Tests of hypotheses on recombination frequencies | Genetics Research | Cambridge Core (original) (raw)

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Data from Neurospora, Drosophila, and the mouse support the mapping parameter conventionally used for man, exclude the Haldane, Kosambi, and Carter—Falconer functions, and suggest a refinement for centromere mapping. Different sexes, chromosome arms, and types of data are surprisingly consistent. Double recombination frequencies are accurately predicted, but triple recombination frequencies are overestimated. The centromere appears to act on interference as an obligatory chiasma. Recombination across the centromere conforms to a simple approximation, based on the interval Markov assumption with a common mapping parameter. These results imply that mapping of n loci requires estimation of at most n parameters, and the relation between map distances and all recombination frequencies is explicit.

Type

Research Article

Copyright

Copyright © Cambridge University Press 1985

References

Barratt, R. W., Newmeyer, D., Perkins, D. D. & Garnjobst, L. (1954). Map construction in Neurospora crossa. Advances in Genetics 6, 1–93.CrossRefGoogle Scholar

Beadle, G. W. & Emerson, S. (1935). Further studies of crossing over in attached-X chromosomes of Drosophila melanogaster. Genetics 20, 192–206.CrossRefGoogle ScholarPubMed

Bole-Gowda, N., Perkins, D. D. & Strickland, W. N. (1962). Crossingover and interference in the centromere region of linkage group I of Neurospora. Genetics 47, 1243–1252.CrossRefGoogle Scholar

Bonnier, G. & Nordenskiold, M. (1937). Studies in Drosophila with attached-X's. I. Crossingover values, frequencies of reciprocal and nonreciprocal exchange, chromatid interference. Hereditas 23, 257–278.CrossRefGoogle Scholar

Bridges, C. B. & Morgan, T. H. (1923). The third chromosome group of mutant characters of Drosophila melanogaster. Carnegie Institute of Washington Yearbook 327, 251.Google Scholar

Carter, T. C. & Falconer, D. S. (1951). Stocks for detecting linkage in the mouse and the theory of their design. Journal of Genetics 50, 307–373.CrossRefGoogle ScholarPubMed

Emerson, S. (1963). Meiotic recombination in fungi with special reference to tetrad analysis. Methodology in Basic Genetics (ed. Burdette, W. J.), pp. 167–208. San Francisco: Holden-Day.Google Scholar

Emerson, S. & Beadle, G. W. (1933). Crossing over near the spindle fiber in attached-X chromosomes of Drosophila melanogaster. Zeitschrift für induktive Abstammungs und Vererbungslehre 65, 129–140.Google Scholar

Haldane, J. B. S. (1919). The combination of linkage values and the calculation of distances between the loci of linked factors. Journal of Genetice 8, 299–309.Google Scholar

Keats, B. J. B., Morton, N. E., Rao, D. C. & Williams, W. R. (1979). A Source Book for Linkage in Man. Baltimore: Johns Hopkins University Press.Google Scholar

Kosambi, D. D. (1944). The estimation of map distances from recombination values. Annals of Eugenics (London) 12, 172–175.CrossRefGoogle Scholar

Lane, P. W. (1963). Whirler mice, a recessive behavior mutation in linkage group VII. Journal of Heredity 54, 263–266.CrossRefGoogle Scholar

Lindsley, D. L. & Grell, E. H. (1968). Genetic variations of Drosophila melanogaster. Carnegie Institute of Washington Yearbook 627, 471.Google Scholar

Morgan, T. H. & Bridges, C. B. (1916). Sex-linked inheritance in Drosophila. Carnegie Institute of Washington Yearbook 237, 87.Google Scholar

Morgan, T. H., Bridges, C. B. & Schultz, J. (1935). Constitution of the germinal material in relation to heredity. Carnegie Institute of Washington Yearbook 34, 284–291.Google Scholar

Ott, J., Linder, D., McCaw, B. K., Lovrien, E. W. & Hecht, F. (1976). Estimating distances from the centromere by means of benign ovarian teratomas in man. Annals of Human Genetics, London 40, 191–196.CrossRefGoogle ScholarPubMed

Perkins, D. D. (1962). Crossingover and interference in a multiply marked chromosome arm of Neurospora. Genetics 47, 1253–1274.CrossRefGoogle Scholar

Rao, D. C., Morton, N. E., Lindsten, J., Hulten, M. & Yee, S. (1977). A mapping function for man. Human Heredity 27, 99–104.CrossRefGoogle ScholarPubMed

Risch, N. & Lange, K. (1983). Statistical analysis of multilocus recombination. Biometrics 39, 949–963.CrossRefGoogle Scholar

Sherman, S. L., King, J., Robson, E. B. & Yee, S. (1984). A revised map of chromosome 1. Annals of Human Genetics 48, 243–251.CrossRefGoogle ScholarPubMed

Sturtevant, A. H. (1931). Two new attached-X lines of Drosophila melanogaster and further data on the behavior of heterozygous attached-X's. Carnegie Institute of Washington Yearbook 421, 61–81.Google Scholar