaura peeblesorum: growth dynamics and physiology based on an ontogenetic series of skeletal elements. Journal of Vertebrate Paleontology.Google Scholar

Klezeval', G. A., and Kleinenberg, S. E. 1967. Age determination of mammals from annual layers in teeth and bone. Akademiia Nauk SSSR, Institut Morpologii Zhivotnykh Im. A. N. Seversova, Izdatal'stov “Nauka,” Moscow. .Google Scholar

Ostrom, J. H. 1980. The evidence for endothermy in dinosaurs. In Thomas, R. D. K. and Olson, E. C., eds. A cold look at the warm-blooded dinosaurs. :15–54. Westview Press, Boulder, Colo.Google Scholar

Padian, K. 1997a. Growth lines. Pp. 288–291_in_ Currie, and Padian, .Google Scholar

Padian, K. 1997b. Physiology. Pp. 552–557_in_ Currie, and Padian, .Google Scholar

Padian, K. 1998. When is a bird not a bird? Nature 393:729–30.Google Scholar

Peabody, F. E. 1961. Annual growth zones in vertebrates (living and fossil). Journal of Morphology 108:11–62.Google Scholar

Reid, R. E. H. 1981. Lamellar-zonal bone with zones and annuli in the pelvis of a sauropod dinosaur. Nature 292:49–51.Google Scholar

Peabody, F. E. 1990. Zonal “growth rings” in dinosaurs. Modern Geology 15:19–48.Google Scholar

Peabody, F. E. 1993. Apparent zonation and slowed late growth in a small Cretaceous theropod. Modern Geology 18:391–406.Google Scholar

Peabody, F. E. 1996. Bone histology of the Cleveland-Lloyd dinosaurs and of dinosaurs in general, Part I. Introduction: introduction to bone tissues. Brigham Young University Geology Studies 41:25–72.Google Scholar

Peabody, F. E. 1997a. Histology of bones and teeth. Pp. 329–339_in_ Currie, and Padian, .Google Scholar

Peabody, F. E. 1997b. How dinosaurs grew. Pp. 403–413_in_ Farlow, J. O. and Brett-Surman, M. K., eds. The complete dinosaur. Indiana University Press, Bloomington and Indianapolis.Google Scholar

Peabody, F. E. 1997c. Dinosaurian physiology: the case for “intermediate” dinosaurs. Pp. 449–473_in_ Farlow, J. O. and Brett-Surman, M. K., eds. The complete dinosaur. Indiana University Press, Bloomington and Indianapolis.Google Scholar

de Ricqlès, A. 1975. On bone histology of fossil and living reptiles, with comments on its functional and evolutionary significance. Pp. 123–150_in_ Bellairs, A. d'A. and Cox, C. B., eds. Morphology and biology of reptiles. .Google Scholar

Ricqlès, A. de. 1976. Recherches paléohistogiques sur les os longs des Tétrapodes. VII. Sur la classification, la signification fonctionnelle et l'histoire des tissus osseux des Tétrapodes. 2éme partie: fonctions. Annales de Paléontologie 62:71–126.Google Scholar

de Ricqlès, A. 1979. Quelques remarques sur l'histoire évolutive des tissus squelettiques chez les Vertébrés et plus particulièrement chez les Tétrapodes. Annales de Biologie 18:1–35.Google Scholar

de Ricqlès, A. 1980. Tissue structures of dinosaur bone: functional significance and possible relation to dinosaur physiology. In Thomas, R. D. and Olson, E. C., eds. A cold look at the warm-blooded dinosaurs. :103–139. Westview Press, Boulder, Colo.Google Scholar

de Ricqlès, A. 1983. Cyclical growth in the long limb bones of a sauropod dinosaur. Acta Palaeontologia Polonica 28:225–232.Google Scholar

de Ricqlès, A. 1992. Paleoherpetology now: a point of view. Pp. 97–120_in_ Adler, K. and Costello, D., eds. Herpetology: current research on the biology of amphibians and reptiles. . Society for the Study of Amphibians and Reptiles, Oxford, Ohio.Google Scholar

Ricqlès, A. de, and Bolt, J. 1983. Jaw growth and tooth replacement in Captorhinus aguti (Reptilia, Captorhinomorpha): a morphological and histological analysis. Journal of Vertebrate Paleontology 3:7–24.CrossRefGoogle Scholar

Ricqlés, A. de, Meunier, F. J., Castanet, J., and Francillon-Vieillot, H. 1991. Comparative microstructure of bone. Pp. 1–78_in_ Hall, B. K., ed. Bone, Vol. 3. . CRC Press, Boca Raton, Fla.Google Scholar

Ricqlés, A. de, Padian, K., and Horner, J. R. 1997. Histological evidences of dinosaur growth patterns. In Rocek, Z. and Hart, S., eds. Third world congress of herpetology (Prague), Abstracts, p. 172.Google Scholar

Ricqlés, A. de, Horner, J. R., and Padian, K. 1998. Growth dynamics of the hadrosaurid dinosaur Maiasaura peeblesorum. Journal of Vertebrate Paleontology 18(Suppl. 3):72A.Google Scholar

Ricqlés, A. de, Padian, K., Horner, J. R., and Francillon-Vieillot, H.. Paleohistology of the bones of pterosaurs (Reptilia: Archosauria): anatomy, ontogeny, and biomechanical implications. Zoological Journal of the Linnean Society.Google Scholar

Rimblot-Baly, F., de Ricqlés, A., and Zylberberg, L. 1995. Analyse paléohistologique d'une série de croissance partielle chez Lapparentosaurus madagascariensis (Jurassique moyen): essai sur la dynamique de croissance d'un dinosaure sauropode. Annales de Paléontologie 81:49–86.Google Scholar

Varricchio, D. J. 1993. Bone microstructure of the Upper Cretaceous theropod dinosaur Troodon formosus. Journal of Vertebrate Paleontology 13:99–104.CrossRefGoogle Scholar

Wilson, J. W. 1994. Histological techniques. Pp. 205–234_in_ Leiggi, P. and May, P., eds. Vertebrate paleontological techniques, Vol. 1. Cambridge University Press, New York.Google Scholar