Immune system pathogenesis is prevented by the neutralization of the systemic trans-sialidase from Trypanosoma cruzi during severe infections | Parasitology | Cambridge Core (original) (raw)
Abstract
During the acute phase of Trypanosoma cruzi infection, strong haematological and immune system alterations are observed. The parasite expresses trans-sialidase, a virulence factor responsible for the sialylation of its surface glycoconjugates. This enzyme is also shed to the bloodstream where it is associated with immune system alterations triggered during the infection. During experimental and human infections, the host elicits antibodies able to neutralize the enzyme activity that would be responsible for restricting systemic trans-sialidase to the early steps of the infection, when major immune alterations are induced. The actual relevance of these antibodies was tested by passive transference of monoclonal neutralizing antibodies in acute infection models displaying extreme sensitivity to the infection. Mice were inoculated with virulent parasite strains that induce high parasitaemia, early mortality and strong immune tissue abnormalities. The trans-sialidase-neutralizing antibodies were able to preserve B cell areas both in ganglia and spleen as well as the thymus architecture even in these extreme models. Although no differences between control and treated mice regarding animal survival were found, a major role for the humoral response in controlling the damage of the immune system induced by a systemically distributed virulence factor was defined in an infection with a eukaryotic pathogen.
References
Acosta-Serrano, A.,Almeida, I. C.,Freitas-Junior, L. H.,Yoshida, N. andSchenkman, S. (2001).The mucin-like glycoprotein super-family of Trypanosoma cruzi: structure and biological roles.Molecular and Biochemical Parasitology 114,143–150.CrossRefGoogle Scholar
Alvarez, P.,Buscaglia, C. A. andCampetella, O. (2004).Improving protein pharmacokinetics by genetic fusion to simple amino acid sequences.The Journal of Biological Chemistry 279,3375–3381.CrossRefGoogle Scholar
Alvarez, P.,Leguizamón, M. S.,Buscaglia, C. A.,Pitcovsky, T. A. andCampetella, O. (2001).Multiple overlapping epitopes in the repetitive unit of the shed acute-phase antigen from Trypanosoma cruzi enhance its immunogenic properties.Infection and Immunity 69,7946–7949.CrossRefGoogle Scholar
Buscaglia, C. A.,Alfonso, J.,Campetella, O. andFrasch, A. C. (1999).Tandem amino acid repeats from Trypanosoma cruzi shed antigens increase the half-life of proteins in blood.Blood 93,2025–2032.Google Scholar
Chuenkova, M. andPereira, M. E. (1995)._Trypanosoma cruzi trans_-sialidase: enhancement of virulence in a murine model of Chagas' disease.Journal of Experimental Medicine 181,1693–1703.CrossRefGoogle Scholar
Costa, F.,Franchin, G.,Pereira-Chioccola, V. L.,Ribeirao, M.,Schenkman, S. andRodrigues, M. M. (1998).Immunization with a plasmid DNA containing the gene of _trans_-sialidase reduces Trypanosoma cruzi infection in mice.Vaccine 16,768–774.CrossRefGoogle Scholar
Cummings, M. C.,Winterfod, C. M. andWalker, N. I. (1997).Apoptosis. In_Histology for Pathologists_ ( ed. Sternberg, S. F.), pp.3–21.Lippincot-Raven Publishers,Philadelphia.CrossRef
Fralish, B. H. andTarleton, R. L. (2003).Genetic immunization with LYT1 or a pool of _trans_-sialidase genes protects mice from lethal Trypanosoma cruzi infection.Vaccine 21,3070–3080.CrossRefGoogle Scholar
Franchin, G.,Pereira-Chioccola, V. L.,Schenkman, S. andRodrigues, M. M. (1997).Passive transfer of a monoclonal antibody specific for a sialic acid-dependent epitope on the surface of Trypanosoma cruzi trypomastigotes reduces infection in mice.Infection and Immunity 65,2548–2554.Google Scholar
Frasch, A. C. (2000).Functional diversity in the _trans_-sialidase and mucin families in Trypanosoma cruzi.Parasitology Today 16,282–286.CrossRefGoogle Scholar
Fujimura, A. E.,Kinoshita, S. S.,Pereira-Chioccola, V. L. andRodrigues, M. M. (2001).DNA sequences encoding CD4+ and CD8+ T-cell epitopes are important for efficient protective immunity induced by DNA vaccination with a Trypanosoma cruzi gene.Infection and Immunity 69,5477–5486.CrossRefGoogle Scholar
Garg, N. andTarleton, R. L. (2002).Genetic immunization elicits antigen-specific protective immune responses and decreases disease severity in Trypanosoma cruzi infection.Infection and Immunity 70,5547–5555.CrossRefGoogle Scholar
Hall, B. F.,Webster, P.,Ma, A. K.,Joiner, K. A. andAndrews, N. W. (1992).Desialylation of lysosomal membrane glycoproteins by Trypanosoma cruzi: a role for the surface neuraminidase in facilitating parasite entry into the host cell cytoplasm.Journal of Experimental Medicine 176,313–325.CrossRefGoogle Scholar
Harmon, B. V.,Winterford, C. M.,O'Brien, B. A. andAllan, D. J. (1998).Morphological criteria for identifying apoptosis. In_Cell Biology: A Laboratory Handbook_, Vol. 1 ( ed. Celis, J.), pp.327–340.Academic Press,San Diego, CA, USA.
Katae, M.,Miyahira, Y.,Takeda, K.,Matsuda, H.,Yagita, H.,Okumura, K.,Takeuchi, T.,Kamiyama, T.,Ohwada, A.,Fukuchi, Y. andAoki, T. (2002).Coadministration of an interleukin-12 gene and a Trypanosoma cruzi gene improves vaccine efficacy.Infection and Immunity 70,4833–4840.CrossRefGoogle Scholar
Leguizamón, M. S.,Campetella, O. E.,González Cappa, S. M. andFrasch, A. C. (1994).Mice infected with Trypanosoma cruzi produce antibodies against the enzymatic domain of _trans_-sialidase that inhibit its activity.Infection and Immunity 62,3441–3446.Google Scholar
Leguizamón, M. S.,Mocetti, E.,Garcia Rivello, H.,Argibay, P. andCampetella, O. (1999).Trans-sialidase from Trypanosoma cruzi induces apoptosis in cells from the immune system in vivo.Journal of Infectious Diseases 180,1398–1402.CrossRefGoogle Scholar
Leguizamón, M. S.,Russomando, G.,Luquetti, A.,Rassi, A.,Almiron, M.,González-Cappa, S. M.,Frasch, A. C. andCampetella, O. (1997).Long-lasting antibodies detected by a _trans_-sialidase inhibition assay of sera from parasite-free, serologically cured chagasic patients.Journal of Infectious Diseases 175,1272–1275.CrossRefGoogle Scholar
Minoprio, P. (2003).Impact of polyclonal lymphocyte responses on parasite evasion and persistence. In_Molecular Mechanisms of Pathogenesis in Chagas Disease_ ( ed. Kelly, J. M.), pp.101–110.Kluver Academic/Plenum Publisher,New York.
Mucci, J.,Hidalgo, A.,Mocetti, E.,Argibay, P. F.,Leguizamón, M. S. andCampetella, O. (2002).Thymocyte depletion in Trypanosoma cruzi infection is mediated by _trans_-sialidase-induced apoptosis on nurse cells complex.Proceedings of the National Academy of Sciences, USA 99,3896–3901.CrossRefGoogle Scholar
Mucci, J.,Risso, M. G.,Leguizamón, M. S.,Frasch, A. C. C. andCampetella, O. (2006).The _trans_-sialidase from Trypanosoma cruzi triggers apoptosis by target cell sialylation.Cellular Microbiology 8,1086–1095. doi: 10.1111/j.1462-5822.2006.00689.x.CrossRefGoogle Scholar
Mussalem, J. S.,Vasconcelos, J. R. C.,Squaiella, C. C.,Zeigler Ananias, R.,Goncalves Braga, E.,Rodrigues, M. M. andLongo-Maugéri, I. M. (2006).Adjuvant effect of the Propionibacterium acnes and its purified soluble polysacharide on the immunization with plasmidial DNA containing a Trypanosoma cruzi gene.Microbiology and Immunology 50,253–263.CrossRefGoogle Scholar
Pereira-Chioccola, V. L.,Acosta-Serrano, A.,Correia de Almeida, I.,Ferguson, M. A.,Souto-Padron, T.,Rodrigues, M. M.,Travassos, L. R. andSchenkman, S. (2000).Mucin-like molecules form a negatively charged coat that protects Trypanosoma cruzi trypomastigotes from killing by human anti-alpha-galactosyl antibodies.Journal of Cell Science 113,1299–1307.Google Scholar
Pereira-Chioccola, V. L.,Schenkman, S. andKloetzel, J. K. (1994).Sera from chronic Chagasic patients and rodents infected with Trypanosoma cruzi inhibit _trans_-sialidase by recognizing its amino-terminal and catalytic domain.Infection and Immunity 62,2973–2978.Google Scholar
Pitcovsky, T. A.,Buscaglia, C. A.,Mucci, J. andCampetella, O. (2002).A functional network of intramolecular cross-reacting epitopes delays the elicitation of neutralizing antibodies to _Trypanosoma cruzi trans_-sialidase.Journal of Infectious Diseases 186,397–404.CrossRefGoogle Scholar
Pitcovsky, T. A.,Mucci, J.,Alvarez, P.,Leguizamón, M. S.,Burrone, O.,Alzari, P. M. andCampetella, O. (2001).Epitope mapping of _trans_-sialidase from Trypanosoma cruzi reveals the presence of several cross-reactive determinants.Infection and Immunity 69,1869–1875.CrossRefGoogle Scholar
Risso, M. G.,Garbarino, G. B.,Mocetti, E.,Campetella, O.,González Cappa, S. M.,Buscaglia, C. A. andLeguizamón, M. S. (2004).Differential expression of a virulence factor, the _trans_-sialidase, by the main Trypanosoma cruzi phylogenetic lineages.Journal of Infectious Diseases 189,2250–2259.CrossRefGoogle Scholar
Rubin-de-Celis, S. S.,Uemura, H.,Yoshida, N. andSchenkman, S. (2006).Expression of trypomastigote _trans_-sialidase in metacyclic forms of Trypanosoma cruzi increases parasite escape from its parasitophorous vacuole.Cellular Microbiology doi:10.1111/j.1462-5822.2006.00755.x (in the Press).CrossRefGoogle Scholar
Savino, W.,Leite-de-Moraes, M. C.,Hontebeyrie-Joskowicz, M. andDardenne, M. (1989).Studies on the thymus in Chagas' disease. I. Changes in the thymic microenvironment in mice acutely infected with Trypanosoma cruzi.European Journal of Immunology 19,1727–1733.CrossRef.Infection and Immunity 73,201–207.CrossReftrans-sialidases of Trypanosoma cruzi block trypanosome invasion of host cells and neutralize infection by passive immunization.Annals of the New York Academy of Sciences 797,242–245.CrossRefGoogle Scholar
Yoshida, N. (2003).Trypanosoma cruzi cell invasion mechanisms. In_American Trypanosomiasis, Vol. 7_ ( ed. Tyler, K. M. and Miles, M. A.), pp.69–79.Kluwer Academic Publishers,New York.CrossRef
Zúñiga, E.,Motran, C.,Montes, C. L.,Diaz, F. L.,Bocco, J. L. andGruppi, A. (2000)._Trypanosoma cruzi_-induced immunosuppression: B cells undergo spontaneous apoptosis and lipopolysaccharide (LPS) arrests their proliferation during acute infection.Clinical and Experimental Immunology 119,507–515.CrossRefGoogle Scholar