Australidea (Malmideaceae, Lecanorales), a new genus of lecideoid lichens, with notes on the genus Malcolmiella | The Lichenologist | Cambridge Core (original) (raw)

Abstract

The new genus Australidea Kantvilas, Wedin & M. Svensson is described to accommodate Lecidea canorufescens Kremp., a widespread lichen in temperate Australasia. It is characterized by a crustose thallus with a green photobiont, reddish brown, biatorine apothecia with an internally hyaline, cupulate proper exciple constructed of branched and anastomosing hyphae, mainly simple paraphyses, 8-spored, Porpidia-type asci and simple, hyaline, non-halonate ascospores. A phylogenetic analysis places the new genus in the family Malmideaceae. Lecidea canorufescens Kremp., L. glandulosa C. Knight, L. immarginata R. Br. ex Cromb. and L. intervertens Nyl. are lectotypified. These names, plus L. dacrydii Müll. Arg. and L. eucheila Zahlbr., are all synonyms of Australidea canorufescens (Kremp.) Kantvilas, Wedin & M. Svensson comb. nov. Several genera superficially similar to Australidea, including Malcolmiella Vĕzda, Malmidea Kalb et al. and Myochroidea Printzen et al., are compared. A comprehensive anatomical and morphological description of the genus Malcolmiella, recorded for Tasmania for the first time, is also provided. The new combination M. interversa (Nyl.) Kantvilas, Wedin & M. Svensson is introduced and the names M. cinereovirens Vĕzda and M. cinereovirens var. isidiata Vĕzda are reduced to synonyms. The systematic position of this genus remains unclear, although phylogenetic analysis suggests its affinities lie with a group of genera that includes Bryobilimbia Fryday et al., Romjularia Timdal and Clauzadea Hafellner & Bellem.

References

Andersen, HL and Ekman, S (2005) Disintegration of the Micareaceae (lichenized Ascomycota): a molecular phylogeny based on mitochondrial rDNA sequences. Mycological Research 109, 21–30.10.1017/S0953756204001625CrossRefGoogle ScholarPubMed

Aptroot, A, Saipunkaew, W, Sipman, HJM, Sparrius, LB and Wolseley, PA (2007) New lichens from Thailand, mainly microlichens from Chiang Mai. Fungal Diversity 24, 75–134.Google Scholar

Breuss, O and Lücking, R (2015) Three new lichen species from Nicaragua, with keys to the known species of Eugeniella and Malmidea. Lichenologist 47, 9–20.10.1017/S0024282914000565CrossRefGoogle Scholar

Cáceres, ME (2007) The corticolous crustose and microfoliose lichens of northeastern Brazil. Libri Botanici 22, 1–168.Google Scholar

Cáceres, MES, Aptroot, A, Mendonça, CO, Santos, LA and Lücking, R (2017) Sprucidea, a further new genus of rain forest lichens in the family Malmideaceae (Ascomycota). Bryologist 120, 202–211.10.1639/0007-2745-120.2.202CrossRefGoogle Scholar

Crombie, JM (1880) Enumeration of Australian lichens in Herb. Robert Brown (Brit. Mus.), with descriptions of new species. Journal of the Linnean Society, Botany 17, 390–401.10.1111/j.1095-8339.1879.tb00447.xCrossRefGoogle Scholar

Döring, H, Grube, M, Clerc, P and Wedin, M (2000) Mycobiont-specific PCR primers for the nuclear ITS and LSU rDNA from lichenized ascomycetes. Lichenologist 32, 200–204.10.1006/lich.1999.0250CrossRefGoogle Scholar

Ekman, S, Andersen, HL and Wedin, M (2008) The limitations of ancestral state reconstruction and the evolution of the ascus in the Lecanorales. Systematic Biology 57, 141–156.10.1080/10635150801910451CrossRefGoogle ScholarPubMed

Ertz, D, Fischer, E, Killmann, D, Razafindrahaja, T and Sérusiaux, E (2013) Savoronala, a new genus of Malmideaceae (Lecanorales) from Madagascar with stipes producing sporodochia. Mycological Progress 12, 645–656.10.1007/s11557-012-0871-5CrossRefGoogle Scholar

Flakus, A, Etayo, J, Pérez-Ortega, S, Kukwa, M, Palice, Z and Rodriguez, Flakus P (2019) A new genus, Zhurbenkoa, and a novel nutritional mode revealed in the family Malmideaceae (Lecanoromycetes, Ascomycota). Mycologia 111, 593–611.10.1080/00275514.2019.1603500CrossRefGoogle Scholar

Fryday, AM and Hertel, H (2014) A contribution to the family Lecideaceae s. lat. (Lecanoromycetidae inc. sed., lichenized Ascomycota) in the southern subpolar region; including eight new species and some revised generic circumscriptions. Lichenologist 46, 389–412.10.1017/S0024282913000704CrossRefGoogle Scholar

Fryday, AM, Printzen, C and Ekman, S (2014) Bryobilimbia, a new generic name for Lecidea hypnorum and closely related species. Lichenologist 46, 25–37.10.1017/S0024282913000625CrossRefGoogle Scholar

Galloway, DJ (1985) Flora of New Zealand Lichens. Wellington: Government Printer.Google Scholar

Galloway, DJ (2007) Flora of New Zealand Lichens. Revised Second Edition. Volume 1. Lincoln, New Zealand: Manaaki Whenua Press.Google Scholar

Gaya, E, Högnabba, F, Holguin, A, Molnar, K, Fernández-Brime, S, Stenroos, S, Arup, U, Søchting, U, van den Boom, P, Lücking, R, et al. (2012) Implementing a cumulative supermatrix approach for a comprehensive phylogenetic study of the Teloschistales (Pezizomycotina, Ascomycota). Molecular Phylogenetics and Evolution 63, 374–387.10.1016/j.ympev.2012.01.012CrossRefGoogle Scholar

Guzow-Krzemińska, B, Flakus, A, Kosecka, M, Jablońska, A, Rodriguez-Flakus, P and Kukwa, M (2019) New species and records of lichens from Bolivia. Phytotaxa 397, 257–279.10.11646/phytotaxa.397.4.1CrossRefGoogle Scholar

Hafellner, J (1984) Studien in Richtung einer natürlicheren Gliederung der Sammelfamilien Lecanoraceae und Lecideaceae. Beiheft zur Nova Hedwigia 79, 241–371.Google Scholar

Hertel, H (1984) Über saxicole, lecideide Flechten der Subantarktis. Beiheft zur Nova Hedwigia 79, 399–500.Google Scholar

Hertel, H and Rambold, G (1987) Miriquidica genus novum Lecanoracearum (Ascomycetes lichenisati). Mitteilungen der Botanischen Staatssammlung München 23, 377–392.Google Scholar

Hertel, H and Rambold, G (1990) Zur Kenntnis der Flechtenfamilie Rimulariaceae (Lecanorales). Bibliotheca Lichenologica 38, 145–189.Google Scholar

Hoang, DT, Chernomor, O, von Haeseler, A, Minh, BQ and Vinh, LS (2018) UFBoot2: improving the ultrafast bootstrap approximation. Molecular Biology and Evolution 35, 518–522.10.1093/molbev/msx281CrossRefGoogle ScholarPubMed

Ihlen, P and Ekman, S (2002) Outline of phylogeny and character evolution in Rhizocarpon (Rhizocarpaceae, lichenized Ascomycota) based on nuclear ITS and mitochondrial SSU ribosomal DNA sequences. Biological Journal of the Linnean Society 77, 535–546.10.1046/j.1095-8312.2002.00127.xCrossRefGoogle Scholar

Jarman, SJ, Kantvilas, G and Brown, MJ (1994) Phytosociological studies in Tasmanian cool temperate rainforest. Phytocoenologia 22, 355–390.10.1127/phyto/22/1994/355CrossRefGoogle Scholar

Kalb, K (2004) New or otherwise interesting lichens II. Bibliotheca Lichenologica 88, 301–329.Google Scholar

Kalb, K, Buaruang, K, Papong, K and Boonpragob, K (2009) New or otherwise interesting lichens from the tropics, including the lichen genus Ramboldia in Thailand. Mycotaxon 110, 109–123.10.5248/110.109CrossRefGoogle Scholar

Kalb, K, Rivas Plata, E, Lücking, R and Lumbsch, HT (2011) The phylogenetic position of Malmidea, a new genus for the _Lecidea piperis_- and _Lecanora granifera_-groups (Lecanorales, Malmideaceae), inferred from nuclear and mitochondrial ribosomal DNA sequences, with special reference to Thai species. Bibliotheca Lichenologica 106, 143–168.Google Scholar

Kalyaanamoorthy, S, Minh, BQ, Wong, TKF, von Haeseler, A and Jermiin, LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14, 587–589.10.1038/nmeth.4285CrossRefGoogle ScholarPubMed

Kantvilas, G and Elix, JA (1994) Ramboldia, a new genus in the lichen family Lecanoraceae. Bryologist 97, 296–304.10.2307/3243462CrossRefGoogle Scholar

Kantvilas, G and James, PW (1991) Records of crustose lichens from Tasmanian rainforest. Mycotaxon 41, 271–286.Google Scholar

Katoh, K, Rozewicki, J and Yamada, KD (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20, 1160–1166.10.1093/bib/bbx108CrossRefGoogle ScholarPubMed

Kistenich, S, Timdal, E, Bendiksby, M and Ekman, S (2019) Molecular systematics and character evolution in the lichen family Ramalinaceae (Ascomycota: Lecanorales). Taxon 67, 871–904.10.12705/675.1CrossRefGoogle Scholar

Lanfear, R, Calcott, B, Ho, SY and Guindon, S (2012) PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29, 1695–1701.10.1093/molbev/mss020CrossRefGoogle ScholarPubMed

Lanfear, R, Frandsen, PB, Wright, AM, Senfeld, T and Calcott, B (2017) PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution 34, 772–773.Google ScholarPubMed

Lücking, R (2008) Foliicolous lichenized fungi. Flora Neotropica Monograph 103, 1–866.Google Scholar

Lücking, R and Kalb, K (2000) Foliikole Flechten aus Brasilien (vornehmlich Amazonien), inklusive einer Checkliste und Bemerkungen zu Coenogonium und Dimerella (Gyalectaceae). Botanische Jahrbücher für Systematik, Pflanzengesichte und Pflanzengeographie 122, 1–61.Google Scholar

Miadlikowska, J, Kauff, F, Hofstetter, V, Fraker, E, Grube, M, Hafellner, J, Reeb, V, Hodkinson, BP, Kukwa, M, Lücking, R, et al. (2006) New insights into classification and evolution of the Lecanoromycetes (Pezizomycotina, Ascomycota) from phylogenetic analyses of three ribosomal RNA- and two protein-coding genes. Mycologia 98, 1088–1103.10.1080/15572536.2006.11832636CrossRefGoogle ScholarPubMed

Miadlikowska, J, Kauff, F, Högnabba, F, Oliver, JC, Molnár, K, Fraker, E, Gaya, E, Hafellner, J, Hofstetter, V, Gueidan, C, et al. (2014) A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families. Molecular Phylogenetics and Evolution 79, 132–168.10.1016/j.ympev.2014.04.003CrossRefGoogle ScholarPubMed

Mirarab, S, Nguyen, N, Guo, S, Wang, L-S, Kim, J and Warnow, T (2015) PASTA: ultra-large multiple sequence alignment for nucleotide and amino-acid sequences. Journal of Computational Biology 22, 377–386.10.1089/cmb.2014.0156CrossRefGoogle ScholarPubMed

Muggia, L, Mancinelli, R, Tønsberg, T, Jablonska, A, Kukwa, M and Palice, Z (2017) Molecular analyses uncover the phylogenetic placement of the lichenized hyphomycetous genus Cheiromycina. Mycologia 109, 588–600.Google ScholarPubMed

Nguyen, L-T, Schmidt, HA, von Haeseler, A and Minh, BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32, 268–274.10.1093/molbev/msu300CrossRefGoogle ScholarPubMed

Orange, A, James, PW and White, FJ (2010) Microchemical Methods for the Identification of Lichens, 2nd Edn. London: British Lichen Society.Google Scholar

Printzen, C (1995) Die Flechtengattung Biatora in Europa. Bibliotheca Lichenologica 60, 1–275.Google Scholar

Printzen, C (1999) Japewiella gen. nov., a new lichen genus and a new species from Mexico. Bryologist 102, 714–719.10.2307/3244257CrossRefGoogle Scholar

Printzen, C and Kantvilas, G (2004) Hertelidea, genus novum Stereocaulacearum (Ascomycetes lichenisati). Bibliotheca Lichenologica 88, 539–553.Google Scholar

Printzen, C, Spribille, T and Tønsberg, T (2008) Myochroidea, a new genus of corticolous, crustose lichens to accommodate the Lecidea leprosula group. Lichenologist 40, 195–207.10.1017/S0024282908007639CrossRefGoogle Scholar

Rodriguez Flakus, P (2020) Non-saxicolous lecideoid lichens in southern South America. Phytotaxa 476, 1–73.10.11646/phytotaxa.476.1.1CrossRefGoogle Scholar

Rodriguez Flakus, P and Printzen, C (2014) Palicella, a new genus of lichenized fungi and its phylogenetic position in Lecanoraceae. Lichenologist 46, 535–552.10.1017/S0024282914000127CrossRefGoogle Scholar

Ronquist, F, Teslenko, M, Mark, P, Ayres, DL, Höhna, S, Larget, B, Liu, L and Huelsenbeck, J (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539–542.10.1093/sysbio/sys029CrossRefGoogle ScholarPubMed

Ruprecht, U, Lumbsch, HT, Brunauer, G, Green, TGA and Türk, R (2010) Diversity of Lecidea (Lecideaceae, Ascomycota) revealed by molecular data and morphological characters. Antarctic Science 22, 727–741.10.1017/S0954102010000477CrossRefGoogle Scholar

Schmull, M, Miadlikowska, J, Pelzer, M, Stocker-Wörgötter, E, Hofstetter, V, Fraker, E, Hodkinson, BP, Reeb, V, Kukwa, M, Lumbsch, HT, et al. (2011) Phylogenetic affiliations of members of the heterogeneous lichen-forming fungi of the genus Lecidea sensu Zahlbruckner (Lecanoromycetes, Ascomycota). Mycologia 103, 983–1003.10.3852/10-234CrossRefGoogle Scholar

Schneider, K, Resl, P, Westberg, M and Spribille, T (2015) A new, highly effective primer pair to exclude algae when amplifying nuclear large ribosomal subunit (LSU) DNA from lichens. Lichenologist 47, 269–275.10.1017/S002428291500016XCrossRefGoogle Scholar

Sodamuk, M, Boonpragob, K, Mongkolsuk, P, Tehler, A, Leavitt, SD and Lumbsch, HT (2017) Kalbionora palaeotropica, a new genus and species from coastal forests in Southeast Asia and Australia (Malmideaceae, Ascomycota). MycoKeys 22, 15–25.10.3897/mycokeys.22.12528CrossRefGoogle Scholar

Spribille, T, Fryday, AM, Pérez-Ortega, S, Svensson, M, Tønsberg, T, Ekman, S, Holien, H, Resl, P, Schneider, K, Stabentheiner, E, et al. (2020) Lichens and associated fungi from Glacier Bay National Park, Alaska. Lichenologist 52, 61–181.10.1017/S0024282920000079CrossRefGoogle ScholarPubMed

Stenroos, S, Huhtinen, S, Lesonen, A, Palice, Z and Printzen, C (2009) Puttea, gen. nov., erected for the enigmatic lichen Lecidea margaritella. Bryologist 112, 544–557.10.1639/0007-2745-112.3.544CrossRefGoogle Scholar

Timdal, E (1984) The genus Hypocenomyce (Lecanorales, Lecideaceae), with special emphasis on Norwegian and Swedish species. Nordic Journal of Botany 4, 83–108.10.1111/j.1756-1051.1984.tb01979.xCrossRefGoogle Scholar

Vĕzda, A (1997) Lichenes Rariores Exsiccati. Fasc. 27 (nos 261-270). Brno: Privately published.Google Scholar

Vilgalys, R and Hester, M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172, 4238–4246.10.1128/jb.172.8.4238-4246.1990CrossRefGoogle ScholarPubMed

Wedin, M, Wiklund, E, Crewe, A, Döring, H, Ekman, S, Nyberg, A, Schmitt, I and Lumbsch, HT (2005) Phylogenetic relationships among Lecanoromycetes (Ascomycota) as revealed by analyses of mtSSU and nLSU rDNA sequence data. Mycological Research 109, 159–172.10.1017/S0953756204002102CrossRefGoogle ScholarPubMed

Wedin, M, Wiklund, E, Jørgensen, PM and Ekman, S (2009) Slippery when wet: phylogeny and character evolution in the gelatinous cyanobacterial lichens (Peltigerales, Ascomycetes). Molecular Phylogenetics and Evolution 53, 862–871.10.1016/j.ympev.2009.08.013CrossRefGoogle Scholar

Wedin, M, Jørgensen, PM and Ekman, S (2011) Vahliellaceae, a new family of cyanobacterial lichens (Peltigerales, Ascomycetes). Lichenologist 43, 67–72.10.1017/S0024282910000642CrossRefGoogle Scholar

Widhelm, TJ, Bertoletti, FR, Asztalos, MJ, Mercado-Díaz, JA, Huang, J-P, Moncada, B, Lücking, R, Magain, N, Sérusiaux, E, Goffinet, B, et al. (2018) Oligocene origin and drivers of diversification in the genus Sticta (Lobariaceae, Ascomycota). Molecular Phylogenetics and Evolution 126, 58–73.10.1016/j.ympev.2018.04.006CrossRefGoogle Scholar

Wijayawardene, NN, Hyde, KD, Lumbsch, HT, Liu, JK, Maharachchikumbura, SSN, Ekanayaka, AH, Tian, Q and Phookamsak, R (2018) Outline of Ascomycota: 2017. Fungal Diversity 88, 167–263.10.1007/s13225-018-0394-8CrossRefGoogle Scholar

Wiklund, E and Wedin, M (2003) The phylogenetic relationships of the cyanobacterial lichens in the Lecanorales suborder Peltigerineae. Cladistics 19, 419–431.10.1111/j.1096-0031.2003.tb00312.xCrossRefGoogle Scholar

Zoller, S, Scheidegger, C and Sperisen, C (1999) PCR primers for the amplification of mitochondrial small subunit ribosomal DNA of lichen-forming ascomycetes. Lichenologist 31, 511–516.10.1006/lich.1999.0220CrossRefGoogle Scholar