P-element transposase induces male recombination in Drosophila melanogaster | Genetics Research | Cambridge Core (original) (raw)
Summary
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Male recombination in P–M dysgenic crosses has been viewed as a reflection of P-element transposase interacting with P elements. However, recent studies suggest that the transposase may catalyse double-stranded breaks in chromosomal DNA. We have, therefore, introduced P(Δ2–3 ry+) (99B), a single non-mobile P-element transposase source, into the long-standing laboratory true M strains of a flanking lethal crossover selective system, thus facilitating the examination of rare male recombination events as an assay for transposase activity. We find that the rate of male recombination in the presence of this non-mobile P element is greater than twenty times the background rate of male recombination in the control examined prior to introduction of the transposase source.
References
Bingham, P. M., Kidwell, M. G. & Rubin, G. M. (1982). The molecular basis of P–M hybrid dysgenesis: the role of the P element, a P-strain-specific transposon family. Cell 29, 995–1004.CrossRefGoogle Scholar
Chovnick, A., Schalet, A., Kernaghan, R. P. & Krauss, M. (1964). The rosy cistron in Drosophila melanogaster: genetic fine structure analysis. Genetics 50, 1245–1259.CrossRefGoogle ScholarPubMed
Chovnick, A., Schalet, A., Kernaghan, R. P. & Talsma, J. (1962). The resolving power of genetic fine structure analysis in higher organisms as exemplified by Drosophilia. American Naturalist 46, 281–296.CrossRefGoogle Scholar
Daniels, S. B., Clark, S. H., Kidwell, M. G. & Chovnick, A. (1987). Genetic transformation of Drosophila melanogaster with an autonomous P element: phenotypic and molecular analysis of long established lines. Genetics 115, 711–723.CrossRefGoogle Scholar
Eggleston, W. B., Johnson-Schlitz, D. M. & Engels, W. R. (1988). P–M hybrid dysgenesis does not mobilize other transposable element families in D. melanogaster. Nature 331, 368–370.CrossRefGoogle Scholar
Engels, W. R. (1989). P. elements in Drosophila. In: Mobile DNA (ed. Berg, D. E. and Howe, M. M.). American Society for Microbiology, Washington, D.C.Google Scholar
Engels, W. R., Preston, C. R., Thompson, P. & Eggleston, W. B. (1986). In situ hybridization to Drosophila salivary chromosomes with biotinylated DNA probes and alkaline phosphatase. Focus 8, 6–8.Google Scholar
Hilliker, A. J., Clark, S. H., Chovnick, A. & Gelbart, W. M. (1980). Cytogenetic analysis of the chromosomal region immediately adjacent to the rosy locus in Drosophila melanogaster. Genetics 95, 95–110.Google Scholar
Hiraizumi, Y. (1971). Spontaneous recombination in Drosophila melanogaster males. Proceedings of the National Academy of Sciences, USA 68, 268–270.Google Scholar
Isackson, D. R., Johnson, T. K. & Denell, R. E. (1981). Hybrid dysgenesis in Drosophila: the mechanism of T-007-induced male recombination. Molecular and General Genetics 184, 539–543.Google Scholar
Karess, R. E. & Rubin, G. M. (1984). Analysis of P transposable element functions in Drosophila. Cell 38, 135–146.Google Scholar
Kidwell, M. G. (1987). A survey of success rates using P element mutagenesis in Drosophila melanogaster. Drosophila Information Service 66, 81–86.Google Scholar
Kidwell, M. G., Kidwell, J. D. & Sved, J. A. (1977). Hybrid dysgenesis in Drosophila melanogaster: a syndrome of aberrant traits including mutations, sterility and male recombination. Genetics 86, 813–833.Google Scholar
Laski, F. A., Rio, D. C. & Rubin, G. M. (1986). Tissue specificity of Drosophila P element transposition is regulated at the level of mRNA splicing. Cell 44, 7–19.CrossRefGoogle ScholarPubMed
Lindsley, D. L. & Grell, E. H. (1968). Genetic Variations of Drosophila melanogaster. Carnegie Inst. Wash. Publ. No. 627.Google Scholar
O'Hare, K. & Rubin, G. M. (1983). Structure of P transposable elements and their sites of insertion and excision in the Drosophila melanogaster genome. Cell 34, 25–35.CrossRefGoogle ScholarPubMed
Rio, D. C., Barnes, G., Laski, F. A., Rine, J. & Rubin, G. M. (1988). Evidence for Drosophila P element transposase activity in mammalian cells and yeast. Journal of Molecular Biology 200, 411–415.Google Scholar
Robertson, H. M., Preston, C. R., Phillis, R. W., Johnson-Schlitz, D. M., Benz, W. K. & Engels, W. R. (1988). A stable genomic source of P element transposase in Drosophila melanogaster. Genetics 118, 461–470.Google Scholar
Rushlow, C. A., Bender, W. & Chovnick, A. (1984). Studies on the mechanism of heterochromatic position effect at the rosy locus of Drosophila melanogaster. Genetics 108, 603–615.CrossRefGoogle ScholarPubMed
Sinclair, D. A. R. & Grigliatti, T. A. (1985). Investigation of the nature of P-induced male recombination in Drosophila melanogaster. Genetics 110, 257–279.CrossRefGoogle ScholarPubMed
Sved, J. A. (1978). Hybrid dysgenesis in Drosophila melanogaster: chromosome breakage or mitotic crossing over? Australian Journal of Biological Science 31, 303–309.CrossRefGoogle Scholar
Woodruff, R. C., Blount, J. L. & Thompson, J. N. Jr. (1987). Hybrid dysgenesis in D. melanogaster is not a general release mechanism for DNA transpositions. Science 237, 1206–1208.Google Scholar