Push–pull model of the primate photopic electroretinogram: A role for hyperpolarizing neurons in shaping the b-wave | Visual Neuroscience | Cambridge Core (original) (raw)

Abstract

Existing models of the primate photopic electroretinogram (ERG) attribute the light-adapted b–wave to activity of depolarizing bipolar cells (DBCs), mediated through a release of potassium that is monitored by Müller cells. However, possible ERG contributions from OFF-bipolar cells (HBCs) and horizontal cells (HzCs) have not been explored. We examined the contribution of these hyperpolarizing second-order retinal cells to the photopic ERG of monkey by applying glutamate analogs to suppress photoreceptor transmission selectively to HBC/HzCs vs. DBCs.

ERGs of Macaca monkeys were recorded at the cornea before and after intravitreal injection of drugs. Photopic responses were elicited by bright 200–220 ms flashes on a steady background of 3.3 log scotopic troland to suppress rod ERG components.

2–amino-4–phosphonobutyric acid (APB), which blocks DBC light responses, abolished the photopic b–wave and indicated that DBC activity is requisite for photopic b–wave production.

However, applying cis–2,3–piperidine dicarboxylic acid (PDA) and kynurenic acid (KYN), to suppress HBCs/HzCs and third-order neurons, revealed a novel ERG response that was entirely positive and was sustained for the duration of the flash. The normally phasic b–wave was subsumed into this new response. Applying n–methyl-dl-aspartate (NMA) did not replicate the PDA+KYN effect, indicating that third-order retinal cells are not involved. This suggests that HBC/HzC activity is critical for shaping the phasic b–wave.

Components attributable to depolarizing vs. hyperpolarizing cells were separated by subtracting waveforms after each drug from responses immediately before. This analysis indicated that DBCs and HBC/HzCs each can produce large but opposing field potentials that nearly cancel and that normally leave only the residual phasic b–wave response in the photopic ERG.

Latency of the DBC component was 5–9 ms slower than the HBC/HzC component. However, once activated, the DBC component had a steeper slope. This resembles properties known for the two types of cone synapses in lower species, in which the sign-preserving HBC/HzC synapse has faster kinetics but probably lower gain than the slower sign-inverting G-protein coupled DBC synapse.

A human patient with “unilateral cone dystrophy” was found to have a positive and sustained ERG that mimicked the monkey ERG after PDA+KYN, indicating that these novel positive photopic responses can occur naturally even without drug application.

These results demonstrate that hyperpolarizing second-order neurons are important for the primate photopic ERG. A “Push-Pull Model” is proposed in which DBC activity is requisite for b–wave production but in which HBC/HzC activity limits the amplitude and controls the shape of the primate photopic b–wave.

References

Aguilar, M. & Stiles, W. S. (1954). Saturation of the rod mechanism of the retina at high levels of stimulation. Optica Acta (London) 1, 59–65.CrossRefGoogle Scholar

Ashmore, J. F. & Copenhagen, D. R. (1980). Different postsynaptic events in two types of retinal bipolar cell. Nature 288, 84–86.Google Scholar

Ashmore, J. F. & Copenhagen, D. R. (1983). An analysis of transmission from cones to hyperpolarizing bipolar cells in the retina of the turtle. Journal of Physiology 340, 569–597.CrossRefGoogle ScholarPubMed

Ashmore, J. F. & Falk, G. J. (1980). Responses of rod bipolar cells in the dark-adapted retina of the dogfish, Scyliorhinus canicula. Journal of Physiology 300, 115–150.CrossRefGoogle ScholarPubMed

Baylor, D. A., Fuortes, M. G. F. & O’Bryan, P. M. (1971). Receptive fields of single cones in the retina of the turtle. Journal of Physiology 214, 256–294.Google Scholar

Baylor, D. A. & Fetttplace, R. (1977 a). Transmission from photoreceptors to ganglion cells in turtle retina. Journal of Physiology 271, 391–424.CrossRefGoogle ScholarPubMed

Baylor, D. A. & Fetttplace, R. (1977 b). Kinetics of synaptic transfer from receptors to ganglion cells in turtle retina. Journal of Physiology 271, 425–448.CrossRefGoogle ScholarPubMed

Blake, J. F., Brown, M. W. & Collingridge, G. L. (1988). CNQX blocks acidic amino acid induced depolarizations and synaptic components mediated by non-NMDA receptors in rat hippocampal slices. Neuroscience Letters 89, 182–186.CrossRefGoogle ScholarPubMed

Brew, H., Gray, P. T. A., Mobbs, P. & Attwell, D. (1986). Endfeet of retinal glial cells have higher densities of ion channels that mediate K+ buffering. Nature 324, 466–468.CrossRefGoogle ScholarPubMed

Brigell, M. & Celesia, G. G. (1992). Electrophysiological evaluation of the neuro-ophthalmology patient: An algorithm for clinical use. Seminars in Ophthalmology 7, 65–78.CrossRefGoogle ScholarPubMed

Bush, R. A. & Sieving, P. A. (1994). A proximal retinal contribution to the primate photopic _a_–wave. Investigative Ophthalmology and Visual Science 35, 635–645.Google Scholar

Cervetto, L. & Piccolino, M. (1974). Synaptic transmission between photoreceptors and horizontal cells in the turtle retina. Science 183, 417–418.CrossRefGoogle ScholarPubMed

Coleman, P. A., Massey, S. C. & Miller, R. F. (1986). Kynurenic acid distinguishes kainate and quisqualate receptors in the vertebrate retina. Brain Research 381, 172–175.CrossRefGoogle ScholarPubMed

Copenhagen, D. R., Ashmore, J. F. & Schnapf, J. K. (1983). Kinetics of synaptic transmission from photoreceptors to horizontal and bipolar cells in turtle retina. Vision Research 23, 363–369.CrossRefGoogle ScholarPubMed

Dacheux, R. F. & Miller, R. F. (1976). Photoreceptor-bipolar cell transmission in the perfused retina eyecup of the mudpuppy. Science 191, 963–964.CrossRefGoogle ScholarPubMed

Daw, N. W., Jensen, R. J. & Bruken, W. J. (1990). Rod pathways in mammalian retinae. Trends in Neuroscience 13, 110–115.CrossRefGoogle ScholarPubMed

DeMarco, P. J. & Powers, M. K. (1989). Sensitivity of ERG components from dark-adapted goldfish retina treated with APB. Brain Research 482, 317–323.Google Scholar

deMonasterio, F. M., Gouras, P. & Tolhurst, D. J. (1975). Trichromatic color opponency in ganglion cells of the rhesus monkey retina. Journal of Physiology 251, 197–216.Google Scholar

Dick, E., Miller, R. F. (1978). Light-evoked potassium activity in mud-puppy retina: Its relationship to the _b_–wave of the electroretinogram. Brain Research 154, 388–394.Google Scholar

Dick, E. & Miller, R. F. & Bloomfield, S. (1985). Extracellular K+ activity changes related to electroretinogram components: II. Rabbit (E-type) retinas. Journal of General Physiology 85, 911–931.CrossRefGoogle ScholarPubMed

Dolan, R. P. & Schiller, P. H. (1989). Evidence for only depolarizing rod bipolar cells in the primate retina. Visual Neuroscience 2, 421–424.CrossRefGoogle ScholarPubMed

Evers, H. U. & Gouras, P. (1986). Three cone mechanisms in the primate electroretinogram: two with, one without off-center bipolar responses. Vision Research 26, 245–254.CrossRefGoogle ScholarPubMed

Faber, D. S. (1969). Analysis of slow transretinal potential in response to light. Ph.D. Dissertation, State University of New York at Buffalo.Google Scholar

Falk, G. & Shiells, R. A. (1986). Do horizontal cell responses contribute to the electroretinogram (ERG) in dogfish? Journal of Physiology 381, 113P.Google Scholar

Frishman, L. J. & Steinberg, R. H. (1989). Light-evoked changes in (K+)0 in proximal portion of the dark-adapted cat retina. Journal of Neurophysiology 61, 1233–1243.CrossRefGoogle Scholar

Frishman, L. J., Yamamoto, F, Bogucka, J. & Steinberg, R. H. (1992). Light-evoked changes in (K+)0 in proximal portion of light-adapted cat retina. Journal of Neurophysiology 67, 1201–1212.Google Scholar

Gallemore, R. P. & Steinberg, R. H. (1991). Cobalt increases photoreceptor-dependent responses of the chick retinal pigment epithelium. Investigative Ophthalmology and Visual Science 32, 3041–3052.Google ScholarPubMed

Granit, R. (1947). Sensory Mechanisms of the Retina. Oxford University Press, London.Google Scholar

Heynen, H., Wachtmeister, L. & VanNorren, D. (1985). Origin of the oscillatory potentials in the primate retina. Vision Research 25, 1365–1374.CrossRefGoogle ScholarPubMed

Honore, T., Davies, S. N., Drejer, J., Fletcher, E. J., Jacobsen, P., Lodge, D. & Nielsen, F. E. (1988). Quinoxalinediones: Potent competitive non-NMDA glutamate receptor antagonists. Science 241, 701–703.CrossRefGoogle ScholarPubMed

Houchin, K. W., Purple, R. L. & Wirtschafter, J. D. (1991). X-linked congenital stationary night-blindness and depolarizing bipolar system dysfunction (ARVO Abstract). Investigative Ophthalmology and Visual Science 32, 1229.Google Scholar

Jardon, B., Yucel, H. & Bonaventure, N. (1989). Glutamatergic separation of ON and OFF retinal channels: Possible modulation by glycine and acetylcholine. European Journal of Pharmacology 162, 215–224.CrossRefGoogle Scholar

Kaneko, A., Pinto, L. H. & Tachibana, M. (1989). Transient calcium current of retinal bipolar cells of the mouse. Journal of Physiology 410, 613–629.Google Scholar

Kaneko, A. & Shimazaki, H. (1976). Synaptic transmission from photoreceptors to bipolar and horizontal cells in the carp retina. Cold Spring Harbor Symposium on Quantitative Biology 40, 537–546.Google Scholar

Kaneko, A. & Tachibana, M. (1985). A voltage-clamp analysis of membrane currents in solitary bipolar cells dissociated from Carassius auratus. Journal of Physiology 358, 131–152.Google Scholar

Karschin, A. & Wassle, H. (1990). Voltage- and transmitter-gated currents in isolated rod bipolar cells of rat retina. Journal of Neurophysiology 63, 860–876.CrossRefGoogle ScholarPubMed

Karwoski, C. J. & Proenza, L. M. (1977). Relationship between Müller cell responses, a local transretinal potential, and potassium flux. Journal of Neurophysiology 40, 244–259.Google Scholar

Katz, B. J., Wen, R., Zheng, J. B., Xu, Z. A. & Oakley, B. (1991). _M-_wave of the toad electroretinogram. Journal of Neurophysiology 66, 1927–1940.CrossRefGoogle ScholarPubMed

Klein, R. P., Ripps, H. & Dowling, J. E. (1978). Generation of _b_–wave currents in the skate retina. Proceedings of the National Academy of Sciences of the U.S.A. 75, 5727–5731.CrossRefGoogle Scholar

Kleinschmidt, J. & Dowling, J. E. (1975). Intracellular recordings from gecko photoreceptors during light and dark adaptation. Journal of General Physiology 66, 617–648.Google Scholar

Knapp, A. G. & Schiller, P. H. (1984). The contribution of ON-bipolar cells to the electroretinogram of rabbits and monkeys. Vision Research 24, 1841–1846.CrossRefGoogle Scholar

Kuffler, J. G. & Nichols, J. G. (1966). The physiology of neuroglial cells. Ergebnisse der Physiologic Biologischen Chemie und Experi-mentellen Pharmakologie 57, 1–90.Google ScholarPubMed

Lasater, E. (1988). Membrane currents of retinal bipolar cells in culture. Journal of Neurophysiology 60, 1460–1480.CrossRefGoogle ScholarPubMed

Malpeli, S. W. & Schiller, P. H. (1978). Lack of blue OFF-center cells in the visual system of the monkey. Brain Research 141, 385–389.CrossRefGoogle ScholarPubMed

Marc, R. E., Stell, W. K., Bok, D. & Lam, DM-K. (1978). GABA-ergic pathways in the goldfish retina. Journal of Comparative Neurology 182, 221–246.CrossRefGoogle ScholarPubMed

Mariani, A. P. (1984 a). Bipolar cells in monkey retina selective for cones likely to be blue sensitive. Nature 308, 184–186.CrossRefGoogle ScholarPubMed

Mariani, A. P. (1984 b). The neuronal organization of the outer plexi-form layer of the primate retina. International Reviews of Cytology 86, 285–320.CrossRefGoogle Scholar

Massey, S. C. (1990). Cell types using glutamate as a neurotransmitter in the vertebrate retina. Progress in Retinal Research 10, 399–426.Google Scholar

Massey, S. C, Redburn, D. A. & Crawford, M. L. J. (1983). The effects of 2–amino-4–phosphonobutyric acid (APB) on the ERG and ganglion cell discharge of rabbit retina. Vision Research 23, 1607–1613.CrossRefGoogle ScholarPubMed

Mayer, M. L. & Westbrook, G. L. (1987). The physiology of excitatory amino acids in the vertebrate central nervous system. Progress in Neurobiology 28, 197–276.CrossRefGoogle ScholarPubMed

Miller, R. F. (1973). Role of K+ in generation of _b_–wave of electroretinogram. Journal of Neurophysiology 36, 28–38.CrossRefGoogle ScholarPubMed

Miller, R. F. & Dowling, J. E. (1970). Intracellular responses of the Müller (glial) cells of mudpuppy retina: Their relation to the _b_–wave of the electroretinogram. Journal of Neurophysiology 33, 323–341.CrossRefGoogle Scholar

Miyake, Y., Yagasaki, K., Horiguchi, M. & Kawase, Y. (1987). ON- and OFF-responses in photopic electroretinogram in complete and incomplete types of congenital stationary night blindness. Japanese Journal of Ophthalmology 31, 81–87.Google ScholarPubMed

Muller, F., Wässle, H. & Voigt, T. (1988). Pharmacological modulation of the rod pathway in the cat retina. Journal of Neurophysiology 59, 1657–1672.Google Scholar

Naarendorp, F. & Sieving, P. A. (1991). The scotopic threshold response of the cat ERG is suppressed selectively by GABA and glycine. Vision Research 31, 1–15.Google Scholar

Nawy, S. & Copenhagen, D. R. (1987). Multiple classes of glutamate receptor on depolarizing bipolar cells in retina. Nature 325, 56–58.CrossRefGoogle ScholarPubMed

Nawy, S. & Jahr, C. E. (1990). Suppression by glutamate of cGMP-activated conductance in retinal bipolar cells. Nature 346, 269–271.Google Scholar

Nawy, S., Sie, A. & Copenhagen, D. R. (1989). The glutamate analog 2–amino-4–phosphonobutyrate antagonizes synaptic transmission from cones to horizontal cells in the goldfish retina. Proceedings of the National Academy of Sciences of the U.S.A. 86, 1726–1730.Google Scholar

Newman, E. A. (1985). Voltage-dependent calcium and potassium channels in retinal glial cells. Nature 317, 809–811.CrossRefGoogle ScholarPubMed

Newman, E. A. & Odette, L. L. (1984). Model of electroretinogram _b_–wave generation: A test of the K+ hypothesis. Journal of Neurophysiology 51, 164–182.CrossRefGoogle ScholarPubMed

Nilius, B. & Reichenbach, A. (1988). Efficient K+ buffering by mammalian retinal glial cells is due to cooperation of specialized ion channels. European Journal of Physiology 411, 654–660.Google Scholar

Noell, W. K. (1953). The origin of the electroretinogram. American Journal of Ophthalmology 28, 78–90.Google Scholar

Oakley, B. II, Flaming, D.G. & Brown, K.T. (1979). Effects of the rod receptor potential upon retinal extracellular potassium concentration. Journal of General Physiology 74, 713–737.Google Scholar

Oakley, B. & Green, D. G. (1976). Correlation of light-induced changes in retinal extracellular potassium concentration with the _c_–wave of the electroretinogram. Journal of Neurophysiology 39, 1117–1133.CrossRefGoogle ScholarPubMed

Penn, R. D. & Hagins, W. A. (1969). Signal transmission along retinal rods and the origin of the electroretinogram _a_–wave. Nature 223, 201–204.Google Scholar

Porciatti, V., Bagnoli, P. & Alesci, R. (1987). ON- and OFF-activityin the retinal and tectal responses to focal stimulation with uniform or patterned stimuli. Clinical Vision Sciences 2, 93–102.Google Scholar

Sarantis, M., Everett, K. & Attwell, D. (1988). A presynaptic action of glutamate at the cone output synapse. Nature 322, 451–453.Google Scholar

Shiells, R. A. & Falk, G. (1990). Glutamate receptors of rod bipolar cells are linked to a cyclic GMP cascade via a G-protein. Proceedings of the Royal Society B (London) 242, 91–94.Google Scholar

Shiells, R. A., Falk, G. & Naghshineh, S. (1981). Action of glutamate and aspartate analogues on rod horizontal and bipolar cells. Nature 294, 592–594.CrossRefGoogle ScholarPubMed

Shingai, R. & Quandt, F. N. (1986). Single inward rectifier channels in horizontal cells. Brain Research 369, 65–74.CrossRefGoogle ScholarPubMed

Sieving, P. A. (1993). AOS Thesis: Photopic ON- and OFF-pathway abnormalities in retinal dystrophies. Transactions of the American Ophthalmological Society LXXXXI, 701–773.Google Scholar

Slaughter, M. M. & Miller, R. F. (1981). 2–amino-4–phosphonobutyric acid: A new pharmacological tool for retina research. Science 211, 182–185.CrossRefGoogle ScholarPubMed

Slaughter, M. M. & Miller, R. F. (1983 a). Bipolar cells in the mud-puppy retina use an excitatory amino acid neurotransmitter. Nature 303, 537–538.Google Scholar

Slaughter, M. M. & Miller, R. F. (1983 b). An excitatory amino acid antagonist blocks cone input to sign-conserving second-order retinal neurons. Science 219, 1230–1232.Google Scholar

Slaughter, M. M. & Miller, R. F. (1983 c). The role of excitatory amino acid transmitters in the mudpuppy retina: An analysis with kainic acid and N-methyl aspartate. Journal of Neuroscience 3, 1701–1711.Google Scholar

Slaughter, M. M. & Miller, R. F. (1985). Identification of a distinct synaptic glutamate receptor on horizontal cells in mudpuppy retina. Nature 314, 96–97.Google Scholar

Smith, R. G., Freed, M. & Sterling, P. (1986). Microcircuitry of the dark-adapted cat retina: Functional architecture of the rod-cone network. Journal of Neurophysiology 6, 3505–3517.Google ScholarPubMed

IIISmith, E. L., Harwerth, R. S., Crawford, M. L. J & Duncan, G. C. (1989). Contribution of the retinal ON channels to scotopic and photopic spectral sensitivity. Visual Neuroscience 3, 225–239.CrossRefGoogle ScholarPubMed

Sperling, H. G. & Mills, S. L. (1991). Red-green interactions in the spectral sensitivity of primates as derived from ERG and behavioral data. Visual Neuroscience 7, 75–86.Google Scholar

Sterling, P., Freed, M. A. & Smith, R. G. (1986). Microcircuitry and functional architecture of the cat retina. Trends in Neuroscience 9, 186–192.CrossRefGoogle Scholar

Sterling, P., Freed, M. A. & Smith, R. G. (1988). Architecture of rod and cone circuits to the ON-beta ganglion cell. Journal of Neurophysiology 8, 623–642.Google Scholar

Stockton, R. A. & Slaughter, M. M. (1989). _B_–wave of the electroretinogram: A reflection of ON bipolar cell activity. Journal of General Physiology 93, 101–122.Google Scholar

Tachibana, M. & Kaneko, A. (1984). GABA acts at the axon terminals of turtle photoreceptors: Differences in sensitivity among cell types. Proceedings of the National Academy of Sciences of the U.S.A. 85, 5315–5319.CrossRefGoogle Scholar

Wakabayashi, K., Gieser, J. & Sieving, P. A. (1988). Aspartate separation of the scotopic threshold response (STR) from the photo-receptor _a_–wave of the cat and monkey ERG. Investigative Ophthalmology and Visual Science 29, 1615–1622.Google Scholar

Wassle, H., Yamashita, M., Greferath, U., Grunert, U. & Müller, F. (1991). The rod bipolar cell of the mammalian retina. Visual Neuroscience 7, 99–112.CrossRefGoogle ScholarPubMed

Wen, R. & Oakley, B. (1990). K(+)-evoked Müller cell depolarization generates _b_–wave of electroretinogram in toad retina. Proceedings of the National Academy of Sciences of the U.S.A. 87, 2117–2121.CrossRefGoogle ScholarPubMed

Witkovsky, P., Dudek, F. E. & Ripps, H. (1975). Slow PIII component of the carp electroretinogram. Journal of General Physiology 65, 119–134.CrossRefGoogle ScholarPubMed

Witkovsky, P., Stone, S. & Ripps, H. (1985). Pharmacological modification of the light-induced responses of Müuller (glial) cells in the amphibian retina. Brain Research 328, 111–120.CrossRefGoogle Scholar

Wu, S. M. (1991). Input-output relations of the feedback synapse between horizontal cells and cones in the tiger salamander retina. Journal of Neurophysiology 65, 1197–1206.CrossRefGoogle ScholarPubMed

Xu, X. & Karwoski, C. J. (1993). Current sources and sinks associated with the ERG _b_–wave. Investigative Ophthalmology and Visual Science (ARVO Abstract #2807), 34, 1272.Google Scholar

Xu, X., Xu, J., Huang, B., Livsey, C. T. & Karwoski, C. J. (1991). Comparison of pharmacological agents (aspartate vs. aminophos-phonobutyric + kyurenic acids) to block synaptic transmission from retinal photoreceptors in frog. Experimental Eye Research 52, 691–698.Google Scholar

Yamashita, M. & Wassle, H. (1991). Responses of rod bipolar cells isolated from the rat retina to the glutamate agonist 2–amino-4–phosphonobutyric acid (APB). Journal of Neuroscience 11(8), 2372–2382.Google Scholar

Yang, X.-L. & Wu, S. M. (1989). Effects of CNQX, APB, PDA, and kynurenate on horizontal cells of the tiger salamander retina. Visual Neuroscience 3, 207–212.CrossRefGoogle ScholarPubMed

Young, R. S. L. (1991). Low-frequency component of the photopic ERG in patients with X-linked congenital stationary night blindness. Clinical Vision Sciences 4, 309–315.Google Scholar

Zervas, J. P. & Smith, J. L. (1987). Neuro-ophthalmic presentation of cone dysfunction syndromes in the adult. Journal of Clinical Neuro-Ophthalmology 7, 202–218.Google Scholar