P-element transposase induces male recombination in Drosophila melanogaster | Genetics Research | Cambridge Core (original) (raw)

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Male recombination in P–M dysgenic crosses has been viewed as a reflection of P-element transposase interacting with P elements. However, recent studies suggest that the transposase may catalyse double-stranded breaks in chromosomal DNA. We have, therefore, introduced P(Δ2–3 ry+) (99B), a single non-mobile P-element transposase source, into the long-standing laboratory true M strains of a flanking lethal crossover selective system, thus facilitating the examination of rare male recombination events as an assay for transposase activity. We find that the rate of male recombination in the presence of this non-mobile P element is greater than twenty times the background rate of male recombination in the control examined prior to introduction of the transposase source.

References

Bingham, P. M., Kidwell, M. G. & Rubin, G. M. (1982). The molecular basis of P–M hybrid dysgenesis: the role of the P element, a P-strain-specific transposon family. Cell 29, 995–1004.CrossRefGoogle Scholar

Chovnick, A., Schalet, A., Kernaghan, R. P. & Krauss, M. (1964). The rosy cistron in Drosophila melanogaster: genetic fine structure analysis. Genetics 50, 1245–1259.CrossRefGoogle ScholarPubMed

Chovnick, A., Schalet, A., Kernaghan, R. P. & Talsma, J. (1962). The resolving power of genetic fine structure analysis in higher organisms as exemplified by Drosophilia. American Naturalist 46, 281–296.CrossRefGoogle Scholar

Daniels, S. B., Clark, S. H., Kidwell, M. G. & Chovnick, A. (1987). Genetic transformation of Drosophila melanogaster with an autonomous P element: phenotypic and molecular analysis of long established lines. Genetics 115, 711–723.CrossRefGoogle Scholar

Eggleston, W. B., Johnson-Schlitz, D. M. & Engels, W. R. (1988). P–M hybrid dysgenesis does not mobilize other transposable element families in D. melanogaster. Nature 331, 368–370.CrossRefGoogle Scholar

Engels, W. R. (1989). P. elements in Drosophila. In: Mobile DNA (ed. Berg, D. E. and Howe, M. M.). American Society for Microbiology, Washington, D.C.Google Scholar

Engels, W. R., Preston, C. R., Thompson, P. & Eggleston, W. B. (1986). In situ hybridization to Drosophila salivary chromosomes with biotinylated DNA probes and alkaline phosphatase. Focus 8, 6–8.Google Scholar

Hilliker, A. J., Clark, S. H., Chovnick, A. & Gelbart, W. M. (1980). Cytogenetic analysis of the chromosomal region immediately adjacent to the rosy locus in Drosophila melanogaster. Genetics 95, 95–110.Google Scholar

Hiraizumi, Y. (1971). Spontaneous recombination in Drosophila melanogaster males. Proceedings of the National Academy of Sciences, USA 68, 268–270.Google Scholar

Isackson, D. R., Johnson, T. K. & Denell, R. E. (1981). Hybrid dysgenesis in Drosophila: the mechanism of T-007-induced male recombination. Molecular and General Genetics 184, 539–543.Google Scholar

Karess, R. E. & Rubin, G. M. (1984). Analysis of P transposable element functions in Drosophila. Cell 38, 135–146.Google Scholar

Kidwell, M. G. (1987). A survey of success rates using P element mutagenesis in Drosophila melanogaster. Drosophila Information Service 66, 81–86.Google Scholar

Kidwell, M. G., Kidwell, J. D. & Sved, J. A. (1977). Hybrid dysgenesis in Drosophila melanogaster: a syndrome of aberrant traits including mutations, sterility and male recombination. Genetics 86, 813–833.Google Scholar

Laski, F. A., Rio, D. C. & Rubin, G. M. (1986). Tissue specificity of Drosophila P element transposition is regulated at the level of mRNA splicing. Cell 44, 7–19.CrossRefGoogle ScholarPubMed

Lindsley, D. L. & Grell, E. H. (1968). Genetic Variations of Drosophila melanogaster. Carnegie Inst. Wash. Publ. No. 627.Google Scholar

O'Hare, K. & Rubin, G. M. (1983). Structure of P transposable elements and their sites of insertion and excision in the Drosophila melanogaster genome. Cell 34, 25–35.CrossRefGoogle ScholarPubMed

Rio, D. C., Barnes, G., Laski, F. A., Rine, J. & Rubin, G. M. (1988). Evidence for Drosophila P element transposase activity in mammalian cells and yeast. Journal of Molecular Biology 200, 411–415.Google Scholar

Robertson, H. M., Preston, C. R., Phillis, R. W., Johnson-Schlitz, D. M., Benz, W. K. & Engels, W. R. (1988). A stable genomic source of P element transposase in Drosophila melanogaster. Genetics 118, 461–470.Google Scholar

Rushlow, C. A., Bender, W. & Chovnick, A. (1984). Studies on the mechanism of heterochromatic position effect at the rosy locus of Drosophila melanogaster. Genetics 108, 603–615.CrossRefGoogle ScholarPubMed

Sinclair, D. A. R. & Grigliatti, T. A. (1985). Investigation of the nature of P-induced male recombination in Drosophila melanogaster. Genetics 110, 257–279.CrossRefGoogle ScholarPubMed

Sved, J. A. (1978). Hybrid dysgenesis in Drosophila melanogaster: chromosome breakage or mitotic crossing over? Australian Journal of Biological Science 31, 303–309.CrossRefGoogle Scholar

Woodruff, R. C., Blount, J. L. & Thompson, J. N. Jr. (1987). Hybrid dysgenesis in D. melanogaster is not a general release mechanism for DNA transpositions. Science 237, 1206–1208.Google Scholar