The influence of galactic cosmic rays on ion–neutral hydrocarbon chemistry in the upper atmospheres of free-floating exoplanets | International Journal of Astrobiology | Cambridge Core (original) (raw)

Abstract

Cosmic rays may be linked to the formation of volatiles necessary for prebiotic chemistry. We explore the effect of cosmic rays in a hydrogen-dominated atmosphere, as a proof-of-concept that ion–neutral chemistry may be important for modelling hydrogen-dominated atmospheres. In order to accomplish this, we utilize Monte Carlo cosmic ray transport models with particle energies of 106 eV<E<1012 eV in order to investigate the cosmic-ray enhancement of free electrons in substellar atmospheres. Ion–neutral chemistry is then applied to a Drift–Phoenix model of a free-floating giant gas planet. Our results suggest that the activation of ion–neutral chemistry in the upper atmosphere significantly enhances formation rates for various species, and we find that C2H2, C2H4, NH3, C6H6 and possibly C10H are enhanced in the upper atmospheres because of cosmic rays. Our results suggest a potential connection between cosmic-ray chemistry and the hazes observed in the upper atmospheres of various extrasolar planets. Chemi-ionization reactions are briefly discussed, as they may enhance the degree of ionization in the cloud layer.

References

Aikawa, Y., Umebayashi, T., Nakano, T. & Miyama, S.M. (1999). Evolution of molecular abundances in proto-planetary disks with accretion flow. Astrophys. J. 519(2), 705.Google Scholar

Bean, J.L., Miller-Ricci Kempton, E. & Homeier, D. (2010). A ground-based transmission spectrum of the super-Earth exoplanet GJ 1214b. Nature 468, 669–672.Google Scholar

Bilger, C., Rimmer, P. & Helling, C. (2013). Small hydrocarbon molecules in cloud-forming brown dwarf and giant gas planet atmospheres. Mon. Not. R. Astron. Soc. 435, 1888–1903.Google Scholar

Borucki, W.J., Levin, Z., Whitten, R.C., Keesee, R.G., Capone, L.A., Summers, A.L., Toon, O.B. & Dubach, J. (1987). Predictions of the electrical conductivity and charging of the aerosols in Titan's atmosphere. Icarus 72, 604–622.Google Scholar

Capone, L.A., Dubach, J., Whitten, R.C., Prasad, S.S. & Santhanam, K. (1980). Cosmic ray synthesis of organic molecules in Titan's atmosphere. Icarus 44, 72–84.Google Scholar

Capone, L.A., Dubach, J., Prasad, S.S. & Whitten, R.C. (1983). Galactic cosmic rays and N2 dissociation on Titan. Icarus 55, 73–82.Google Scholar

Demory, B.-O. et al. (2011). The high Albedo of the hot Jupiter Kepler-7 b. Astrophys. J. 735, L12.Google Scholar

Frenklach, M. & Feigelson, E.D. (1989). Formation of polycyclic aromatic hydrocarbons in circumstellar envelopes. Astrophys. J. 341, 372–384.Google Scholar

Gredel, R., Lepp, S., Dalgarno, A. & Herbst, E. (1989). Cosmic-ray-induced photodissociation and photoionization rates of interstellar molecules. Astrophys. J. 347, 289–293.Google Scholar

Gurnett, D.A., Shaw, R.R., Anderson, R.R. & Kurth, W.S. (1979). Whistlers observed by Voyager 1 – detection of lightning on Jupiter. Geophys. Res. Lett. 6, 511–514.Google Scholar

Harada, N., Herbst, E. & Wakelam, V. (2010). A new network for higher-temperature gas-phase chemistry. I. A preliminary study of accretion disks in active galactic nuclei. Astrophys. J. 721, 1570–1578.Google Scholar

Helling, C. et al. (2008). A comparison of chemistry and dust cloud formation in ultracool dwarf model atmospheres. Mon. Not. R. Astron. Soc. 391, 1854–1873.Google Scholar

Helling, C., Jardine, M. & Mokler, F. (2011). Ionization in atmospheres of brown dwarfs and extrasolar planets. II. Dust-induced collisional ionization. Astrophys. J. 737, 38.Google Scholar

Hoyle, F. & Wickramasinghe, N.C. (2000). Astronomical Origins of Life: Steps towards Panspermia. Kluwer Academic Publishers, Dordrecht.Google Scholar

Krestinin, A.V. (2000). Detailed modeling of soot formation in hydrocarbon pyrolysis. Combust. Flame 121(3), 513.Google Scholar

Lavvas, P., Yelle, R.V. & Vuitton, V. (2009). The detached haze layer in Titan's mesosphere. Icarus 201, 626–633.Google Scholar

Liang, M.-C., Yung, Y.L. & Shemansky, D.E. (2007). Photolytically generated aerosols in the mesosphere and thermosphere of Titan. Astrophys. J. 661, L199–L202.Google Scholar

Lodders, K. (2004). Jupiter formed with more tar than ice. Astrophys. J. 611, 587–597.Google Scholar

MacGregor, M. & Berry, R.S. (1973). Formation of HCO+ by the associative ionization of CH+O. J. Phys. B At. Mol. Phys. 6, 181–196.Google Scholar

McElroy, D., Walsh, C., Markwick, A.J., Cordiner, M.A., Smith, K. & Millar, T.J. (2013). The UMIST database for astrochemistry 2012. Astron. Astrophys. 550, A36.Google Scholar

Millar, T.J., Farquhar, P.R.A. & Willacy, K. (1997). The UMIST database for astrochemistry 1995. Astron. Astrophys. Suppl. 121, 139–185.Google Scholar

Miller, S.L. & Cleaves, H.J. (2006). Prebiotic chemistry on the primitive earth. Syst. Biol.: Vol. I: Genom.: Vol. I: Genom. 1, 1.Google Scholar

Molina-Cuberos, G.J., López-Moreno, J.J., Rodrigo, R. & Lara, L.M. (1999a). Chemistry of the galactic cosmic ray induced ionosphere of Titan. J. Geophys. Res. 104, 21997–22024.Google Scholar

Molina-Cuberos, G.J., López-Moreno, J.J., Rodrigo, R., Lara, L.M. & O'Brien, K. (1999b). Ionization by cosmic rays of the atmosphere of Titan. Planet. Space Sci. 47(10–11), 1347.Google Scholar

Moses, J.I., Bézard, B., Lellouch, E., Gladstone, G.R., Feuchtgruber, H. & Allen, M. (2000). Photochemistry of Saturn's atmosphere. I. Hydrocarbon chemistry and comparisons with ISO observations. Icarus 143, 244–298.Google Scholar

Moses, J.I., Fouchet, T., Bézard, B., Gladstone, G.R., Lellouch, E. & Feuchtgruber, H. (2005). Photochemistry and diffusion in Jupiter's stratosphere: constraints from ISO observations and comparisons with other giant planets. J. Geophys. Res. (Planets) 110, 8001.Google Scholar

Moses, J.I. et al. (2011). Disequilibrium carbon, oxygen, and nitrogen chemistry in the atmospheres of HD 189733b and HD 209458b. Astrophys. J. 737, 15.Google Scholar

Orgel, L.E. (1998). The origin of lifeâ€'a review of facts and speculations. Trends Biochem. Sci. 23(12), 491–495.Google Scholar

Pont, F., Knutson, H., Gilliland, R.L., Moutou, C. & Charbonneau, D. (2008). Detection of atmospheric haze on an extrasolar planet: the 0.55–1.05 μm transmission spectrum of HD 189733b with the HubbleSpaceTelescope. Mon. Not. R. Astron. Soc. 385, 109–118.Google Scholar

Porco, C.C. et al. (2005). Imaging of Titan from the Cassini spacecraft. Nature 434, 159–168.Google Scholar

Prasad, S.S. & Tarafdar, S.P. (1983). UV radiation field inside dense clouds – its possible existence and chemical implications. Astrophys. J. 267, 603–609.Google Scholar

Rages, K. & Pollack, J.B. (1983). Vertical distribution of scattering hazes in Titan's upper atmosphere. Icarus 55, 50–62.Google Scholar

Rimmer, P. & Helling, C. (2013). Ionization in atmospheres of Brown Dwarfs and extrasolar planets IV. The Effect of Cosmic Rays. ArXiv e-prints.Google Scholar

Rimmer, P.B., Herbst, E., Morata, O. & Roueff, E. (2012). Observing a column-dependent ζ in dense interstellar sources: the case of the Horsehead nebula. A&A 537, A7.Google Scholar

Showman, A.P., Fortney, J.J., Lian, Y., Marley, M.S., Freedman, R.S., Knutson, H.A. & Charbonneau, D. (2009). Atmospheric circulation of hot Jupiters: coupled radiative-dynamical general circulation model simulations of HD 189733b and HD 209458b. Astrophys. J. 699, 564–584.Google Scholar

Shull, J.M. & Hollenbach, D.J. (1978). H2 cooling, dissociation, and infrared emission in shocked molecular clouds. Astrophys. J. 220, 525–537.Google Scholar

Shumilov, O.I., Kasatkina, E.A., Henriksen, K. & Vashenyuk, E.V. (1996). Enhancement of stratospheric aerosols after solar proton event. Ann. Geophys. 14, 1119–1123.Google Scholar

Sing, D.K. et al. (2011). Hubble Space Telescope transmission spectroscopy of the exoplanet HD 189733b: high-altitude atmospheric haze in the optical and near-ultraviolet with STIS. Mon. Not. R. Astron. Soc. 416, 1443–1455.Google Scholar

Sittler, E.C., Hartle, R.E., Bertucci, C., Coates, A., Cravens, T., Dandouras, I. & Shemansky, D. (2010). Energy Deposition Processes in Titan's Upper Atmosphere and Its Induced Magnetosphere, p. 393.Google Scholar

Skilling, J. & Strong, A.W. (1976). Cosmic ray exclusion from dense molecular clouds. Astron. Astrophys. 53, 253–258.Google Scholar

Stark, C.R., Helling, C., Diver, D.A. & Rimmer, P.B. (2013). ApJ. 776, 11.Google Scholar

Velinov, P.I.Y. & Mateev, L.N. (2008). Improved cosmic ray ionization model for the system ionosphere atmosphere – calculation of electron production rate profiles. J. Atmos. Sol.-Terres. Phys. 70, 574–582.Google Scholar

Velinov, P.I.Y., Mishev, A. & Mateev, L. (2009). Model for induced ionization by galactic cosmic rays in the Earth atmosphere and ionosphere. Adv. Space Res. 44, 1002–1007.Google Scholar

Venot, O., Hébrard, E., Agùndez, M., Dobrijevic, M., Selsis, F., Hersant, F., Iro, N. & Bounaceur, R. (2012). A chemical model for the atmosphere of hot Jupiters. ArXiv e-prints.Google Scholar

Vidotto, A.A., Fares, R., Jardine, M., Donati, J.-F., Opher, M., Moutou, C., Catala, C. & Gombosi, T.I. (2012). The stellar wind cycles and planetary radio emission of the τ Boo system. Mon. Not. R. Astron. Soc. 423, 3285–3298.Google Scholar

Visscher, C. & Moses, J.I. (2011). Quenching of carbon monoxide and methane in the atmospheres of cool brown dwarfs and hot Jupiters. Astrophys. J. 738(1), 72.Google Scholar

Wakelam, V., Selsis, F., Herbst, E. & Caselli, P. (2005). Estimation and reduction of the uncertainties in chemical models: application to hot core chemistry. Astron. Astrophys. 444, 883–891.Google Scholar

Wakelam, V. et al. (2012). A KInetic Database for astrochemistry (KIDA). Astrophys. J. Suppl. 199, 21.Google Scholar

Whitten, R.C., Borucki, W.J., O'Brien, K. & Tripathi, S.N. (2008). Predictions of the electrical conductivity and charging of the cloud particles in Jupiter's atmosphere. J. Geophys. Res. (Planets) 113, 4001.Google Scholar

Wilson, E.H. & Atreya, S.K. (2003). Chemical sources of haze formation in Titan's atmosphere. Planet. Space Sci. 51, 1017–1033.Google Scholar

Witte, S., Helling, C. & Hauschildt, P.H. (2009). Dust in brown dwarfs and extra-solar planets. II. Cloud formation for cosmologically evolving abundances. Astron. Astrophys. 506, 1367–1380.Google Scholar

Woitke, P. & Helling, C. (2004). Dust in brown dwarfs. III. Formation and structure of quasi-static cloud layers. Astron. Astrophys.414, 335–350.Google Scholar

Woitke, P., Kamp, I. & Thi, W.-F. (2009). Radiation thermo-chemical models of protoplanetary disks. I. Hydrostatic disk structure and inner rim. Astron. Astrophys. 501, 383–406.Google Scholar

Woods, P.M. & Willacy, K. (2007). Benzene formation in the inner regions of protostellar disks. Astrophys. J. Lett. 655(1), L49.Google Scholar

Zahnle, K., Marley, M.S., Freedman, R.S., Lodders, K. & Fortney, J.J. (2009). Atmospheric sulfur photochemistry on hot Jupiters. Astrophys. J. 701, L20–L24.Google Scholar