Altered drug influx/efflux and enhanced metabolic activity in triclabendazole-resistant liver flukes | Parasitology | Cambridge Core (original) (raw)

Abstract

Triclabendazole (TCBZ) is a halogenated benzimidazole compound that possesses high activity against immature and adult stages of the liver fluke, Fasciola hepatica. The intensive use of TCBZ in endemic areas of fascioliasis has resulted in the development of liver flukes resistant to this compound. TCBZ sulphoxide (TCBZSO) and TCBZ sulphone (TCBZSO2) are the main molecules recovered in the bloodstream of TCBZ-treated animals. In order to gain some insight into the possible mechanisms of resistance to TCBZ, the goals of the work described here were: to compare the ex vivo transtegumental diffusion of TCBZ parent drug and its sulpho-metabolites (TCBZSO and TCBZSO2) into TCBZ-susceptible and -resistant liver flukes; and to assess the comparative pattern of TCBZ biotransformation by TCBZ-susceptible and -resistant F. hepatica. For the tegumental diffusion studies, TCBZ-susceptible (Cullompton) and -resistant (Sligo) adult flukes collected from untreated infected sheep were incubated (15–180 min) in KRT buffer containing either TCBZ, TCBZSO or TCBZSO2 (5 nmol.ml−1). For the metabolism studies, microsomal fractions obtained from TCBZ-susceptible and -resistant flukes were incubated for 60 min with TCBZ (40 μM), and the amount of the formed metabolic product (TCBZSO) was measured. Drug/metabolite concentrations were quantified by HPLC. All the assayed TCBZ-related molecules penetrated through the tegument of both TCBZ-susceptible and -resistant flukes. However, significantly lower (approximately 50%) concentrations of TCBZ and TCBZSO were recovered within the TCBZ-resistant flukes compared to the TCBZ-susceptible ones over the 180 min incubation period. The rate of TCBZ sulphoxidative metabolism into TCBZSO was significantly higher (39%) in TCBZ-resistant flukes. The flavin-monooxigenase (FMO) enzyme system appears to be the main metabolic pathway involved in the formation of TCBZSO in both TCBZ-susceptible and -resistant flukes. The altered drug influx/efflux and enhanced metabolic capacity identified in TCBZ-resistant liver flukes may account for the development of resistance to TCBZ.

References

AVMA (2001).Report of the AVMA panel on euthanasia.Journal of the American Veterinary Medical Association 218,669–696.

Alvarez, L. I.,Imperiale, F. A.,Sánchez, S. F.,Murno, G. A. andLanusse, C. E. (2000).Uptake of albendazole and albendazole sulphoxide by Haemonchus contortus and Fasciola hepatica in sheep.Veterinary Parasitology 94,75–89.CrossRefGoogle Scholar

Alvarez, L. I.,Mottier, M. L.,Sánchez, S. F. andLanusse, C. E. (2001).Ex vivo diffusion of albendazole and its sulfoxide metabolite into Ascaris suum and Fasciola hepatica.Parasitology Research 87,929–934.Google Scholar

Alvarez, L. I.,Mottier, M. L. andLanusse, C. E. (2004).Comparative assessment of the access of albendazole, fenbendazole and triclabendazole to Fasciola hepatica: effect of bile in the incubation medium.Parasitology 128,73–81.CrossRefGoogle Scholar

Alvarez, L. I.,Sánchez, S. F. andLanusse, C. E. (1999).In vivo and ex vivo uptake of albendazole and its sulphoxide metabolite by cestode parasites: relationship with their kinetic behaviour in sheep.Journal of Veterinary Pharmacology and Therapeutics 22,77–86.CrossRefGoogle Scholar

Bennett, J. L. andKöhler, P. (1987).Fasciola hepatica: action in vitro of triclabendazole on immature and adult stages.Experimental Parasitology 63,49–57.CrossRefGoogle Scholar

Beugnet, F.,Gauthey, M. andKerboeuf, D. (1997).Partial in vitro reversal of benzimidazole resistance by the free-living stages of Haemonchus contortus with verapamil.The Veterinary Record 141,575–576.CrossRefGoogle Scholar

Boray, J. C. (1994).Diseases of Domestic Animals Caused by Flukes.Food and Agricultural Organization of the United Nations,Rome.

Boray, J. C.,Crowfoot, P. D.,Strong, M. B.,Allison, J. R.,Schellenbaum, M.,von orelli, M. andSarasin, G. (1983).Treatment of immature and mature Fasciola hepatica infections in sheep with triclabendazole.Veterinary Record 113,315–317.CrossRefGoogle Scholar

Büscher, G.,Bowen, F. L.,Strong, M. B. andCrowfoot, P. D. (1999).Efficacy of triclabendazole, its metabolites and other compounds in sheep.Proceedings of the 17th International Conference of the World Association for the Advancement of Veterinary Parasitology,Copenhagen, August 1999, c.7.40.Google Scholar

Coles, G. andStafford, K. (2001).Activity of oxyclozanide, notroxynil, clorsulon and albendazole against adult triclabendazole-resistant Fasciola hepatica.The Veterinary Record 148,723–724.CrossRefGoogle Scholar

Cross, H.,Renz, A. andTrees, A. (1998).In vitro uptake of ivermectin by adult male Onchocerca ochengi.Annals of Tropical Medicine and Parasitology 92,711–720.CrossRefGoogle Scholar

Dixit, A. andRoche, T. (1984).Spectrophotometric assay of the flavin-containing monooxigenase and changes in its activity in female mouse liver with nutritional and diurnal conditions.Archives of Biochemistry and Biophysics 233,50–63.CrossRefGoogle Scholar

Douch, P. G. C. andBuchanan, L. L. (1979).Some properties of the sulphoxidases and sulphoxide reductases of the cestode Moniezia expansa, the nematode Ascaris suum and mouse liver.Xenobiotica 9,675–679.CrossRefGoogle Scholar

Fairweather, I. (2005).Triclabendazole: new skills to unravel and old(ish) enigma.Journal of Helminthology (in the Press).CrossRefGoogle Scholar

Fairweather, I.,Threadgold, L. T. andHanna, R. E. B. (1999).Development of Fasciola hepatica in the mammalian host. In_Fasciolosis_ (ed. Dalton, J. P.), pp.47–111.CABI Publishing,Oxfordshire.

Fetterer, R. H. (1986).The effect of albendazole and triclabendazole on colchicine binding in the liver fluke Fasciola hepatica.Journal of Veterinary Pharmacology and Therapeutics 9,49–54.CrossRefGoogle Scholar

Galtier, P.,Alvinerie, M. andDelatour, P. (1986).In vitro sulphoxidation of albendazole by ovine liver microsomes: assay and frequency of various xenobiotics.American Journal of Veterinary Research 47,447–450.Google Scholar

Gerlach, J.,Endicott, J.,Juranka, P.,Henderson, G.,Sarangi, F.,Deuchars, K. andLing, V. (1986).Homology between P-glycoprotein and a bacterial haemolysin transport protein suggest a model for multidrug resistance.Nature, London 324,485–489.CrossRefGoogle Scholar

Gibaldi, M. andPerrier, D. (1982).Pharmacokinetics.Marcel Dekker, Inc.,New York.

Hennessy, D. R.,Lacey, E.,Steel, J. W. andPrichard, R. K. (1987).The kinetics of triclabendazole disposition in sheep.Journal of Veterinary Pharmacology and Therapeutics 10,64–72.CrossRefGoogle Scholar

Ho, N.,Geary, T.,Raub, T.,Barshum, C. andThompson, D. (1990).Biophysical transport properties of the cuticle of Ascaris suum.Molecular and Biochemical Parasitology 41,153–166.CrossRefGoogle Scholar

Kerboeuf, D.,Blackhall, W.,Kaminsky, R. andVon Samson-Himmelstjerna, G. (2003).P-glycoprotein in helminths: function and perspectives for anthelmintic treatment and reversal of resistance.International Journal of Antimicrobial Agents 22,332–346.CrossRefGoogle Scholar

Kwa, M. S. G.,Veenstra, J. G. andRoos, M. H. (1994).Benzimidazole resistance in Haemonchus contortus is correlated with a conserved mutation at amino acid 200 in β-tubulin isotype 1.Molecular and Biochemical Parasitology 63,299–303.CrossRefGoogle Scholar

Lacey, E. (1988).The role of the cytoskeletal protein, tubulin, in the mode of action and mechanism of drug resistance to benzimidazoles.International Journal for Parasitology 18,885–936.CrossRefGoogle Scholar

Lanusse, C. E. andPrichard, R. K. (1993).Clinical pharmacokinetics and metabolism of benzimidazole anthelmintics in ruminants.Drug Metabolism Reviews 25,235–279.CrossRefGoogle Scholar

Lubega, G. W. andPrichard, R. K. (1991 a).Specific interaction of benzimidazole anthelmintics with tubulin from developing stages of thiabendazole-susceptible and -resistant Haemonchus contortus.Biochemical Pharmacology 41,93–101.Google Scholar

Lubega, G. W. andPrichard, R. K. (1991 b).Beta-tubulin and benzimidazole resistance in the sheep nematode Haemonchus contortus.Molecular and Biochemical Parasitology 47,129–137.Google Scholar

Lubega, G. W. andPrichard, R. K. (1991 c).Interaction of benzimidazoles anthelmintics with Haemonchus contortus: binding affinity and anthelmintic efficacy.Experimental Parasitology 73,203–213.Google Scholar

Mas-Coma, S. (2004).Human fascioliasis. In_Waterborne Zoonoses: Identification, Causes, and Control_ (ed. Cotruvo, J. A., Dufour, A., Rees, G., Bartram, J., Carr, R., Cliver, D. O., Craun, R., Fayer, R. and Gannon, V. P. J.), pp.305–322.World Health Organization/IWA Publishing,London.

McCracken, R. O. andLipkowitz, K. B. (1990).Structure-activity relationships of benzothiazole and benzimidazole anthelmintics: a molecular modeling approach to in vivo drug efficacy.Journal of Parasitology 76,853–864.CrossRefGoogle Scholar

Merino, G.,Alvarez, A. I.,Prieto, J. G. andKim, R. B. (2002).The anthelmintic agent albendazole does not interact with P-glycoprotein.Drug Metabolism and Disposition 30,365–369.CrossRefGoogle Scholar

Mottier, M. L.,Alvarez, L. I.,Pis, M. A. andLanusse, C. E. (2003).Transtegumental diffusion of benzimidazole anthelmintics into Moniezia benedeni: correlation with their octanol-water partition coefficients.Experimental Parasitology 103,1–7.CrossRefGoogle Scholar

Mottier, M. L.,Moreno, L.,Alvarez, L. I.,Virkel, G. L. andLanusse, C. E. (2004 a).Measurement of triclabendazole and its metabolites in liver flukes: method development and full validation.Journal of Pharmaceutical and Biomedical Analysis 35,991–999.Google Scholar

Mottier, M. L.,Virkel, G. L.,Solana, H. D.,Alvarez, L. I.,Salles, J. andLanusse, C. E. (2004 b).Triclabendazole biotransformation and comparative diffusion of the parent drug and its oxidised metabolites into Fasciola hepatica.Xenobiotica 34,1043–1057.Google Scholar

Nare, B.,Liu, Z.,Prichard, R. andGeorges, E. (1994).Benzimidazoles, potent anti-mitotic drugs: substrates for the p-glycoprotein transporter in multidrug-resistant cells.Biochemical Pharmacology 48,2215–2222.CrossRefGoogle Scholar

Pouliot, J.,L'heureux, F.,Liu, Z.,Prichard, R. andGeorges, E. (1997).Reversal of P-glycoprotein-associated multidrug resistance by ivermectin.Biochemical Pharmacology 53,17–25.CrossRefGoogle Scholar

Reed, M. B.,Panaccio, M.,Strugnell, R. A. andSpithill, T. W. (1998).Developmental expression of a Fasciola hepatica sequence homologous to ABC transporters.International Journal for Parasitology 28,1375–181.CrossRefGoogle Scholar

Robinson, M. W.,Lawson, J.,Trudgett, A.,Hoey, E. M. andFairweather, I. (2004).The comparative metabolism of triclabendazole sulphoxide by triclabendazole-susceptible and triclabendazole-resistant Fasciola hepatica.Parasitology Research 92,205–210.CrossRefGoogle Scholar

Robinson, M. W.,Trudgett, A.,Hoey, E. M. andFairweather, I. (2002).Triclabendazole-resistant Fasciola hepatica: β-tubulin and response to in vitro treatment with triclabendazole.Parasitology 124,325–338.CrossRefGoogle Scholar

Sanyal, P. K. (1995).Kinetic disposition of triclabendazole in buffalo compared to cattle.Journal of Veterinary Pharmacology and Therapeutics 18,370–374.CrossRefGoogle Scholar

Sims, S.,Ho, N.,Geary, T.,Thomas, E.,Day, J.,Barshum, C. andThompson, D. (1996).Influence of organic acid excretion on cuticle pH and drug absorption by Haemonchus contortus.International Journal for Parasitology 26,25–35.CrossRefGoogle Scholar

Smith, P.,Krohn, R.,Hermanson, G.,Mallia, A.,Gartner, F.,Provenzano, M.,Fujimoto, E.,Goeke, N.,Olson, B. andKlenk, D. (1985).Measurement of protein using bicinchoninic acid.Analytical Biochemistry 150,76–85.CrossRefGoogle Scholar

Solana, H. D.,Rodriguez, J. A. andLanusse, C. E. (2001).Comparative metabolism of albendazole and albendazole sulphoxide by different helminth parasites.Parasitology Research 87,275–280.CrossRefGoogle Scholar

Soulsby, E. (1987).Parasitología y enfermedades parasitarias. 7th Edn.Interamericana,Mexico.

Stitt, A. W. andFairweather, I. (1992).Spermatogenesis in Fasciola hepatica: an ultrastructural comparison of the effects of the anthelmintic, triclabendazole (“Fasinex”) and the microtubule inhibitor, tubulozole.Invertebrate Reproduction and Development 22,139–150.CrossRefGoogle Scholar

Stitt, A. W. andFairweather, I. (1993).Fasciola hepatica: tegumental surface changes in adult and juvenile flukes following treatment in vitro with the sulphoxide metabolite of triclabendazole (Fasinex).Parasitology Research 79,529–536.CrossRefGoogle Scholar

Stitt, A. W. andFairweather, I. (1994).The effect of the sulphoxide metabolite of triclabendazole (‘Fasinex’) on the tegument of mature and immature stages of the liver fluke, Fasciola hepatica.Parasitology 108,555–567.CrossRefGoogle Scholar

Stitt, A. W. andFairweather, I. (1996).Fasciola hepatica: disruption of the vitelline cells in vitro by the sulphoxide metabolite of triclabendazole.Parasitology Research 82,333–339.CrossRefGoogle Scholar

Thompson, D. andGeary, T. (1995).The structure and function of helminth surfaces. In_Biochemistry and Molecular Biology of Parasites_ (ed. Marr, J. and Muller, M.), pp.203–232.Academic Press Ltd,London.CrossRef

Wolstenholme, A. J.,Fairweather, I.,Prichard, R.,Von Samson-Himmelstjerna, G. andSangster, N. C. (2004).Drug resistance in veterinary parasites.Trends in Parasitology 20,469–476.CrossRefGoogle Scholar

Xu, M.,Molento, M.,Blackhall, W.,Ribeiro, P.,Beech, P. andPrichard, R. (1998).Ivermectin resistance in nematodes may be caused by alteration of P-glycoprotein homolog.Molecular and Biochemical Parasitology 91,327–335.CrossRefGoogle Scholar