Electronic detectors for electron microscopy | Quarterly Reviews of Biophysics | Cambridge Core (original) (raw)

References

Allinson, N., Anaxagoras, T., Aveyard, J., Arvanitis, C., Bates, R., Blue, A., Bohndiek, S., Cabello, J., Chen, L., Chen, S., Clark, A., Clayton, C., Cook, E., Cossins, A., Crooks, J., El-Gomati, M., Evans, P. M., Faruqi, W., French, M., Gow, J., Greenshaw, T., Greig, T., Guerrini, N., Harris, E. J., Henderson, R., Holland, A., Jeyasundra, G., Karadaglic, D., Konstantinidis, A., Liang, H. X., Maini, K. M. S., Mcmullen, G., Olivo, A., O'Shea, V., Osmond, J., Ott, R. J., Prydderch, M., Qiang, L., Riley, G., Royle, G., Segneri, G., Speller, R., Symonds-Tayler, J. R. N., Triger, S., Turchetta, R., Venanzi, C., Wells, K., Zha, X. & Zin, H. (2009). The multidimensional integrated intelligent imaging project (MI-3). Nuclear instruments and methods in physics research section A: accelerators, spectrometers. Detectors and Associated Equipment 604, 196–198.CrossRefGoogle Scholar

Baker, T. S. & Henderson, R. (2002). Electron cryomicroscopy. In International Tables for Crystallography Volume F, pp. 451–479.Google Scholar

Baldwin, J. & Henderson, R. (1984). Measurement and evaluation of electron diffraction patterns from two-dimensional crystals. Ultramicroscopy 14, 319–336.CrossRefGoogle Scholar

Battaglia, M., Contarato, D., Denes, P., Doering, D., Giubilato, P., Kim, T. S., Mattiazzo, S., Radmilovic, V. & Zalusky, S. (2009a). A rad-hard CMOS active pixel sensor for electron microscopy. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 598, 642–649.CrossRefGoogle Scholar

Battaglia, M., Contarato, D., Denes, P. & Giubilato, P. (2009b). Cluster imaging with a direct detection CMOS pixel sensor in transmission electron microscopy. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 608, 363–365.CrossRefGoogle Scholar

Bauer, E. (1994). Low energy electron microscopy. Reports on Progress in Physics 57, 895–938.CrossRefGoogle Scholar

Bauer, E. (2009). Cathode lens electron microscopy: past and future. Journal of Physics: Condensed Matter 31, 314001.Google Scholar

Baumeister, W. (2002). Electron tomography: towards visualizing the molecular organization of the cytoplasm. Current Opinion in Structural Biology 12, 679–684.CrossRefGoogle ScholarPubMed

Baumeister, W., Grimm, R. & Walz, J. (1999). Electron tomography of molecules and cells. Trends in Cell Biology 9, 81–85.CrossRefGoogle ScholarPubMed

Bethe, H. & Ashkin, J. (1953). Passage of radiation through matter, chapter 2. In Experimental Nuclear Physics, vol. 1 (ed. Segré, E.), pp. 166–357. New York: John Wiley.Google Scholar

Bichsel, H. (1988). Straggling in thin silicon detectors. Reviews of Modern Physics 60, 663–699.CrossRefGoogle Scholar

Boettcher, B., Wynne, S. A. & Crowther, R. A. (1997). Determination of the fold of the core protein of Hepatitis B virus by electron cryomicroscopy. Nature 386, 88–91.CrossRefGoogle Scholar

Bogaerts, J., Dierckx, B., Meynants, G. & Uwaerts, D. (2003). Total dose and displacement damage effects in a radiation-hardened CMOS APS. IEEE Transactions on Electrical Development 50, 84–90.CrossRefGoogle Scholar

Booth, C. R., Joanita, J. & Chiu, W. (2006). Assessing the capabilities of a 4k×4k CCD camera for electron cryo-microscopy at 300 kV. Journal of Structural Biology 156, 556–563.CrossRefGoogle Scholar

Booth, C. R., Wen, J., Baker, M. L., Zhou, Z. H., Ludtke, S. J. & Chiu, W. (2004). A 9 Å single particle reconstruction from CCD captured images on a 200 kV electron cryomicroscope. Journal of Structural Biology 147, 116–127.CrossRefGoogle ScholarPubMed

Brink, J. & Chiu, W. (1994). Applications of a slow-scan CCD camera in protein electron crystallography. Journal of Structural Biology 113, 23–34.CrossRefGoogle ScholarPubMed

Cabello, J., Bailey, A., Kitchen, I., Prydderch, M., Clark, A., Turchetta, R. & Wells, K. (2007). Digital autoradiography using room temperature CCD and CMOS imaging technology. Physics in Medicine and Biology 52, 4993–5011.CrossRefGoogle ScholarPubMed

Cabello, J. & Wells, K. (2007). A Monte Carlo investigation into the fundamental limitations of digital autoradiography: considerations for detector design. Nuclear Science Symposium Conference Record NSS IEEE 5, 3625–3630.Google Scholar

Campbell, M. (2010). 10 Years of the Medipix2 Collaboration. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, in press, corrected proof, doi: 10.1016/j.nima.2010.1006.1106.CrossRefGoogle Scholar

Campbell, M., Anelli, G., Cantatore, E., Faccio, F., Heijne, E. H. M., Jarron, P., Santiard, J. C., Snoeys, W. & Wyllie, K. (2001). An introduction to deep submicron CMOS for vertex applications. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 473, 140–145.CrossRefGoogle Scholar

Campbell, M., Heijne, E. H. M., Jarron, P., Krummenacher, F. O., Enz, C. C., Declercq, M., Vittoz, E. & Viertel, G. (1990). A 10 MHz micropower CMOS front end for direct readout of pixel detectors. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 290, 149–157.CrossRefGoogle Scholar

Caswell, T. A., Ercius, P., Tate, M. W., Ercan, A., Gruner, S. M. & Muller, D. A. (2009). A high-speed area detector for novel imaging techniques in a scanning transmission electron microscope. Ultramicroscopy 109, 304–311.CrossRefGoogle Scholar

Cheng, Y. & Walz, T. (2009). The advent of near-atomic resolution in single-particle electron microscopy. Annual Review of Biochemistry 78, 723–742.CrossRefGoogle ScholarPubMed

Da Via, C., Bates, R., Bertolucci, E., Bottigli, U., Campbell, M., Chesi, E., Conti, M., D'Auria, S., Delpapa, C., Fantacci, M. E., Grossi, G., Heijne, E., Mancini, E., Middelkamp, P., Raine, C., Russo, P., O'Shea, V., Scharfetter, L., Smith, K., Snoeys, W. & Stefanini, A. (1997). Gallium arsenide pixel detectors for medical imaging. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 395, 148–151.CrossRefGoogle Scholar

Dainty, J. C. & Shaw, R. (1974). Image Science. New York: Academic Press.Google Scholar

De Rosier, D. J. & Klug, A. (1968). Reconstruction of three dimensional structures from electron micrographs. Nature 217, 130–134.CrossRefGoogle ScholarPubMed

Denes, P., Bussata, J., Leeb, Z. & Radmillovic, V. (2007). Active pixel sensors for electron microscopy. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 579, 891–894.CrossRefGoogle Scholar

Deptuch, G. (2005). Tritium autoradiography with thinned and back-side illuminated monolithic active pixel sensor device. Nuclear Instruments and Methods 543, 537–548.CrossRefGoogle Scholar

Deptuch, G., Besson, A., Rehak, P., Szelezniak, M., Wall, J., Winter, M. & Zhu, Y. (2007). Direct electron imaging in electron microscopy with monolithic active pixel sensors. Ultramicroscopy 107, 674–684.CrossRefGoogle ScholarPubMed

Deruijter, W. J. (1995). Imaging properties and applications of slow-scan charge-coupled-device cameras suitable for electron-microscopy. Micron 26, 247–275.CrossRefGoogle Scholar

Downing, K. H. & Hendrickson, F. M. (1999). Performance of a 2 K CCD camera designed for electron crystallography at 400 kV. Ultramicroscopy 75, 215–233.CrossRefGoogle Scholar

Eid, E. S., Chan, T. Y., Fossurn, E. R., Tsai, R. H., Spagnuolo, R., Deily, J., Byers, W. B. Jr. & Peden, J. C. (2001). Design and characterization of ionizing radiation-tolerant CMOS APS image sensors up to 30 Mrd (Si) total dose. IEEE Transactions on Nuclear Science 48, 1796–1806.CrossRefGoogle Scholar

Fan, G. Y. & Ellisman, M. H. (1993). High-sensitivity lens-coupled slow-scan CCD camera for transmission electron-microscopy. Ultramicroscopy 52, 21–29.CrossRefGoogle ScholarPubMed

Faruqi, A. R. (1988). Development and application of multiwire detectors in biological X-ray studies. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 273, 754–763.CrossRefGoogle Scholar

Faruqi, A. R. (2009). Principles and prospects of direct high resolution electron image acquisition with CMOS detectors at low energies. Journal of Physics: Condensed Matter 21, 314004.Google ScholarPubMed

Faruqi, A. R. & Andrews, H. N. (1997). Cooled CCD camera with tapered fibre optics for electron microscopy. Nuclear Instruments and Methods A 392, 233–236.CrossRefGoogle Scholar

Faruqi, A. R. & Cattermole, D. M. (2005). Pixel detectors for cryo-microscopy. Nuclear Instruments and Methods A 549, 192–198.CrossRefGoogle Scholar

Faruqi, A. R., Cattermole, D. M., Henderson, R., Mikulec, B. & Raeburn, C. (2003). Evaluation of a hybrid pixel detector for electron microscopy. Ultramicroscopy 94, 263–276.CrossRefGoogle ScholarPubMed

Faruqi, A. R. & Henderson, R. (2007). Electronic detectors for electron microscopy. Current Opinion in Structural Biology 17, 549–555.CrossRefGoogle ScholarPubMed

Faruqi, A. R., Henderson, R. & Holmes, J. (2006). Radiation damage studies on STAR250 CMOS sensor at 300 keV for electron microscopy. Nuclear Instruments and Methods 565, 139–143.CrossRefGoogle Scholar

Faruqi, A. R., Henderson, R., Prydderch, M., Turchetta, R., Allport, P. & Evans, A. (2005a). Direct single electron detection with a CMOS detector for electron microscopy. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 546, 170–175.CrossRefGoogle Scholar

Faruqi, A. R., Henderson, R. & Subramaniam, S. (1999). Cooled CCD detector with tapered fibre optics for recording electron diffraction patterns. Ultramicroscopy 75, 235–250.CrossRefGoogle Scholar

Faruqi, A. R., Henderson, R. & Tlustos, L. (2005b). Noiseless direct detection of electrons in Medipix2 for electron microscopy. Nuclear Instruments and Methods 546, 160–163.CrossRefGoogle Scholar

Faruqi, A. R. & Subramaniam, S. (2000). CCD detectors in high-resolution biological electron microscopy. Quarterly Reviews of Biophysics 33, 1–28.CrossRefGoogle ScholarPubMed

Fossum, E. R. (1993). Active pixel sensors: are CCDs dinosaurs? Proceedings of the SPIE 1900, 1–13.Google Scholar

Frank, J. (2002). Single-particle imaging of macromolecules by cryo-electron microscopy. Annual Review of Biophysics and Biomolecular Structure 31, 303–319.CrossRefGoogle ScholarPubMed

Frank, J. (2009). Single-particle reconstruction of biological macromolecules in electron microscopy – 30 years. Quarterly Reviews of Biophysics 42, 139–158.CrossRefGoogle Scholar

Geronimo, G. D., Deptuch, G., Dragone, A., Radeka, V., Rehak, P., Castoldi, A., Fazzi, A., Gatti, E., Guazzoni, C., Rijssenbeek, M., Dulinski, W., Besson, A., Deveaux, M. & Winter, M. (2006). A novel position and time sensing active pixel sensor with field-assisted electron collection for charged particle tracking and electron microscopy. Nuclear Instruments and Methods 568, 167–175.CrossRefGoogle Scholar

Glaeser, R. M., McMullan, G., Faruqi, A. R. & Henderson, R. (2011). Images of paraffin monolayer crystals with perfect contrast: Minimization of beam-induced specimen motion. Ultramicroscopy 111, 90–100.CrossRefGoogle ScholarPubMed

Hamilton, J. F. & Marchant, J. C. (1967). Image recording in electron microscopy. Journal of Optical Society of America 57, 232–239.CrossRefGoogle Scholar

Henderson, R. (2004). Realizing the full potential of electron cryo-microscopy. Quarterly Reviews of Biophysics 37, 3–13.CrossRefGoogle Scholar

Henderson, R., Baldwin, J. M., Ceska, T. A., Zemlin, F., Beckman, E. & Downing, K. H. (1990). Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. Journal of Molecular Biology 213, 899–929.CrossRefGoogle ScholarPubMed

Henderson, R. & Glaeser, R. M. (1985). Quantitative analysis of image contrast in electron micrographs of beam-sensitive crystals. Ultramicroscopy 16, 139–150.CrossRefGoogle Scholar

Janesick, J. & Putnam, G. (2003). Development and applications of high performance CCD and CMOS imaging arrays. Annual Review of Nuclear and Particle Science 53, 263–300.CrossRefGoogle Scholar

Jin, L., Milazzo, A.-C., Kleinfelder, S., Li, S., Leblanc, P., Duttweiler, F., Bouwer, J. C., Peltier, S. T., Ellisman, M. H. & Xuong, N.-H. (2008). Applications of direct detection device in transmission electron microscopy. Journal of Structural Biology 161, 352–358.CrossRefGoogle ScholarPubMed

Joy, D. C. (1995). Monte Carlo Modeling for Electron Microscopy and Microanalysis. Oxford: Oxford University Press.CrossRefGoogle Scholar

King, W., Campbell, G., Frank, A., Reed, B., Schmerge, J., Siwick, B., Stuart, B. & Weber, M. (2005). Ultrafast electron microscopy in materials science, biology, and chemistry. Journal of Applied Physics 97, 1–27.CrossRefGoogle Scholar

Klug, A. (1999). The tobacco mosaic virus particle: structure and assembly. Philosophical Transactions of Royal Society of London Series B: Biological Sciences 354, 531–535.CrossRefGoogle ScholarPubMed

Krebs, A., Villa, C., Edwards, P. C. & Schertler, G. F. X. (1998). Characterisation of an improved two-dimensional p22121 crystal from bovine rhodopsin. Journal of Molecular Biology 282, 991–1003.CrossRefGoogle ScholarPubMed

Krivanek, O. L. & Mooney, P. E. (1993). Applications of slow-scan CCD cameras in transmission electron microscopy. Ultramicroscopy 49, 95.CrossRefGoogle Scholar

Krüger, H. (2005). 2D Detectors for particle physics and for imaging applications. Nuclear Instruments and Methods A551, 1–14.Google Scholar

Kuhlbrandt, W., Wang, D. N. & Fujiyoshi, Y. (1994). Atomic model of plant light-harvesting complex by electron crystallography. Nature 367, 614–621.CrossRefGoogle ScholarPubMed

Landau, L. (1944). On the energy loss of fast particles by ionisation. Journal of Physics (Moscow) 8, 201.Google Scholar

Llopart, X. & Campbell, M. (2003). First test measurements of a 64 K pixel readout chip working in single photon counting mode. Nuclear Instruments and Methods A 509, 157–163.CrossRefGoogle Scholar

Llopart, X., Campbell, M., Dinapoli, R., San Secundo, D. & Pernigotti, E. (2002). Medipix2: a 64k pixel readout chip with 55 μm square elements working in single photon counting mode. IEEE Transactions on Nuclear Science 49, 2279–2283.CrossRefGoogle Scholar

Lucic, V., Forster, F. & Baumeister, W. (2005). Structural studies by electron tomography: from cells to molecules. Annual Review of Biochemistry 74, 833–865.CrossRefGoogle ScholarPubMed

Matheson, J., Moldovan, G., Clark, A., Prydderch, M., Turchetta, R., Derbyshire, G., Kirkland, A. & Allinson, N. (2009). Characterisation of a monolithic active pixel sensor for electron detection in the energy range 10–20 keV. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 608, 199–205.CrossRefGoogle Scholar

McMullan, G., Cattermole, D., Chen, S., Henderson, R., Llopart, X., Summerfield, C., Tlustos, L. & Faruqi, A. R. (2007). Electron imaging with Medipix2 hybrid pixel detector. Ultramicroscopy 107, 401–413.CrossRefGoogle ScholarPubMed

McMullan, G., Chen, S., Henderson, R. & Faruqi, A. R. (2009a). The detective quantum efficiency of electron area detectors in electron microscopy. Ultramicroscopy 109, 1126–1143.CrossRefGoogle ScholarPubMed

McMullan, G., Clark, A. T., Turchetta, R. & Faruqi, A. R. (2009b). Enhanced imaging in low dose electron microscopy using electron counting. Ultramicroscopy 109, 1411–1416.CrossRefGoogle ScholarPubMed

McMullan, G. & Faruqi, A. R. (2008). Direct detection devices for single particle electron cryo-microscopy. Nuclear Instruments and Methods A591, 129–133.CrossRefGoogle Scholar

McMullan, G., Faruqi, A. R., Henderson, R., Guerrini, N., Turchetta, R., Jacobs, A. & Van Hoften, G. (2009c). Experimental observation of the improvement in MTF from backthinning a CMOS direct electron detector. Ultramicroscopy 109, 1144–1147.CrossRefGoogle ScholarPubMed

Mettivier, G., Montesi, M. C. & Russo, P. (2004). Tritium digital autoradiography with a Medipix2 hybrid silicon pixel detector. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 516, 554–563.CrossRefGoogle Scholar

Meyer, R. R. & Kirkland, A. (1998). The effects of electron and photon scattering on signal and noise transfer properties of scintillators in CCD cameras used for electron detection. Ultramicroscopy 75, 23–33.CrossRefGoogle Scholar

Mikulec, B., Campbell, M., Heijne, E., Llopart, X. & Tlustos, L. (2003). X-ray imaging using single photon processing with semiconductor pixel detectors. Nuclear Instruments and Methods A 511, 282–286.CrossRefGoogle Scholar

Milazzo, A., Leblanc, P., Duttweiler, F., Jin, L., Bouwer, J. C., Peltier, S., Ellisman, M., Bieser, F., Matis, H. S., Wieman, H., Denes, P., Kleinfelder, S. & Xuong, N. (2005). Active pixel sensor array as a detector for electron microscopy. Ultramicroscopy 104, 152–159.CrossRefGoogle ScholarPubMed

Mooney, P. (2007). Optimization of image collection for cellular electron microscopy. Methods in Cell Biology 79, 661–719.CrossRefGoogle ScholarPubMed

Park, H. S., Baskin, J. S., Barwick, B., Kwon, O.-H. & Zewail, A. H. (2009). 4D ultrafast electron microscopy: Imaging of atomic motions, acoustic resonances, and moiré fringe dynamics. Ultramicroscopy 110, 7–19.CrossRefGoogle ScholarPubMed

Peric, I. (2007). A novel monolithic pixelated particle detector implemented in high-voltage CMOS technology. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 582, 876–885.CrossRefGoogle Scholar

Prydderch, M. L., Waltham, N. J., Turchetta, R., French, M. J., Holt, R., Marshall, A., Burt, D., Bell, R., Pool, P., Eyles, C. & Mapson-Menard, H. (2003). A 512×512 CMOS monolithic active pixel sensor with integrated ADCs for space science. Nuclear Instruments and Methods A512, 358–367.CrossRefGoogle Scholar

Roberts, P. T. E., Chapman, J. N. & Macleod, A. M. (1982). A CCD-based recording system for CTEM. Ultramicroscopy 8, 385–396.CrossRefGoogle Scholar

Russo, P., Lauria, A., Mettivier, G., Montesi, M. C., Marotta, M., Aloj, L. & Lastoria, S. (2008). 18F-FDG positron autoradiography with a particle counting silicon pixel detector. Physics in Medicine and Biology 53, 6227–6243.CrossRefGoogle ScholarPubMed

Russo, P., Mettivier, G., Pani, R., Pellegrini, R., Cinti, M. N. & Bennati, P. (2009). Imaging performance comparison between a LaBr[sub 3]:Ce scintillator based and a CdTe semiconductor based photon counting compact gamma camera. Medical Physics 36, 1298–1317.CrossRefGoogle Scholar

Sander, B., Golas, M. M. & Stark, H. (2005). Advantages of CCD detectors for de novo three-dimensional structure determination in single-particle electron microscopy. Journal of Structural Biology 151, 92–105.CrossRefGoogle Scholar

Shapiro, S. L., Dunwoodie, W. M., Arens, J. F., Garrett Jernigan, J. & Gaalema, S. (1989). Silicon pin diode array hybrids for charged particle detection. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 275, 580–586.CrossRefGoogle Scholar

Slayter, E. M. & Slayter, H. S. (1992). Light and Electron Microscopy. Cambridge: Cambridge University Press.Google Scholar

Spence, J. C. H. & Zuo, J. M. (1988). Large dynamic range, parallel detection system for electron diffraction and imaging. Review of Scientific Instruments 59, 2102–2105.CrossRefGoogle Scholar

Subramaniam, S., Lindahl, M., Bullough, P., Faruqi, A. R., Tittor, J., Oeterhelt, D., Brown, D., Lanyi, J. & Henderson, R. (1999). Protein conformational changes in the bacteriorhodopsin photocycle. Journal of Molecular Biology 287, 145–161.CrossRefGoogle ScholarPubMed

Tlustos, L. (2005). Performance and limitations of high granularity single photon processing X-ray imaging detectors. Ph.D. thesis, University of Technology, Vienna, CERNTHESIS-2005-032.Google Scholar

Tromp, R. M. (2000). Low-energy electron microscopy. IBM Journal of Research and Development 44, 503–516.CrossRefGoogle Scholar

Turchetta, R., Berst, J. D., Casadei, B., Claus, G., Colledani, C., Dulinski, W., Hu, Y., Husson, D., Le Normand, J. P., Riester, J. L., Deptuch, G., Goerlach, U., Higueret, S. & Winter, M. (2001). A monolithic active pixel sensor for charged particle tracking and imaging using standard. VLSI CMOS Technology Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 458, 677–689.CrossRefGoogle Scholar

Typke, D., Gilpin, C. J., Downing, K. H. & Glaeser, R. M. (2007). Stroboscopic image capture: reducing the dose per frame by a factor of 30 does not prevent beam-induced specimen movement in paraffin. Ultramicroscopy 107, 106–115.CrossRefGoogle Scholar

Van Gastel, R., Sikharulidze, I., Schramm, S., Abrahams, J. P., Poelsema, B., Tromp, R. M. & Van Der Molen, S. J. (2009). Medipix 2 detector applied to low energy electron microscopy. Ultramicroscopy 110, 33–35.CrossRefGoogle ScholarPubMed

Van Heel, M., Gowen, B., Matadeen, R., Orlova, E. V., Finn, R., Pape, T., Cohen, D., Stark, H., Schmidt, R., Schatz, M. & Patwardhan, A. (2000). Single-particle electron cryo-microscopy: towards atomic resolution. Quarterly Reviews of Biophysics 33, 307–369.CrossRefGoogle ScholarPubMed

Zewail, A. H. (2006). 4D ultrafast electron diffraction, crystallography, and microscopy. Annual Review of Physical Chemistry 57, 65–103.CrossRefGoogle ScholarPubMed

Zhang, J., Baker, M. L., Schroder, G. F., Douglas, N. R., Reissmann, S., Jakana, J., Dougherty, M., Fu, C. J., Levitt, M., Ludtke, S. J., Frydman, J. & Chiu, W. (2010a). Mechanism of folding chamber closure in a group II chaperonin. Nature 463, 379–383.CrossRefGoogle Scholar

Zhang, X., Jin, L., Fang, Q., Hui, W. H. & Zhou, Z. H. (2010b). 3.3 Å cryo-EM structure of a nonenveloped virus reveals a priming mechanism for cell entry. Cell 141, 472–482.CrossRefGoogle ScholarPubMed

Zhang, X., Settembre, E., Xu, C., Dormitzer, P. R., Bellamy, R., Harrison, S. C. & Grigorieff, N. (2008). Near-atomic resolution using electron cryomicroscopy and single-particle reconstruction. Proceedings of the National Academy of Sciences, U. S. A. 105, 1867–1872.CrossRefGoogle ScholarPubMed

Zweig, H. J. (1965). Detective quantum efficiency of photodetectors with some amplification mechanisms. Journal of Optical Society of America 55, 525–528.CrossRefGoogle Scholar

Zwerger, A., Faulera, A., Fiederle, M. & Jakobs, K. (2007). Medipix2: Processing and measurements of GaAs pixel detectors. Nuclear Instruments and Methods 576, 23–26.CrossRefGoogle Scholar