Gastrointestinal mucus, a medium for survival and for elimination of parasitic nematodes and protozoa | Parasitology | Cambridge Core (original) (raw)

Extract

Mucus is a sticky visco-elastic material which coats all mucosal surfaces. Florey, in 1955, noted the following three functions for gastrointestinal mucus: protection of the underlying mucosa from chemical and physical injury, lubrication of the mucosal surface to facilitate passage of luminal contents, and removal of parasites by binding and entrapment. In the 31 years since Florey's review, detailed analyses of the composition of mucus and of the biochemistry of mucin glycoproteins, as well as measurements of the physical properties of mucus from different organs and sites have yielded information at the molecular level which provide additional support for his views on its function (Allen, 1981; Forstner, Wesley & Forstner, 1982).

References

Ackert, J. E., Edgar, S. A. & Frick, L P. (1939). Goblet cells and age resistance of animals to parasitism. Transactions of American Microscopical Society 58, 81–9.CrossRefGoogle Scholar

Alizadeh, H. & Wakelin, D. (1982). Comparison of rapid expulsion of Trichinella spiralis in mice and rats. International Journal for Parasitology 12, 65–73.CrossRefGoogle ScholarPubMed

Allen, A. (1981). Structure and function of gastrointestinal mucus. In Physiology of the Gastrointestinal Tract (ed. Johnson, L. R.), pp. 617–39. New York: Raven Press.Google Scholar

Askenase, P. W. (1980). Immunopathology of parasitic diseases: involvement of basophils and mast cells. Springer Seminars in Immunopathology 2, 417–42.CrossRefGoogle Scholar

Baird, A. W., Cuthbert, A. W. & Pearce, F. L. (1985). Immediate hypersensitivity reactions in epithelia from rats infected with Nippostrongylus brasiliensis. British Journal of Pharmacology 85, 787–95.CrossRefGoogle ScholarPubMed

Bell, R. G., Adams, L. S. & Ogden, R. W. (1984). Intestinal mucus trapping in the rapid expulsion of Trichinella spiralis by rats: induction and expression analyzed by quantitative worm recovery. Infection and Immunity 45, 267–72.CrossRefGoogle ScholarPubMed

Bell, R. G., Mcgregor, D. D. & Adams, L. S. (1982). Studies on the inhibition of rapid expulsion of Trichinella spiralis in rats. International Archives of Allergy and Applied Immunology 69, 73–80.Google Scholar

Bradbury, J. E., Black, J. W. & Wyllie, J. H. (1980). Stimulation of mucus output from rat colon in vivo. European Journal of Pharmacology 68, 417–25.CrossRefGoogle ScholarPubMed

Bullick, G. R., Frizzell, R. A. & Castro, G. A. (1983). Trichinella spiralis: rapid, immunologically influenced reduction of intestinal, sodium-coupled sugar transport in the rat. Experimental Parasitology 57, 104–9.CrossRefGoogle Scholar

Castro, G. A. (1982). Immunological regulation of epithelial function. American Journal of Physiology 243, G321–9.Google ScholarPubMed

Castro, G. A. & Harari, Y. (1982). Intestinal epithelial membrane changes in rats immune to Trichinella spiralis. Molecular and Biochemical Parasitology 6, 191–204.CrossRefGoogle ScholarPubMed

Castro, G. A., Hessel, J. J. & Whalen, G. (1979). Altered intestinal fluid movement in response to Trichinella spiralis in immunized rats. Parasite Immunology 1, 259–66.CrossRefGoogle ScholarPubMed

Cheema, K. J. & Scofield, A. M. (1982). Scanning electron microscopy of the intestine of rats infected with Nippostrongylus brasiliensis. International Journal for Parasitology 12, 199–206.Google Scholar

Clamp, J. (1986). The role of mucus in human intestinal defence. In Gut Defences in Clinical Practice (ed. Losowsky, M. S. and Heatley, R. V.), pp. 83–94. Edinburgh: Churchill Livingstone.Google Scholar

Croll, N. A. (1976). The location of parasites within their hosts: the influence of host feeding and diet on the dispersion of adults of Nippostrongylus brasiliensis in the intestine of the rat. International Journal for Parasitology 6, 441–8.CrossRefGoogle ScholarPubMed

Dobson, C. (1966a). Studies on the immunity of sheep to Oesophagostomum columbianum: proteins and haemagglutinating antibodies in mucous exudates and intestinal tissue extracts. Australian Journal of Agricultural Research 17, 779–96.CrossRefGoogle Scholar

Dobson, C. (1966b). Precipitating antibodies in extracts from sheep infected with Oesophagostomum columbianum. Journal of Parasitology 52, 1037–8.CrossRefGoogle ScholarPubMed

Dobson, C. (1967). Changes in the protein content of the serum and intestinal mucus of sheep with reference to the histology of the gut and immunological response to Oesophagostomum columbianum infections. Parasitology 57, 201–19.Google Scholar

Douch, P. G. C., Harrison, G. B. L., Buchanan, L. L. & Greer, K. S. (1983). In vitro bioassay of sheep gastrointestinal mucus for nematode paralysing activity mediated by a substance with some properties characteristic of SRS-A. International Journal for Parasitology 13, 207–12.CrossRefGoogle ScholarPubMed

Douch, P. G. C., Harrison, G. B. L., Elliott, D. C., Buchanan, L. L. & Greer, K. S. (1986). Relationship of gastrointestinal histology and mucus anti-parasitic activity with the development of resistance to trichostrongyle infection in sheep. Veterinary Parasitology 20, 315–31.Google Scholar

Douglass, T. G. & Speer, C. A. (1985). Effect of intestinal contents from normal and immunized mice on sporozoites of Eimeria falciformis. Journal of Protozoology 32, 156–63.Google Scholar

Erlich, J. H., Anders, R. F., Roberts-Thomson, I. C, Schrader, J. W. & Mitchell, G. F. (1983). An examination of differences in serum antibody specificities and hypersensitivity reactions as contributing factors to chronic infection with the intestinal protozoan parasite, Giardia muris, in mice. Australian Journal of Experimental Biology and Medical Science 61, 599–615.Google Scholar

Enander, I., Ahlstedt, S. & Nygren, H. (1984). Mononuclear cells, mast cells and mucous cells as part of the delayed hypersensitivity response to aerosolized antigen in mice. Immunology 51, 661–8.Google Scholar

Farthing, M. J. G., Pereira, M. E. A. & Keusch, G. T. (1986). Description and characterization of a surface lectin from Giardia lamblia. Infection and Immunity 51, 661–7.CrossRefGoogle ScholarPubMed

Filley, W. V., Holley, K. E., Kephart, G. M. & Gleich, G. J. (1982). Identification by immunofluorescence of eosinophil granule major basic protein in lung tissues of patients with bronchial asthma. Lancet 2, 11–16.CrossRefGoogle ScholarPubMed

Florey, H. W. (1955). Mucin and the protection of the body. Proceedings of the Royal Society of London. B 143, 147–58.Google ScholarPubMed

Forstner, G., Wesley, A. & Forstner, J. (1982). Clinical aspects of gastrointestinal mucus. In Mucus in Health and Disease 11 (ed. Chantler, E. N., Elder, J. B. and Elstein, M.), pp. 199–224. New York: Plenum.CrossRefGoogle Scholar

Forstner, J., Taichman, N., Kalnins, V. & Forstner, G. (1973). Intestinal goblet cell mucus: isolation and identification by immunofluorescence of a goblet cell glycoprotein. Journal of Cell Science 12, 585–602.CrossRefGoogle ScholarPubMed

Frigas, E., Loegering, D. A. & Gleich, G. J. (1980). Cytotoxic effects of the guinea pig eosinophil major basic protein on tracheal epithelium. Laboratory Investigation 42, 35–43.Google ScholarPubMed

Garland, C. D., Nash, G. V. & Mcmeekin, T. A. (1982). The preservation of mucus and surface-associated microorganisms using acrolein vapour fixation. Journal of Microscopy 128, 307–12.Google Scholar

Gibson, S. & Miller, H. R. P. (1986). Mast cell subsets in the rat distinguished immunohisto-chemically by their content of serine proteinases. Immunology 58, 101–4.Google Scholar

Gillon, J. (1984). Giardiasis: Review of epidemiology, pathogenetic mechanisms and host responses. Quarterly Journal of Medicine, New Series LIII 209, 29–39.Google Scholar

Han, V. L., Levy, D. A. & Scott, A. L. (1986). Inflammation-associated intestinal goblet cell (GC) proliferation requires T helper cells. Journal of Allergy and Clinical Immunology 77 Suppl., 175.Google Scholar

Harari, Y. & Castro, G. A. (1983). Sialic acid deficiency in lectin-resistant intestinal brush border membranes from rats following the intestinal phase of trichinellosis. Molecular and Biochemical Parasitology 9, 73–81.CrossRefGoogle ScholarPubMed

Heyworth, M. F. (1986). Antibody response to Giardia muris trophozoite in mouse intestine. Infection and Immunity 52, 568–71.CrossRefGoogle ScholarPubMed

Hounsell, E. F., & Feizi, T. (1982). Gastrointestinal mucins. Structures and antigenicities of their carbohydrate chains in health and disease. Medical Biology 60, 227–36.Google Scholar

Huntley, J. F., Gibson, S., Knox, D. & Miller, H. R. P. (1986). The isolation and purification of a proteinase with chymotrypsin-like properties from ovine mucosal mast cells. International Journal of Biochemistry 18, 673–82.Google Scholar

Huntley, J. F., Newlands, G. F. J. & Miller, H. R. P. (1984). The isolation and characterization of globule leukocytes: their derivation from mucosal mast cells in parasitized sheep. Parasite Immunology 6, 371–90.CrossRefGoogle ScholarPubMed

Huntley, J. F., Newlands, G. F. J., Miller, H. R. P., Mclauchlan, M., Rose, M. E. & Hesketh, P. (1985). Systemic release of mucosal mast cell protease during infection with the intestinal protozoal parasite, Eimeria nieschulzi. Studies in normal and nude rats. Parasite Immunology 7, 489–501.CrossRefGoogle ScholarPubMed

Jackson, F., Angus, K. W. & Coop, R. L. (1983). The development of morphological changes in the small intestine of lambs continuously infected with Trichostrongylus vitrinus. Research in Veterinary Science 34, 301–4.Google Scholar

Jager, S., Kremer, J., Kuiken, J., Van Slochteren-Draaisma, T., Mulder, I. & De Wilde-janssen, I. W. (1981). Induction of the shaking phenomenon by pretreatment of spermatozoa with sera containing antispermatazoal antibodies. Fertility and Sterility 36, 784–91.CrossRefGoogle Scholar

Jarrett, E. E. E., Jarrett, W. F. H. & Urquhart, G. M. (1968). Quantitative studies on the kinetics of establishment and expulsion of intestinal nematode populations in susceptible and immune hosts. Nippostrongylus brasiliensis in the rat. Parasitology 58, 615–39.CrossRefGoogle ScholarPubMed

Jarrett, E. E. E. & Miller, H. R. P. (1982). Production and activities of IgE in helminth infection. Progress in Allergy 31, 178–233.Google Scholar

Kaliner, M., Marom, Z., Patow, C. & Shelhamer, J. (1984). Human respiratory mucus. Journal of Allergy and Clinical Immunology 73, 312–23.Google Scholar

Kaplan, B. S., Uni, S., Aikawa, M. & Mahmoud, A. A. F. (1985). Effector mechanism of host resistance in murine giardiasis: specific IgG and IgA cell-mediated toxicity. Journal of Immunology 134, 1975–81.Google Scholar

Karlsson, G., Hansson, H-A., Petruson, B., Bjorkander, J. & Hanson, L. A. (1985). Goblet cell number in the nasal mucosa relates to cell-mediated immunity in patients with antibody deficiency syndromes. International Archives of Allergy and Applied Immunology 78, 86–91.CrossRefGoogle ScholarPubMed

Kido, H., Izumi, K., Otsuka, H., Fukusen, N., Kato, Y. & Katunuma, N. (1986). A chymotrypsin-type serine protease in rat basophilic leukemia cells: evidence for its immunological identity with atypical mast cell protease. Journal of Immunology 136, 1061–5.Google Scholar

King, S. J. & Miller, H. R. P. (1984). Anaphylactic release of mucosal mast cell protease and its relationship to gut permeability in _Nippostrongylus_-primed rats. Immunology 51, 653–60.Google ScholarPubMed

King, S. J., Miller, H. R. P., Newlands, G. F. J. & Woodbury, R. G. (1985). Depletion of mucosal mast cell protease by corticosteroids: effect on intestinal anaphylaxis in the rat. Proceedings of the National Academy of Sciences, USA 82, 1214–18.Google Scholar

King, S. J., Miller, H. R. P., Woodbury, R. G. & Newlands, G. F. J. (1986). Gut mucosal mast cells in _Nippostrongylus_-primed rats are the major source of secreted rat mast cell protease II following systemic anaphylaxis. European Journal of Immunology 16, 151–5.CrossRefGoogle ScholarPubMed

Lake, A. M., Bloch, K. J., Sinclair, K. J. & Walker, W. A. (1980). Anaphylactic release of intestinal mucus. Immunology 39, 173–8.Google Scholar

Lee, G. B. (1982). The expulsion of T. spiralis larvae from the intestine with special reference to the mucus layer. Ph.D. thesis, University of London.Google Scholar

Lee, G. B. & Ogilvie, B. M. (1981). The mucus layer in intestinal nematode infections. In The Mucosal Immune System in Health and Disease (ed. Ogra, P. L. and Bienenstock, J.). Proceedings of 81st Ross Conference on Pediatric Research, pp. 175–83. Columbus: Ross Laboratories.Google Scholar

Lee, G. B. & Ogilvie, B. M. (1982). The intestinal mucus barrier to parasites and bacteria. Advances in Experimental Medicine and Biology 144, 247–8.CrossRefGoogle ScholarPubMed

Lee, T. D. G., Swieter, M. & Befus, A. D. (1986). Mast cell response to helminth infection. Parasitology Today 2, 186–91.Google Scholar

Leitch, G. J., Dickey, A. D., Udezulu, I. A. & Bailey, G. B. (1985). Entamoeba histolytica trophozoites in the lumen and mucus blanket of rat colon: studies in vivo. Infection and Immunity 47, 68–73.CrossRefGoogle Scholar

Magnusson, K.-E. & Stjernstrom, I. (1982). Mucosal barrier mechanisms. Interplay between secretory IgA (SIgA), IgG and mucins on the surface properties and association of Salmonellae with intestine and granulocytes. Immunology 45, 239–18.Google ScholarPubMed

Marom, Z., Shelhamer, J., Berger, M., Frank, M. & Kaliner, M. (1985). Anaphylatoxin C3a enhances mucous glycoprotein release from human airways in vitro. Journal of Experimental Medicine 161, 657–68.CrossRefGoogle ScholarPubMed

Mcgowan, K., Kane, A., Asarkof, N., Wicks, J., Guerina, V., Kellum, J., Baron, S., Gintzler, A. R. & Donowitz, M. (1983). Entamoeba histolytica causes intestinal secretion: role of serotonin. Science 221, 762–4.Google Scholar

Mclaughlin, J. & Aley, S. (1985). The biochemistry and functional morphology of the Entamoeba. Journal of Protozoology 32, 221–40.CrossRefGoogle ScholarPubMed

Miller, H. R. P. (1984). The protective mucosal response against gastrointestinal nematodes in ruminants and laboratory animals. Veterinary Immunology and Immunopathology 6, 167–259.Google Scholar

Miller, H. R. P. & Huntley, J. F. (1982a). Protection against nematodes by intestinal mucus. Advances in Experimental Medicine and Biology 144, 243–5.CrossRefGoogle ScholarPubMed

Miller, H. R. P. & Huntley, J. F. (1982b). Intestinal mucus and protection against Nippostrongylus brasiliensis, the effect of corticosteroids in immune rats. Molecular and Biochemical Parasitology, Suppl. 4.Google Scholar

Miller, H. R. P., Huntley, J. F. & Dawson, A. McL. (1981a). Mucus secretion in the gut, its relationship to the immune response in _Nippostrongylus_-infected rats. In Current Topics in Veterinary Medicine and Animal Science (ed. Bourne, F. J.), pp. 402–30. London and The Hague: Martinus and Nijhoff.Google Scholar

Miller, H. R. P. & Huntley, J. F. (1982b). Intestinal mucus and protection against Nippostrongylus during the rapid expulsion of Nippostrongylus brasiliensis from primed rats. Immunology 44, 419–29Google Scholar

Miller, H. R. P., Jackson, F., Newlands, G. & Appleyard, W. T. (1983). Immune exclusion, a mechanism of protection against the ovine nematode Haemonchus contortus. Research in Veterinary Science 35, 357–63.Google Scholar

Miller, H. R. P., Jackson, F., Newlands, G. F. J. & Huntley, J. F. (1985). Rapid expulsion of gastrointestinal nematodes in the sheep: a role for immediate hypersensitivity reactions in the mucosa. In Immunology of the Sheep (ed. Morris, B. and Miyasaka, M.), pp. 460–79. Basel: Editiones Roeng.Google Scholar

Miller, H. R. P., King, S. J., Gibson, S., Huntley, J. F., Newlands, G. F. J. & Woodbury, R. G. (1986). Intestinal mucosal mast cells in normal and parasitized rats. In Mast cell Differentiation and Heterogeneity (ed. Befus, A. D., Bienenstock, J. and Denburg, J. A.), pp. 239–55. New York: Raven Press.Google Scholar

Miller, H. R. P. & Nawa, Y. (1979). Nippostrongylus brasiliensis: intestinal goblet cell response in adoptively immunized rats. Experimental Parasitology 47, 81–90.Google Scholar

Miller, H. R. P., Nawa, Y. & Parish, C. R. (1979). Intestinal goblet cell differentiation in _Nippostrongylus_-infected rats after transfer of fractionated thoracic duct lymphocytes. International Archives of Allergy and Applied Immunology 59, 281–5.CrossRefGoogle ScholarPubMed

Miller, H. R. P., Woodbury, R. G., Huntley, J. F. & Newlanps, G. (1983). Systemic release of mucosal mast cell protease in primed rats challenged with Nippostrongylus brasiliensis. Immunology 49, 471–9.Google Scholar

Mimori, T., Nawa, Y., Koeenaga, M. & Tada, I. (1982). Strongyloides ratti: mast cell and goblet cell responses in the small intestine of infected rats. Experimental Parasitology 54, 366–70.Google Scholar

Moqbel, R., King, S. J., Macdonald, A. J., Miller, H. R. P., Cromwell, O., Shaw, R. J. & Kay, A. B. (1986a). Enteral and systemic release of leukotrienes during anaphylaxis of _Nippostrongylus brasiliensis_-primed rats. Journal of Immunology 137, 296–301.Google Scholar

Moqbel, R., Miller, H. R. P., Wakelin, D., Macdonald, A. J. & Kay, A. B. (1986b). Leukotrienes and intestinal worms. In Allergy and Inflammation, (ed. Kay, A. B.) (in the Press).Google Scholar

Munro, G. (1985). Murine giardiasis: intestinal mucosal immune responses. Ph.D. thesis, University of Edinburgh.Google Scholar

Murray, M. (1972). Immediate hypersensitivity effector mechanisms. II In vivo reactions. In Immunity to Animal Parasites (ed. Soulsby, E. J. L.), pp. 155–90. New York: Academic Press.Google Scholar

Mitrty, V. L. N., Sarosiek, J., Slomiany, A. & Slomiany, B. L. (1984). Effect of lipids and proteins on the viscosity of gastric mucus glycoprotein. Biochemical and Biophysical Research Communications 121, 521–9.Google Scholar

Nash, T. E., Gillen, F. D. & Smith, P. D. (1983). Excretory-secretory products of Giardia lamblia. Journal of Immunology 131, 2004–10.Google Scholar

Nawa, Y. (1979). Increased permeability of gut mucosa in rats infected with Nippostrongylus brasiliensis. International Journal for Parasitology 9, 251–6.Google ScholarPubMed

Nawa, Y. & Hirashima, M. (1984). Regulation of eosinophilia in rats infected with Nippostrongylus brasiliensis. 1. Eosinophil chemotactic factor produced spontaneously by mesenteric lymph node cells of infected rats. International Archives of Allergy and Applied Immunology 75, 264–9.Google Scholar

Neutra, M. R., O'MALLEY, L. J. & Specian, R. D. (1982). Regulation of goblet cell secretion II. A survey of potential secretagogues. American Journal of Physiology 242, G380–7.Google Scholar

Ogilvie, B. M. & Hockley, D. J. (1969). Effects of immunity on Nippostrongylus brasiliensis adult worms: reversible and irreversible changes in infectivity, reproduction and morphology. Journal of Parasitology 54, 1073–84.Google Scholar

Ogilvie, B. M. & Love, R. J. (1974). Cooperation between antibodies and cells in immunity to a nematode parasite. Transplantation Reviews 19, 147–68.Google ScholarPubMed

Philipp, M. (1984). Acetylcholinesterase secreted by intestinal nematodes: a re-interpretation of its putative role of ‘Biochemical holdfast’. Transactions of the Royal Society of Tropical Medicine and Hygiene 78, 138–9.Google Scholar

Philipp, M. & Rumjaneck, F. D. (1984). Antigenic and dynamic properties of helminth surface structures. Molecular and Biochemical Parasitology 10, 245–68.Google Scholar

Price, R. J. & Boettcher, B. (1979). The presence of complement in human cervical mucus and its possible relevance to infertility in women with complement-dependent sperm-immobilizingantibodies. Fertility and Sterility 32, 61–5.CrossRefGoogle Scholar

Ravdin, J. I., John, J. E., Johnston, L. I., Innes, D. J. & Guerrant, R. L. (1985). Adherence of Entamoeba histolytica trophozoites to rat and human colonic mucosa. Infection and Immunity 48, 292–7.Google Scholar

Rose, M. E. (1986). Eimeria, Isospora, and Cryptosporidium. In Immunology, Immunoprophylaxis and Immunotherapy of Parasitic Infections (ed. Soulsby, E. J. L.). C.R.C. Press Inc. (in the Press).Google Scholar

Rose, M. E. (1987). Eimeria, Isospora, and Cryptosporidium. In Immunology, Immunoprophylaxis and Eimeria nieschulzi in rats. Veterinary Immunology and Immunopathology 3, 499–508.Google Scholar

Russell, D. A. & Castro, G. A. (1979). Physiological characterization of a biphasic immune response to Trichinella spiralis in the rat. Journal of Infectious Diseases 139, 304–12.Google Scholar

Russell, D. A. & Castro, G. A. (1985). Anaphylactic-like reaction of small intestinal epithelium in parasitized guinea pigs. Immunology 54, 573–9.Google Scholar

Schrank, G. D. & Verwey, W. F. (1976). Distribution of cholera organisms in experimental Vibrio cholerae infections: proposed mechanisms of pathogenesis and antibacterial immunity. Infection and Immunity 13, 195–203.Google Scholar

Smith, W. D., Jackson, F., Jackson, E., Williams, J. & Miller, H. R. P. (1984). Manifestations of resistance to ovine ostertagiasis associated with immunological responses in gastric lymph. Journal of Comparative Pathology 94, 591–601.Google Scholar

Smith, W. D., Jackson, F., Jackson, E. & Williams, J. (1985). Ovine ostertagiasis: a natural host-parasite interaction for studying protective local immune responses in the gut. In Immunology of the Sheep (ed. Morris, B. and Miyasaka, M.), pp. 483–98. Basle: Editiones ‘Roche’.Google ScholarPubMed

Snider, D. P. & Underdown, B. J. (1986). Quantitative and temporal analyses of murine antibody response in serum and gut secretions to infection with Giardia muris. Infection and Immunity 52, 271–8.Google Scholar

Specian, R. D. & Neutra, M. R. (1982). Regulation of intestinal goblet cell secretion. I Role of parasympathetic stimulation. American Journal of Physiology 242 G370–9.Google Scholar

Tabak, L. A., Levine, M. J., Mandel, I. D. & Ellison, S. A. (1982). Role of salivary mucms in the protection of the oral cavity. Journal of Oral Pathology 11, 1–17.Google Scholar

Uber, C. L., Roth, R. L. & Levy, D. A. (1980). Expulsion of Nippostrongylus brasiliensis by mice deficient in mast cells. Nature, London 287, 226–8.Google Scholar

Urquhart, G. M., Mulligan, W., Eadie, R. M. & Jennings, F. W. (1965). Immunological studies on Nippostrongylus brasiliensis infection in the rat: the role of local anaphylaxis. Experimental Parasitology 17, 210–17.Google Scholar

Wakelin, D. (1984). Immunity to Parasites. How Animals Control Parasite Infections. London: Edward Arnold.Google Scholar

Walker, W. A., Wu, M. & Bloch, K. J. (1977). Stimulation by immune complexes of mucus release from goblet cells of the rat small intestine. Science 197, 370–2.Google Scholar

Wells, P. D. (1963). Mucin-secreting cells in rats infected with Nippostrongylus brasiliensis. Experimental Parasitology 14, 15–22.Google Scholar

Woodbury, R. G., Miller, H. R. P., Huntley, J. F., Newlands, G. F. J., Palliser, A. C. & Wakelin, D. (1984). Mucosal mast cells are functionally active during the spontaneous expulsion of primary intestinal nematode infection in the rat. Nature, London 312, 450–2.Google Scholar

Woodbury, R. G. & Neurath, H. (1978). Purification of atypical mast cell protease and its levels in developing rats. Biochemistry 17, 4298–304.Google Scholar

Woodbury, R. G. & Neurath, H. (1980). Structure, specificity and localization of the serine proteases of connective tissue. FEBS Letters 114, 189–96.CrossRefGoogle ScholarPubMed

Yakoob, A., Holmes, P. H. & Armour, J. (1983). Pathophysiology of gastrointestinal trichostrongylus in sheep: plasma losses and changes in plasma pepsinogen levels associated with parasite challenge of immune animals. Research in Veterinary Science 34, 305–9.Google Scholar

Zenian, A. & Gillin, F. D. (1985). Interaction of Giardia lamblia with human intestinal mucus: enhancement of trophozoite attachment to glass. Journal of Protozoology 32, 664–8.CrossRefGoogle ScholarPubMed