Maintenance of genetic homogeneity in systems with multiple genomes | Genetics Research | Cambridge Core (original) (raw)

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Genes or sequences of DNA present in multiple copies per cell include entire genomes of mitochondria and chloroplasts, nuclear ribosomal RNA genes, and highly repetitive sequences in heterochromatin. All copies are nearly identical, in spite of mutational pressure and weak selection. A zygote containing mitochondrial or chloroplast genophores of two different genotypes quickly produces progeny pure for one genotype or another (vegetative segregation). Evidence from yeast and Chlamy-domonas suggests that organelle genophores undergo repeated rounds of random mating and recombination. When two molecules carrying different alleles at a locus recombine, gene conversion can result in the cell becoming pure for one allele. Stochastic matching and conversion (SMAC) has been studied by computer simulations which suggest that it will tend to eliminate new mutations in yeast mitochondrial DNA and speed up vegetative segregation. We have verified previous suggestions that gene conversion, occurring during unequal mitotic sister-strand crossing-over, provides an efficient mechanism for maintaining the homogeneity of repeated sequences in eukaryotic chromosomes.

References

Adoutte, A. (1974). Mitochondrial mutations in Paramecium: phenotypical characterization and recombination. The Biogenesis of Mitochondria (ed. Kroon, A. M. and Saccone, C.), pp. 263–271. New York: Academic Press, Inc.CrossRefGoogle Scholar

Birky, C. W. Jr (1973). On the origin of mitochondrial mutants: evidence for intracellular selection of mitochondria in the origin of antibiotic-resistant cells in yeast. Genetics 74, 421–432.CrossRefGoogle ScholarPubMed

Birky, C. W. Jr (1975). Mitochondrial genetics in fungi and ciliates. Genetics and Biogenesis of Mitochondria and Chloroplasts (ed. Birky, C. W. Jr, Perlman, P. S., and Byers, T. J.), pp. 182–224. Columbus: Ohio State University Press.Google Scholar

Birky, C. W. Jr, & Skavaril, R. V. (1975). A possible role for gene conversion in achieving and maintaining genetic homogeneity among organelle genophores and repeated DNA sequences in general. Genetics 80, s 14.Google Scholar

Brown, D. B. & Sugimoto, K. (1974). The structure and evolution of ribosomal and 5S DNAs in Xenopus laevis and Xenopus Mulleri. Cold Spring Harbor Symposia on Quantitative Biology 38, 501–505.CrossRefGoogle ScholarPubMed

Buongiorno-Nardelli, M., Amaldi, F. & Lavasanchez, P. (1972). Amplification as a rectification mechanism for the redundant rRNA genes. Nature New Biology 238, 134–137.CrossRefGoogle ScholarPubMed

Callen, D. F. (1974). Segregation of mitochondrially inherited antibiotic resistance genes in zygote cell lineages of Saccharomyces cerevisiae. Molecular and General Genetics 104, 65–76.CrossRefGoogle Scholar

Drake, J. W. (1970). The Molecular Basis of Mutation. San Francisco: Holden-Day.Google Scholar

Dujon, B., Slonimski, P. P. & Weill, L. (1974). Mitochondrial genetics. IX. A model for recombination and segregation of mitochondrial genomes in Saccharomyces cerevisiae. Genetics 78, 415–437.CrossRefGoogle Scholar

Dujon, B., Kruszewska, A., Slonimski, P. P., Bolotin-Fukuhara, M., Coen, D., Deutsch, J., Netter, P. & Weill, L. (1975). Mitochondrial genetics. X. Effects of UV irradiation on transmission and recombination of mitochondrial genes in Saccharomyces cerevisiae. Molecular and General Genetics 137, 29–72.CrossRefGoogle Scholar

Edelman, G. M. & Gally, J. A. (1970). Arrangement and evolution of eukaryotic genes. The Neurosciences: Second Study Program (ed. Schmitt, F. O.), pp. 962–972. New York: Rockefeller University Press.Google Scholar

Gall, J. G., Cohen, E. H. & Atherton, D. D. (1974). The satellite DNAs of Drosophila virilis. Cold Spring Harbor Symposia on Quantitative Biology 38, 417–427.CrossRefGoogle ScholarPubMed

Gillham, N. W., Boynton, J. E. & Lee, R. W. (1974). Segregation and recombination of non-Mendelian genes in Chlamydomonas. Genetics 78, 439–457.CrossRefGoogle ScholarPubMed

Grimes, G. W., Mahler, H. R. & Perlman, P. S. (1974). Nuclear gene dosage effects on mitochondrial mass and DNA. Journal of Cell Biology 61, 565–574.CrossRefGoogle ScholarPubMed

Ikushima, T. & Wolff, S. (1974). Sister chromatid exchanges induced by light flashes to 5-bromodeoxyuridine- and 5-iododeoxyuridine substituted Chinese hamster chromosomes. Experimental Cell Research 87, 15–19.CrossRefGoogle ScholarPubMed

Meselson, M. S. & Radding, C. M. (1975). A general model for genetic recombination. Proceedings of the National Academy of Sciences, U.S.A. 72, 358–361.CrossRefGoogle ScholarPubMed

Michaelis, P. (1955). Über Gesetzmässigkeiten der Plasmon-Umkonbination und über eine Methode zur Trennung einer Plastiden-, Chondriosomen-, resp. Sphaerosomen-, (Mikrosomen)- und einer Zytoplasmavererbung. Cytologia 20, 315–338.CrossRefGoogle Scholar

Orias, E. & Flacks, M. (1975). Macronuclear genetics of Tetrahymena. I. Random distribution of macronuclear gene copies in T. pyriformis, syngen 1. Genetics 79, 187–206.CrossRefGoogle Scholar

Perlman, P. S. & Birky, C. W. Jr (1974). Mitochondrial genetics in bakers’ yeast: a molecular mechanism for recombinational polarity and suppressiveness. Proceedings of the National Academy of Sciences, U.S.A. 71, 4612–4616.CrossRefGoogle ScholarPubMed

Rowlands, R. T. & Turner, G. (1974). Recombination between the extranuclear genes conferring oligomycin resistance and cold sensitivity in Aspergillus nidulans. Molecular and General Genetics 133, 151–161.CrossRefGoogle ScholarPubMed

Smith, G. P. (1974). Unequal crossover and the evolution of multigene families. Cold Spring Harbor Symposia on Quantitative Biology 38, 507–513.CrossRefGoogle ScholarPubMed

Sparrow, A. H., Price, H. J. & Underbrink, A. G. (1972). A survey of DNA content per cell and per chromosome of prokaryotic and eukaryotic organisms: some evolutionary considerations. Evolution of Genetic Systems (ed. Smith, H. H.), pp. 451–493. New York: Gordon and Breach.Google Scholar

Tartof, K. D. (1974). Unequal mitotic sister chromatid exchange and disproportionate replication as mechanisms regulating ribosomal RNA gene redundancy. Cold Spring Harbor Symposia on Quantitative Biology 38, 491–500.CrossRefGoogle ScholarPubMed

Taylor, J. H., Woods, P. S. & Hughes, W. L. (1957). The organization and duplication of chromosomes as revealed by autoradiographic studies using tritium labeled thymidine. Proceedings of the National Academy of Sciences, U.S.A. 43, 122–128.CrossRefGoogle Scholar

Thomas, C. A. Jr (1970). The theory of the master gene. The Neurosciences: Second Study Program (ed. Schmitt, F. O.), pp. 973–978. New York: Rockefeller University Press.Google Scholar

Thomas, C. A. Jr (1974). The rolling helix: a model for the eukaryotic gene? Cold Spring Harbor Symposia on Quantitative Biology 38, 347–352.CrossRefGoogle Scholar

Williamson, D. H. & Fennell, D. J. (1974). Apparent dispersive replication of yeast mitochondrial DNA as revealed by density labelling experiments. Molecular and General Genetics 131, 193–207.CrossRefGoogle ScholarPubMed