Functionality of nutrients and thermal treatments of food | Proceedings of the Nutrition Society | Cambridge Core (original) (raw)

Article contents

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Since discovering fire man has used heat to modify the sensory properties and to preserve foodstuffs. Nutrients are involved in a number of reactions induced by this form of treatment. Some of these reactions are desirable, e.g. the improvement in the digestibility and the attractiveness of a food. Some reactions are undesirable because they lead to considerable nutritional loss or may result in the formation of mutagenic and carcinogenic molecules. The present paper reviews recent studies in which most of the modifications generated by thermal treatments at both the industrial and domestic level are demonstrated. We focus on the processes and the importance of thermal treatments used currently, as well as the necessity for optimization to minimize undesirable effects. Résumé L’homme a toujours recherché les moyens de développer ou modifier les propriétés sensorielles des aliments. Certaines sont souhaitées (amélioration de l’attractivité de l’aliment, meilleure digestibilité), d’autres sont proscrites en raison de la perte de qualité nutritionnelle ou de l’apparition de substances mutagènes et carcinogènes, par exemple. Cet article est une compilation des plus récents travaux sur les modifications générées par les traitements thermiques des aliments, tant au niveau industriel que domestique. Il insiste particulièrement sur les process. En conclusion, l’importance des traitements thermiques est aujourd’hui confirmée, mais il convient de poursuivre l’optimisation des procédés afin de réduire les effets indésirables.

Keywords

Type

Symposium on ‘Food technology: can it alter the functionality of nutrients’

Copyright

Copyright © The Nutrition Society 1999

References

Bailey, GS & Williams, DE (1993) Potential mechanism for food related carcinogens and anticarcinogens. Food Technology 47, 105–118.Google Scholar

Berna, A, Perez-Gago, MB, Guardiola, VG, Salazar, D & Mulet, A (1997) Effect of temperature on isobutyric acid loss during roasting of carob kibble. Journal of Agricultural and Food Chemistry 45, 4084–4087.CrossRefGoogle Scholar

Califano, AN, Bertola, NC, Bevalicqua, AE & Zaritsky, NE (1997) Effect of processing conditions on the hardness of cooked beef. Journal of Food Engineering 34, 41–54.CrossRefGoogle Scholar

Castrillon, AM, Navarro, MP & Garcia-Arias, MT (1996) Tuna protein nutritional quality changes after canning. Journal of Food Science 61, 1250–1253.CrossRefGoogle Scholar

Chau, CF, Cheung, CK & Wong, YS (1997) Effects of cooking on content of amino acids and antinutrients in three Chinese indigenous legume seeds. Journal of the Science of Food and Agriculture 75, 447–452.3.0.CO;2-5>CrossRefGoogle Scholar

Cheftel, JC (1986) Introduction à la Biochimie et à la Technologie des Aliments (Introduction to the Biochemistry and Technology of Food), vol. 2, 5th ed. Paris: Lavoisier.Google Scholar

Commoner, B, Vithayathil, AJ, Dolora, P, Nair, S, Madyastha, P & Cuca, GC (1978) Formation of mutagen in beef and beef extract during cooking. Science 201, 913–916.CrossRefGoogle ScholarPubMed

de Bry, L (1993) Anthropological implication of the Maillard reaction: an insight. In The Maillard Reaction in Chemistry, Food and Health, pp. 28–36 [Labuza, TP, editor]. Cambridge: The Royal Society of Chemistry.Google Scholar

Eichner, K & Schirmann, E (1993) Influence of temperature and water activity on the promotion of aminoimidazoquinolines and -quinoxalines (EQ-compounds) in meat products. In The Maillard Reaction in Chemistry, Food and Health, pp. 153–158 [Labuza, TP, editor]. Cambridge: The Royal Society of Chemistry.Google Scholar

Gandemer, G & Meynier, A (1994) La flaveur des viandes cuites: relations avec l’oxydation des phospholipides (The flavour of cooked meats: relationship with phospholipid oxidation). In AGORAL 94, La Cuisson des Aliments (AGORAL 94, The Cooking of Food), Nantes, pp. 223–232. Paris: Lavoisier Tec & Doc.Google Scholar

Harris, RS & Kamas, E (1975) Nutritional Evaluation of Food Processing, 2nd ed. Westport, CT: AVI Publishing.Google Scholar

Ilo, S & Berghofer, E (1998) Kinetics of thermomechanical destruction of thiamin during extrusion cooking. Journal of Food Science 63, 312–316.CrossRefGoogle Scholar

Jankiewicz, A, Baltes, W, Bögl, KW, Dehne, LI, Jamin, A, Hoffmann, A, Haustein, D & Vieths, S (1997) Influence of food processing on the immunochemical stability of celery allergens. Journal of the Science of Food and Agriculture 75, 359–370.3.0.CO;2-Y>CrossRefGoogle Scholar

Labuza, TP, Tannenbaum, SR & Karel, M (1970) Water content and stability of low-moisture and intermediate-moisture foods. Food Technology 24, 543–550.Google Scholar

Lijinsky, M (1991) The formation and occurrence of polynuclear aromatic hydrocarbons associated with foods. Mutagen Research 259, 251–261.Google Scholar

Mainer, G, Sanchez, L, Ena, JM & Calvo, M (1996) Kinetic and thermodynamic parameters for heat denaturation of bovine milk IgG, IgA and IgM. Journal of Food Science 62, 1034–1038.CrossRefGoogle Scholar

Martens, H, Stabursvik, E & Martens, M (1982) Texture and color changes in meat during cooking related to thermal denaturation of muscle proteins. Journal of Texture Studies 13, 291–309.CrossRefGoogle Scholar

Namiki, M (1988) Chemistry of Maillard reaction: recent studies on the browning reaction mechanism, and the development of antioxidants and mutagens. Advances in Food Research 32, 115–184.CrossRefGoogle ScholarPubMed

Oldfield, DJ, Singh, H, Taylor, MW & Pearce, KN (1996) Use of non-linear regression for analysing β-lactoglobulin denaturation kinetics in skim milk. In Macromolecular Interactions in Food Technology, pp. 50–60 [Parris, N, editor]. Washington, DC: American Chemical Society.CrossRefGoogle Scholar

Pomeranz, Y (1985) Functional Properties of Food Components. Orlando, FL: Academic Press Inc.Google Scholar

Qin, GX, Verstegen, MWA & Van der Poel, AFB (1998) Effect of temperature and time during steam treatment on the protein quality of full-fat soybeans from different origins. Journal of the Science of Food and Agriculture 77, 393–398.3.0.CO;2-M>CrossRefGoogle Scholar

Rizzi, GP (1993) The Maillard reaction in foods. In The Maillard Reaction in Chemistry, Food and Health, pp. 11–19 [Labuza, TP, editor]. Cambridge: The Royal Society of Chemistry.Google Scholar

Schamaila, M, Durance, T & Girard, B (1996) Water blanching effects on headspace volatiles and sensory attributes of carrots. Journal of Food Science 61, 1191–1195.CrossRefGoogle Scholar

Schneider, PJ (1955) Conduction Heat Transfer. Reading, MA: Addison Wesley Publishing Co. Inc.Google Scholar

Sharma, SK & Le Maguer, M (1996) Kinetics of lycopene degradation in tomato pulp solids under different processing and storage conditions. Food Research International 29, 309–315.CrossRefGoogle Scholar

Wirth, F (1977) Modern heat preservation of canned meat and meat products. In Food Quality and Nutrition. Proceedings of COST Seminar, pp. 218–239 [Downey, WK editor]. Dublin: Applied Science.Google Scholar

Wu, W, Williams, WP, Kunkel, ME, Acton, JC, Huang, Y, Wardlaw, FB & Grimes, LW (1996) Thermal effect on net protein ratio of red kidney beans. Journal of the Science of Food and Agriculture 71, 491–495.3.0.CO;2-1>CrossRefGoogle Scholar

Yemenicioglu, A, Özkan, M & Cemeroglu, B (1997) Heat inactivation kinetics of apple polyphenol oxidase and activation of its latent form. Journal of Food Science 62, 1034–1038.CrossRefGoogle Scholar

Zabik, ME & Zabik, MJ (1996) Influence of processing on environmental contaminants in foods. Food Technology 50, 225–229.Google Scholar