Trajectories of maternal depressive symptoms over her child's life span: Relation to adrenocortical, cardiovascular, and emotional functioning in children | Development and Psychopathology | Cambridge Core (original) (raw)

Abstract

Maternal depression has a number of adverse effects on children. In the present study, maternal depressive symptoms were assessed (using the Center for Epidemiological Studies Depression Scale) when their child was 3 months, 6 months, 1 year, 2 years, 4.25 years, 6 years, 7 years, 8 years, and 10 years of age. At 9.5 years of age, children's (94 females, 82 males) depressive symptoms as well as cardiovascular and cortisol levels during baseline and two psychologically stressful tasks were measured. Using multilevel modeling, maternal depressive symptom trajectories were considered in relation to their child's adrenocortical and cardiovascular responses to acute stress. Our goal was to determine maternal depressive symptom trajectories for children with elevated cardiovascular and cortisol reactivity to acute stress and elevated depressive symptoms. In general, those mothers with chronically elevated depressive symptoms over their child's life span had children with lower initial cortisol, higher cardiac output and stroke volume in response to acute stress, lower vascular resistance during acute stress tasks, and significantly more depressive symptoms at 9.5 years of age. These results are discussed in the context of established associations among hypothalamic–pituitary–adrenal axis dysregulation, depression, and cardiovascular disease.

References

Allen, M. T., & Crowell, M. D. (1989). Patterns of autonomic response during laboratory stressors. Psychophysiology, 26, 603–614.CrossRefGoogle ScholarPubMed

Allen, M. T., & Matthews, K. A. (1997). Hemodynamic responses to laboratory stressors in children and adolescents: The influence of age, race, and gender. Psychophysiology, 34, 329–339.CrossRefGoogle Scholar

Allen, M. T., Matthews, K. A., & Sherman, F. S. (1997). Cardiovascular reactivity to stress and left ventricular mass in youth. Hypertension, 30, 782–787.CrossRefGoogle ScholarPubMed

Ashman, S. B., Dawson, G., Panagiotides, H., Yamada, E., & Wilkinson, C. W. (2002). Stress homone levels of children of depressed mothers. Development and Psychopathology, 14, 333–349.CrossRefGoogle Scholar

Attar, B. K., Guerra, N. G., & Tolan, P. H. (1994). Neighborhood disadvantage, stressful life events, and adjustment in urban elementary-school children. Journal of Clinical Child Psychology, 23, 391–400.CrossRefGoogle Scholar

Ballard, C. G., Davis, R., Cullen, P. C., Mohan, R. N., & Dean, C. (1994). Prevalence of postnatal psychiatric morbidity in mothers and fathers. The British Journal of Psychiatry, 164, 782–788.CrossRefGoogle ScholarPubMed

Ballard, J. L., Novak, K. K., & Driver, M. A. (1979). A simplified score for assessment of fetal maturation of newly born infants. Journal of Pediatrics, 95, 769–774.CrossRefGoogle ScholarPubMed

Beagley, W. (1994). Eyelines user manual. Alma, MI: Alma College.Google Scholar

Beeghly, M., Weinberg, M. K., Olson, K. L., Kernan, H., Riley, J., & Tronick, E. Z. (2002). Stability and change in level of maternal depressive symptomatology during the first postpartum year. Journal of Affective Disorders, 71, 169–180.CrossRefGoogle ScholarPubMed

Bradley, R. H., & Caldwell, B. M. (1984). Home observation for measurement of the environment. Little Rock, AR: University of Arkansas.Google Scholar

Bullinger, M., Naber, D., Pickar, D., Cohen, R. M., Kalin, N. H., Pert, A., et al. (1984). Endocrine effects of the cold pressor test: Relationships to subjective pain appraisal and coping. Psychiatry Research, 12, 227–233.CrossRefGoogle ScholarPubMed

Chen, E., & Matthews, K. A. (2001). Cognitive appraisal biases: An approach to understanding the relation between socioeconomic status and cardiovascular reactivity in children. Annals of Behavioral Medicine, 23, 101–111.CrossRefGoogle ScholarPubMed

Chen, E., Matthews, K. A., Salomon, K., & Ewart, C. K. (2002). Cardiovascular reactivity during social and nonsocial stressors: Do children's personal goals and expressive skills matter? Health Psychology, 21, 16–24.CrossRefGoogle ScholarPubMed

Cicchetti, D., & Rogosch, F. A. (2001). Diverse patterns of neuroendocrine activity in maltreated children. Development and Psychopathology, 13, 677–693.CrossRefGoogle ScholarPubMed

Cicchetti, D., & Toth, S. L. (1998). The development of depression in children and adolescents. American Psychologist, 53, 221–241.CrossRefGoogle ScholarPubMed

Cummings, E. M., & Davies, P. T. (1994). Maternal depression and child development. Journal of Child Psychology and Psychiatry, 35, 73–112.CrossRefGoogle ScholarPubMed

Dunn, L. M., & Dunn, L. M. (1981). Peabody Picture Vocabulary Test. Revised. Form L (reg. ed.). Circle Pines, MN: American Guidance Service.Google Scholar

Dunn, L. M., & Dunn, L. M. (1997). Peabody Picture Vocabulary Test (3rd ed.). Circle Pines, MN: American Guidance Service.Google Scholar

Ellis, B. J., Jackson, J. J., & Boyce, W. T. (2006). The stress response systems: Universality and adaptive individual differences. Developmental Review, 26, 175–212.CrossRefGoogle Scholar

Essex, M. J., Klein, M. H., Cho, E., & Kalin, N. H. (2002). Maternal stress beginning in infancy may sensitize children to later stress exposure: Effect on cortisol and behavior. Biological Psychiatry, 52, 776–784.CrossRefGoogle ScholarPubMed

Flinn, M. V., & England, B. G. (1995). Childhood stress and family environment. Current Anthropology, 36, 854–866.CrossRefGoogle Scholar

Forbes, E. E., Williamson, D. E., Ryan, N. D., Birmaher, B., Axelson, D. A., & Dahl, R. E. (2006). Peri-sleep-onset cortisol levels in children and adolescents with affective disorders. Biological Psychiatry, 59, 24–30.CrossRefGoogle ScholarPubMed

Fries, E., Hesse, J., Hellhammer, J., & Hellhammer, D. H. (2005). A new view of hypocortisolism. Psychoneuroendocrinology, 30, 1010–1016.CrossRefGoogle ScholarPubMed

Gelfand, D. M., & Teti, D. M. (1990). The effects of maternal depression on children. Clinical Psychology Review, 10, 329–359.CrossRefGoogle Scholar

Goldstein, L. H., Trancik, A., Bensadoun, J., Boyce, W. T., & Adler, N. E. (1999). Social dominance and cardiovascular reactivity in preschoolers. Annals of the New York Academy of Science, 896, 363–366.CrossRefGoogle ScholarPubMed

Goodman, S. H. (1992). Understanding the effects of depressed mothers on their children. In Walker, B. C. E. F. & Dworkin, R. (Eds.), Progress in experimental psychopathology research (pp. 47–109). New York: Springer.Google Scholar

Goodman, S. H., & Gotlib, I. H. (1999). Risk for psychopathology in the children of depressed mothers: A developmental model for understanding mechanisms of transmission. Psychological Reviews, 106, 458–490.CrossRefGoogle ScholarPubMed

Goodyer, I. M., Herbert, J., & Tamplin, A. (2003). Psychoendocrine antecedents of persistent first-episode major depression in adolescents: A community-based longitudinal enquiry. Psychological Medicine, 33, 601–610.CrossRefGoogle ScholarPubMed

Gotlib, I. H., & Lee, C. M. (1996). Impact of parental depression of young children and infants. In Mundt, M. J. G. C., Hahlweg, K., & Fiedler, P. (Eds.), Interpersonal factors in the origin and course of affective disorders (pp. 218–239). London: Royal College of Psychiatrists.Google Scholar

Granger, D. A., Serbin, L. A., Schwartzman, A. E., Lehoux, P., Cooperman, J., & Ikeda, S. (1998). Children's salivary cortisol, internalising behaviour problems, and family environment: Results from the Concordia Longitudinal Risk Project. International Journal of Behavioral Development, 22, 707–728.CrossRefGoogle Scholar

Gump, B. B., & Matthews, K. A. (1999). Do background stressors influence reactivity and recovery from acute stressors? Journal of Applied Social Psychology, 29, 469–494.CrossRefGoogle Scholar

Gump, B. B., Matthews, K. A., & Räikkönen, K. (1999). Modeling relationships among socioeconomic status, hostility, cardiovascular reactivity, and left ventricular mass in African American and White children. Health Psychology, 18, 140–150.CrossRefGoogle ScholarPubMed

Gump, B. B., Reihman, J., Stewart, P., Lonky, E., & Darvill, T. (2005). Terrorism and cardiovascular responses to acute stress in children. Health Psychology, 24, 594–600.CrossRefGoogle ScholarPubMed

Gump, B. B., Reihman, J., Stewart, P., Lonky, E., Darvill, T., Matthews, K. A., et al. (2005). Prenatal and early childhood blood lead levels and cardiovascular functioning in 9.5-year-old children. Neurotoxicology and Teratology, 27, 655–665.CrossRefGoogle Scholar

Gump, B. B., Stewart, P., Reihman, J., Lonky, E., Darvill, T., & Parsons, P. J. (2008). Low-level prenatal and postnatal blood lead (Pb) exposure and adrenocortical responses to acute stress in children. Environmental Health Perspectives, 116, 249–255.CrossRefGoogle ScholarPubMed

Gunnar, M. R., & Donzella, B. (2002). Social regulation of the cortisol levels in early human development. Psychoneuroendocrinology, 27, 199–220.CrossRefGoogle ScholarPubMed

Gunnar, M. R., & Vazquez, D. (2001). Low cortisol and a flattening of expected daytime rhythm: Potential indices of risk in human development. Development and Psychopathology, 13, 515–538.CrossRefGoogle Scholar

Halligan, S. L., Herbert, J., Goodyer, I. M., & Murray, L. (2004). Exposure to postnatal depression predicts elevated cortisol in adolescent offspring. Biological Psychiatry, 55, 376–381.CrossRefGoogle ScholarPubMed

Halligan, S. L., Herbert, J., Goodyer, I., & Murray, L. (2007). Disturbances in morning cortisol secretion in association with maternal postnatal depression predict subsequent depressive symptomatology in adolescents. Biological Psychiatry, 62, 40–46.CrossRefGoogle ScholarPubMed

Hammen, C., Gordon, D., Burge, D., Adrian, C., Jaenicke, C., & Hiroto, D. (1987). Maternal affective disorders, illness, and stress: Risk for children's psychopathology. American Journal of Psychiatry, 144, 736–741.Google ScholarPubMed

Heim, C., Ehlert, U., & Hellhammer, D. H. (2000). The potential role of hypocortisolism in the pathophysiology of stress-related bodily functions. Psychoneuroendocrinology, 25, 1–35.CrossRefGoogle Scholar

Hellhammer, J., Schlotz, W., Pirke, K. M., & Stone, A. A. (2004). Allostatic load, perceived stress, and health: A prospective study in two age groups. Annals of New York Academy of Science, 1032, 8–13.CrossRefGoogle ScholarPubMed

Hollingshead, A. B. (1975). Four Factor Index of Social Status. New Haven, CT: Hollingshead.Google Scholar

Houshyar, H., Galigniana, M. D., Pratt, W. B., & Woods, J. H. (2001). Differential responsivity of the hypothalamic–pituitary–adrenal axis to glucocorticoid negative-feedback and corticotropin releasing hormone in rats undergoing morphine withdrawal: Possible mechanisms involved in facilitated and attenuated stress responses. Journal of Neuroendocrinology, 13, 875–886.CrossRefGoogle ScholarPubMed

Inoff-Germain, G., Nottelmann, E. D., & Radke-Yarrow, M. (1992). Evaluative communications between affectively ill and well mothers and their children. Journal of Abnormal Child Psychology, 20, 189–212.CrossRefGoogle ScholarPubMed

Julius, S. (1995). The defense reaction: A common denominator of coronary risk and blood pressure in neurogenic hypertension? Clinical and Experimental Hypertension, 17, 375–386.CrossRefGoogle ScholarPubMed

Julius, S., Randall, O. S., Esler, M. D., Kashima, T., & Ellis, C. N. (1975). Altered cardiac responsiveness and regulation in the normal cardiac output type of borderline hypertension. Circulation Research, 36–37(Suppl. 1), 1199–1207.Google Scholar

Kamarck, T. W., & Lovallo, W. R. (2003). Cardiovascular reactivity to psychological challenge: Conceptual and measurement considerations. Psychosomatic Medicine, 65, 9–21.CrossRefGoogle ScholarPubMed

Kasprowicz, A. S., Manuck, S. B., Malkoff, S. B., & Krantz, D. S. (1990). Individual differences in behaviorally evoked cardiovascular response: Temporal stability and hemodynamic patterning. Psychophysiology, 27, 605–619.CrossRefGoogle ScholarPubMed

Keller, M. B., Beardslee, W. R., Dorer, D. J., Lavori, P. W., Samuelson, H., & Klerman, G. R. (1986). Impact of severity and chronicity of parental affective illness on adaptive functioning and psychopathology in children. Archives of General Psychiatry, 43, 930–937.CrossRefGoogle ScholarPubMed

Kivlighan, K. T., & Granger, D. A. (2006). Stress responsivity to competition: Gender and experimental differences in salivary alpha-amylase and cortisol activity. Psychoneuroendocrinology, 31, 703–714.CrossRefGoogle Scholar

Kivlighan, K. T., Granger, D. A., Schwartz, E. B., Nelson, V., & Curran, M. (2004). Quantifying blood leakage into the oral mucosa and its effects on the measurement of cortisol, dehydroepiandrosterone, and testosterone in saliva. Hormones and Behavior, 46, 39–46.CrossRefGoogle ScholarPubMed

Knight, R. G., Williams, S. L., McGee, R., & Olaman, S. (1997). Psychometric properties of the Centre for Epidemiologic Studies Depression Scale (CES-D) in a sample of women in middle life. Behavioral Research and Therapy, 35, 373–380.CrossRefGoogle Scholar

Kovacs, M. (1982). Children's Depression Inventory manual. North Tonawanda, NY: Multi-Health Systems.Google Scholar

Krantz, D. S., & McCeney, M. K. (2002). Effects of psychological and social factors on organic disease: A critical assessment of research on coronary heart disease. Annual Review of Psychology, 53, 341–604.CrossRefGoogle ScholarPubMed

Kubicek, W. G., Karnegis, J. N., Patterson, R. P., Witsoe, D. A., & Mattson, R. H. (1966). Development and evaluation of an impedance cardiac output system. Aerospace Medicine, 37, 1208–1212.Google ScholarPubMed

Kubicek, W. G., Patterson, R. P., & Witsoe, D. A. (1970). Impedance cardiography as a noninvasive method of monitoring cardiac function and other parameters of the cardiovascular system. Annals of the New York Academy of Science, 170, 724–732.CrossRefGoogle Scholar

Larson, M. C., Gunnar, M. R., & Hertsgaard, L. (1991). The effects of morning naps, car trips, and maternal separation on adrenocortical activity in human infants. Child Development, 62, 362–372.CrossRefGoogle ScholarPubMed

Lepore, S. J., Miles, H. J., & Levy, J. S. (1997). Relation of chronic and episodic stressors to psychological distress, reactivity, and health problems. International Journal of Behavioral Medicine, 4, 39–59.CrossRefGoogle Scholar

Lonky, E., Reihman, J., Darvill, T., Mather, J., & Daly, H. (1996). Neonatal Behavioral Assessment Scale performance in humans influenced by maternal consumption of environmentally contaminated Lake Ontario fish. Journal of Great Lakes Research, 22, 198–212.CrossRefGoogle Scholar

Luecken, L. J. (1998). Childhood attachment and loss experiences affect adult cardiovascular and cortisol function. Psychosomatic Medicine, 60, 765–772.CrossRefGoogle ScholarPubMed

Matthews, K. A., Gump, B. B., Block, D. R., & Allen, M. T. (1997). Does background stress heighten or dampen children's cardiovascular responses to acute stress? Psychosomatic Medicine, 59, 488–496.CrossRefGoogle ScholarPubMed

Matthews, K. A., Gump, B. B., & Owens, J. F. (2001). Effects of chronic stress on cardiovascular and neuroendocrine responses during acute stress and recovery of men and women. Health Psychology, 20, 403–410.CrossRefGoogle Scholar

Matthews, K. A., Salomon, K., Brady, S., & Allen, M. T. (2003). Cardiovascular reactivity to stress predicts future blood pressure in adolescence. Psychosomatic Medicine, 65, 410–415.CrossRefGoogle ScholarPubMed

McCrory, W. W. (1992). Definition, prevalence, and distribution of causes of hypertension. In Loggie, J. (Ed.), Pediatric and adolescent hypertension (pp. 104–111). Boston: Blackwell.Google Scholar

McLearn, K. T., Minkovitz, C. S., Strobino, D. M., Marks, E., & Hou, W. (2006). Maternal depressive symptoms at 2 to 4 months post partum and early parenting practices. Archives of Pediatrics and Adolescent Medicine, 160, 279–284.CrossRefGoogle ScholarPubMed

Meaney, M. J., Aitken, D. H., van Berkel, C., Bhatnagar, S., & Sapolsky, R. M. (1988). Effect of neonatal handling on age-related impairments associated with the hippocampus. Science, 239, 766–768.CrossRefGoogle ScholarPubMed

Milgrom, J., Westley, D. T., & Gemmill, A. W. (2004). The mediating role of maternal responsiveness in some longer term effects of postnatal depression on infant development. Infant Behavior and Development, 27, 443–454.CrossRefGoogle Scholar

Miller, G. E., Chen, E., & Zhou, E. S. (2007). If it goes up, must it come down? Chronic stress and the hypothalamic–pituitary–adrenocortical axis in humans. Psychological Bulletin, 133, 25–45.CrossRefGoogle ScholarPubMed

Muntner, P., He, J., Cutler, J. A., Wildman, R. P., & Whelton, P. K. (2004). Trends in blood pressure among children and adolescents. Journal of the American Medical Association, 291, 2107–2113.CrossRefGoogle ScholarPubMed

Parmalee, A. H. (1974). The Obstetric Complications Scales and the Postnatal Complications Scale. Unpublished manuscript.Google Scholar

Penninx, B. W. J. H., Beekman, A. T. F., Honig, A., Deeg, D., Schoevers, R., van Eink, J., et al. (2001). Depression and cardiac mortality: Results from a community-based longitudinal study. Archives of General Psychiatry, 58, 221–227.CrossRefGoogle ScholarPubMed

Peterson, A. C., Crockett, L., Richards, M., & Boxer, A. (1988). A self-reported measure of pubertal status: Reliability, validity, and initial norms. Journal of Youth and Adolescence, 17, 117–133.CrossRefGoogle Scholar

Puig-Antich, J., Dahl, R., Ryan, N., Novacenko, H., Goetz, D., Goetz, R., et al. (1989). Cortisol secretion in prepubertal childen with major depressive disorder. Archives of General Psychiatry, 46, 801–809.Google Scholar

Radke-Yarrow, M., Nottelmann, E. D., Belmont, B., & Welsh, J. D. (1993). Affective interactions of depressed and nondepressed mothers and their children. Journal of Abnormal Child Psychology, 21, 683–695.CrossRefGoogle ScholarPubMed

Radloff, L. S. (1977). The CES-D scale: A self-report depression scale for research in the general population. Applied Psychological Measurement, 1, 385–401.CrossRefGoogle Scholar

Ronsaville, D. S., Municchi, G., Laney, C., Cizza, G., Meyer, S. E., Haim, A., et al. (2006). Maternal and environmental factors influence the hypothalamic–pituitary–adrenal axis response to corticotropin-releasing hormone infusion in offspring of mothers with or with mood disorders. Development and Psychopathology, 18, 173–194.CrossRefGoogle ScholarPubMed

Roy, M. P., Kirschbaum, C., & Steptoe, A. (2001). Psychological, cardiovascular, and metabolic correlates of individual differences in cortisol stress recovery in young men. Psychoneuroendocrinology, 26, 375–391.CrossRefGoogle ScholarPubMed

Sameroff, A. J., Seifer, R., Zax, M., & Barocas, R. (1984). Early indicators of developmental risk: Rochester longitudinal study. Schizophrenia Bulletin, 13, 383–394.CrossRefGoogle Scholar

Sapolsky, R. M., Romero, L. M., & Munck, A. U. (2000). How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocrine Review, 21, 55–89.Google ScholarPubMed

SAS Institute. (1996). SAS/STAT software: Changes and enhancements through release 6.11. Cary, NC: Author.Google Scholar

Sherwood, A., Allen, M. T., Fahrenberg, J., Kelsey, R. M., Lovallo, W. R., & van Doornen, L. J. P. (1990). Methodological guidelines for impedance cardiography. Psychophysiology, 27, 1–23.Google ScholarPubMed

Sherwood, A., & Turner, J. R. (1995). Hemodynamic responses during psychological stress: Implications for studying disease processes. International Journal of Behavioral Medicine, 2, 193–218.CrossRefGoogle ScholarPubMed

Singer, J. D. (1998). Using SAS PROC MIXED to fit multilevel models, hierarchical models, and individual growth models. Journal of Educational and Behavioral Statistics, 24, 323–355.CrossRefGoogle Scholar

Singer, J. D., & Willett, J. B. (2003). Applied longitudinal data analysis. Oxford: Oxford University Press.CrossRefGoogle Scholar

Smucker, M. R., Craighead, W. E., Craighead, L. W., & Green, B. J. (1986). Normative and reliability data for the Children's Depression Inventory. Journal of Abnormal Child Psychology, 14, 25–39.CrossRefGoogle ScholarPubMed

Sohr-Preston, S. L. (2006). Implications of timing of maternal depressive symptoms for early cognitive and language development. Clinical Child and Family Psychology Review, 9, 65–83.CrossRefGoogle ScholarPubMed

Stansbury, K., & Gunnar, M. R. (1994). Adrenocortical activity and emotion regulation. Monographs of the Society for Research in Child Development, 59, 108–134.CrossRefGoogle ScholarPubMed

State of New York. (1988). Pregnant women general screening (Rep. No. DOH-2086). New York: Department of Health, Bureau of Nutrition.Google Scholar

Stewart, P., Darvill, T., Lonky, E., Reihman, J., Pagano, J., & Bush, B. (1999). Assessment of prenatal exposure to PCBs from maternal consumption of Great Lakes fish: An analysis of PCB pattern and concentration. Environmental Research Section A, 80, S87–S96.CrossRefGoogle Scholar

Stewart, P., Reihman, J., Gump, B. B., Lonky, E., Darvill, T., & Pagano, J. (2005). Response inhibition at 8 and 9 1/2 years of age in children prenatally exposed to PCBs. Neurotoxicology and Teratology, 27, 771–780.CrossRefGoogle ScholarPubMed

Stewart, P., Reihman, J., Lonky, E., Darvill, T., & Pagano, J. (2000). Prenatal PCB exposure and neonatal behavioral assessment scale (NBAS) performance. Neurotoxicology and Teratology, 22, 21–29.CrossRefGoogle ScholarPubMed

Stewart, P., Sargent, D. M., Reihman, J., Gump, B. B., Lonky, E., Darvill, T., Hicks, H., & Pagano, J. (2006). Response inhibition during differential reinforcement of low rates (DRL) schedules may be sensitive to low-level PCB, MeHg and Pb exposure in children. Environmental Health Perspectives, 114, 1923–1929.CrossRefGoogle ScholarPubMed