Modelling of material pitting from cavitation bubble collapse | Journal of Fluid Mechanics | Cambridge Core (original) (raw)

Abstract

Material pitting from cavitation bubble collapse is investigated numerically including two-way fluid–structure interaction (FSI). A hybrid numerical approach which links an incompressible boundary element method (BEM) solver and a compressible finite difference flow solver is applied to capture non-spherical bubble dynamics efficiently and accurately. The flow codes solve the fluid dynamics while intimately coupling the solution with a finite element structure code to enable simulation of the full FSI. During bubble collapse high impulsive pressures result from the impact of the bubble re-entrant jet on the material surface and from the collapse of the remaining bubble ring. A pit forms on the material surface when the impulsive pressure is large enough to result in high equivalent stresses exceeding the material yield stress. The results depend on bubble dynamics parameters such as the size of the bubble at its maximum volume, the bubble standoff distance from the material wall, and the pressure driving the bubble collapse. The effects of these parameters on the re-entrant jet, the following bubble ring collapse pressure, and the generated material pit characteristics are investigated.

References

Amirkhizi, A. V., Isaacs, J., McGee, J. & Nemat-Nasser, S. 2006 An experimentally-based viscoelastic constitutive model for polyurea, including pressure and temperature effects. Phil. Mag. 86 (36), 5847–5866.CrossRefGoogle Scholar

Anderson, J. D. 1990 Modern Compressible Flow: with Historical Perspective, vol. 12. McGraw-Hill.Google Scholar

Blake, J. R. & Gibson, D. C. 1987 Cavitation bubbles near boundaries. Annu. Rev. Fluid Mech. 19, 99–124.CrossRefGoogle Scholar

Chahine, G. L. 1982 Experimental and asymptotic study of non-spherical bubble collapse. Appl. Sci. Res. 38, 187–197.CrossRefGoogle Scholar

Chahine, G. L. 1993 Cavitation dynamics at microscale level. J. Heart Valve Dis. 3, 102–116.Google Scholar

Chahine, G. L. 2014 Modeling of cavitation dynamics and interaction with material. In Advanced Experimental and Numerical Techniques for Cavitation Erosion Prediction (ed. Kim, K. H., Chahine, G. L., Franc, J. P. & Karimi, A.), chap. 6. Springer.Google Scholar

Chahine, G. L., Annasami, R., Hsiao, C.-T. & Harris, G. 2006 Scaling rules for the prediction on UNDEX bubble re-entering jet parameters. SAVIAC Crit. Technol. Shock Vib. 4 (1), 1–12.Google Scholar

Chahine, G. L., Duraiswami, R. & Kalumuck, K. M.1996 Boundary element method for calculating 2-D and 3-D underwater explosion bubble loading on nearby structures. Report NSWCDD/TR-93/46. Naval Surface Warfare Center, Weapons Research and Technology Department, September (limited distribution).Google Scholar

Chahine, G. L. & Kalumuck, K. M. 1998a BEM software for free surface flow simulation including fluid structure interaction effects. Intl J. Comput. Appl. Technol. 11 (3/4/5), 177–199.Google Scholar

Chahine, G. L. & Kalumuck, K. M. 1998b The influence of structural deformation on water jet impact loading. J. Fluids Struct. 12 (1), 103–121.CrossRefGoogle Scholar

Chahine, G. L. & Perdue, T. O. 1990 Simulation of the three-dimensional behavior of an unsteady large bubble near a structure. In 3rd International Colloquium on Drops and Bubbles, Monterey, CA, AIP Conf. Proc., vol. 197, p. 188.Google Scholar

Chahine, G. L. & Shen, Y. T. 1986 Bubble dynamics and cavitation inception in cavitation susceptibility meter. Trans. ASME: J. Fluids Engng 108, 444–452.Google Scholar

Colella, P. 1985 A direct Eulerian MUSCL scheme for gas dynamics. SIAM J. Sci. Stat. Comput. 6 (1), 104–117.CrossRefGoogle Scholar

Crum, L. A. 1979 Surface oscillations and jet development in pulsating bubbles. J. Phys. Paris 40 (supplément au N. 11), c8-285 colloque c8.CrossRefGoogle Scholar

Duncan, J. H., Milligan, C. D. & Zhange, S. 1991 On the interaction of a collapsing cavity and a compilant wall. J. Fluid Mech. 226, 401–423.CrossRefGoogle Scholar

Duncan, J. H., Milligan, C. D. & Zhang, S. 1996 On the interaction between a bubble and submerged compliant structure. J. Sound Vib. 197, 17–44.CrossRefGoogle Scholar

Harris, G. S., Illamni, R., Lewis, W., Rye, K. & Chahine, G. L.2009 Underwater explosion bubble phenomena tests near a simulated dam structure. IHTR 10-3055, November 1. Naval Surface Warfare Center – Indian Head Division.Google Scholar

Hsiao, C.-T. & Chahine, G. L. 2013a Development of compressible–incompressible link to efficiently model bubble dynamics near floating body. Adv. Bound. Element Meshless Tech. XIV, 141–152.Google Scholar

Hsiao, C.-T. & Chahine, G. L. 2013b Breakup of finite thickness viscous shell microbubbles by ultrasound: a simplified zero thickness shell model. J. Acoust. Soc. Am. 133 (4), 1897–1910.CrossRefGoogle ScholarPubMed

Jayaprakash, A., Hsiao, C.-T. & Chahine, G. L. 2012 Numerical and experimental study of the interaction of a spark-generated bubble and a vertical wall. Trans. ASME: J. Fluids Engng 134, 031301.Google Scholar

Jones, I. R. & Edwards, D. H. 1960 An experimental study of the forces generated by the collapse of transient cavities in water. J. Fluid Mech. 7, 596–609.CrossRefGoogle Scholar

Kalumuck, K. M., Chahine, G. L. & Hsiao, C.-T. 2003 Simulation of surface piercing body coupled response to underwater bubble dynamics utilizing 3DynaFS©, a three-dimensional BEM code. Comput. Mech. 32, 319–326.Google Scholar

Kalumuck, K. M., Duraiswami, R. & Chahine, G. L. 1995 Bubble dynamics fluid–structure interaction simulation on coupling fluid BEM and structural FEM codes. J. Fluids Struct. 9, 861–883.CrossRefGoogle Scholar

Kapahi, A., Hsiao, C.-T. & Chahine, G. L. 2014 A multi-material flow solver for high speed compressible flow applications. Comput. Fluids (in press).Google Scholar

Key, S. W.1974 HONDO-a finite element computer program for the large deformation dynamics response of axisymmetric solids. Report 74-0039. Sandia National Laboratories, Albuquerque, NM.Google Scholar

Kim, K. H., Chahine, G. L., Franc, J. P. & Karimi, A. 2014 Advanced Experimental and Numerical Techniques for Cavitation Erosion Prediction. Springer.CrossRefGoogle Scholar

Madadi-Kandjani, E. & Xiong, Q. 2014 Validity of the spring-backed membrane model for bubble-wall interactions with compliant walls. Comput. Fluids 96, 116–121.CrossRefGoogle Scholar

Naude, C. F. & Ellis, A. T. 1961 On the mechanism of cavitation damage by non-hemispherical cavities collapsing in contact with a solid boundary. Trans. ASME: J. Basic Engng 83, 648–656.CrossRefGoogle Scholar

Philipp, A. & Lauterborn, W. 1998 Cavitation erosion by single laser-produced bubbles. J. Fluid Mech. 361, 75–116.CrossRefGoogle Scholar

Plesset, M. S. & Chapman, R. B. 1971 Collapse of an initially spherical vapour cavity in the neighborhood of a solid boundary. J. Fluid Mech. 47 (2), 283–290.CrossRefGoogle Scholar

Rayleigh, Lord 1917 On the pressure developed in a liquid during the collapse of a spherical cavity. Phil. Mag. 34, 94–98.CrossRefGoogle Scholar

Vogel, A. & Lauterborn, W. 1988 Acoustic transient generation by laser-produced cavitation bubbles near solid boundaries. J. Acoust. Soc. Am. 84, 719–731.CrossRefGoogle Scholar

Wang, Q. X. 2013 Underwater explosion bubble dynamics in a compressible liquid. Phys. Fluids 25, 072104.CrossRefGoogle Scholar

Wang, Q. X. & Blake, J. R. 2010 Non-spherical bubble dynamics in a compressible liquid. Part 1. Travelling acoustic wave. J. Fluid Mech. 659, 191–224.CrossRefGoogle Scholar

Wang, Q. X. & Blake, J. R. 2011 Non-spherical bubble dynamics in a compressible liquid. Part 2. Acoustic standing wave. J. Fluid Mech. 679, 559–581.CrossRefGoogle Scholar

Wardlaw, A. B. Jr. & Luton, A. J. 2000 Fluid structure interaction for close-in explosion. Shock Vib. 7, 265–275.CrossRefGoogle Scholar

Wardlaw, A. B., Luton, J. A., Renzi, J. R., Kiddy, K. C. & McKeown, R. M.2003 The Gemini Euler solver for the coupled simulation of underwater explosions. Tech. Rep. 2500, November. Naval Surface Warfare Center – Indian Head Division.Google Scholar

Whirley, R. G. & Engelmann, B. E.1993 DYNA3D: a nonlinear, explicit, three-dimensional finite element code for solid and structural mechanics – user manual. Rep. UCRL-MA-107254 Rev. 1. Lawrence Livermore National Laboratory, November.CrossRefGoogle Scholar

Zel’Dovich, Y. B. & Raizer, Y. P. 2002 Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Dover.Google Scholar

Zhang, S., Duncan, J. H. & Chahine, G. L. 1993 The final stage of the collapse of a cavitation bubble near a rigid wall. J. Fluid Mech. 257, 147–181.CrossRefGoogle Scholar