A systematic review and meta-analysis of randomized, double-blind, placebo-controlled trials of ketamine in the rapid treatment of major depressive episodes | Psychological Medicine | Cambridge Core (original) (raw)

References

aan het Rot, M, Collins, KA, Murrough, JW, Perez, AM, Reich, DL, Charney, DS, Mathew, SJ (2010). Safety and efficacy of repeated-dose intravenous ketamine for treatment-resistant depression. Biological Psychiatry 67, 139–145.Google Scholar

aan het Rot, M, Zarate, CA Jr., Charney, DS, Mathew, SJ (2012). Ketamine for depression: where do we go from here? Biological Psychiatry 72, 537–547.10.1016/j.biopsych.2012.05.003Google Scholar

APA (1994). Diagnostic and Statistical Manual of Mental Disorders (DSM-IV). American Psychiatric Association: Washington, , DC.Google Scholar

Bastos, M, Pereira, M, Pereira, E (2012). Effects of intra-operative sedation with low-doses of s-ketamine on depression: randomized double-blind controlled trial. 15th WFSA World Congress of Anaesthesiologists, Predio Ferial de Buenos Aires, Argentina. British Journal of Anaesthesia. Oxford University Press, 2012, 108 pp.Google Scholar

Berman, RM, Cappiello, A, Anand, A, Oren, DA, Heninger, GR, Charney, DS, Krystal, JH (2000). Antidepressant effects of ketamine in depressed patients. Biological Psychiatry 47, 351–354.Google Scholar

Borenstein, M, Hedges, LV, Higgins, JPT, Rothstein, HR (2009). Introduction to Meta-Analysis. Wiley & Sons Ltd: West Sussex, England.Google Scholar

Bremner, JD, Krystal, JH, Putnam, FW, Southwick, SM, Marmar, C, Charney, DS, Mazure, CM (1998). Measurement of dissociative states with the Clinician-Administered Dissociative States Scale (CADSS). Journal of Traumatic Stress 11, 125–136.10.1023/A:1024465317902Google Scholar

Conradi, HJ, Ormel, J, de Jonge, P (2011). Presence of individual (residual) symptoms during depressive episodes and periods of remission: a 3-year prospective study. Psychological Medicine 41, 1165–1174.10.1017/S0033291710001911Google Scholar

Cooper, H, Hedges, LV, Valentine, JC (2009). The Handbook of Research Synthesis and Meta-Analysis. Russell Sage Foundation Publications: New York, US.Google Scholar

Deeks, JJ (2002). Issues in the selection of a summary statistic for meta-analysis of clinical trials with binary outcomes. Statistics in Medicine 21, 1575–1600.10.1002/sim.1188Google Scholar

Deschwanden, A, Karolewicz, B, Feyissa, AM, Treyer, V, Ametamey, SM, Johayem, A, Burger, C, Auberson, YP, Sovago, J, Stockmeier, CA, Buck, A, Hasler, G (2011). Reduced metabotropic glutamate receptor 5 density in major depression determined by [(11)C]ABP688 PET and postmortem study. American Journal of Psychiatry 168, 727–734.Google Scholar

Diazgranados, N, Ibrahim, L, Brutsche, NE, Newberg, A, Kronstein, P, Khalife, S, Kammerer, WA, Quezado, Z, Luckenbaugh, DA, Salvadore, G, Machado-Vieira, R, Manji, HK, Zarate, CA Jr. (2010). A randomized add-on trial of an N-methyl-D-aspartate antagonist in treatment-resistant bipolar depression. Archives of General Psychiatry 67, 793–802.10.1001/archgenpsychiatry.2010.90Google Scholar

Egger, M, Davey Smith, G, Schneider, M, Minder, C (1997). Bias in meta-analysis detected by a simple, graphical test. British Medical Journal 315, 629–634.Google Scholar

Fagiolini, A, Kupfer, DJ, Masalehdan, A, Scott, JA, Houck, PR, Frank, E (2005). Functional impairment in the remission phase of bipolar disorder. Bipolar Disorders 7, 281–285.10.1111/j.1399-5618.2005.00207.xGoogle Scholar

Fergusson, D, Aaron, SD, Guyatt, G, Hebert, P (2002). Post-randomisation exclusions: the intention to treat principle and excluding patients from analysis. British Medical Journal 325, 652–654.Google Scholar

Geddes, JR, Calabrese, JR, Goodwin, GM (2009). Lamotrigine for treatment of bipolar depression: independent meta-analysis and meta-regression of individual patient data from five randomised trials. British Journal of Psychiatry 194, 4–9.Google Scholar

Ghasemi, M, Kazemi, MH, Yoosefi, A, Ghasemi, A, Paragomi, P, Amini, H, Afzali, MH (2013). Rapid antidepressant effects of repeated doses of ketamine compared with electroconvulsive therapy in hospitalized patients with major depressive disorder. Psychiatry Research 28, 355–361.Google Scholar

Haile, CN, Murrough, JW, Iosifescu, DV, Chang, LC, Al Jurdi, RK, Foulkes, A, Iqbal, S, Mahoney, JJ, De La Garza, R, Charney, DS, Newton, TF, Mathew, SJ (2014). Plasma brain derived neurotrophic factor (BDNF) and response to ketamine in treatment-resistant depression. International Journal of Neuropsychopharmacology 17, 331–336.Google Scholar

Hamilton, M (1960). A rating scale for depression. Journal of Neurology Neurosurgery and Psychiatry 23, 56–62.Google Scholar

Heresco-Levy, U, Gelfin, G, Bloch, B, Levin, R, Edelman, S, Javitt, DC, Kremer, I (2013). A randomized add-on trial of high-dose d-cycloserine for treatment-resistant depression. International Journal of Neuropsychopharmacology 16, 501–506.Google Scholar

Higgins, JP, Altman, DG, Gotzsche, PC, Juni, P, Moher, D, Oxman, AD, Savovic, J, Schulz, KF, Weeks, L, Sterne, JA (2011). The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. British Medical Journal 343, d5928.Google Scholar

Higgins, JPT, Green, S (2008). Cochrane Handbook for Systematic Reviews of Interventions. John Wiley & Sons Ltd: West Sussex, England.Google Scholar

Huang, CC, Wei, IH, Huang, CL, Chen, KT, Tsai, MH, Tsai, P, Tun, R, Huang, KH, Chang, YC, Lane, HY, Tsai, GE (2013). Inhibition of glycine transporter-I as a novel mechanism for the treatment of depression. Biological Psychiatry 74, 734–741.Google Scholar

Irwin, SA, Iglewicz, A, Nelesen, RA, Lo, JY, Carr, CH, Romero, SD, Lloyd, LS (2013). Daily oral ketamine for the treatment of depression and anxiety in patients receiving hospice care: a 28-day open-label proof-of-concept trial. Journal of Palliative Medicine 16, 958–65.10.1089/jpm.2012.0617Google Scholar

Knable, MB, Barci, BM, Bartko, JJ, Webster, MJ, Torrey, EF (2002). Molecular abnormalities in the major psychiatric illnesses: classification and regression tree (CRT) analysis of post-mortem prefrontal markers. Molecular Psychiatry 7, 392–404.Google Scholar

Kudoh, A, Takahira, Y, Katagai, H, Takazawa, T (2002). Small-dose ketamine improves the postoperative state of depressed patients. Anesthesia and Analgesia 95, 114–118.10.1097/00000539-200207000-00020Google Scholar

Lapidus, K, Levitch, CF, Perez, AM, Brallier, JW, Parides, MK, Soleimani, L, Feder, A, Iosifescu, DV, Charney, DS, Murrough, JW (2014). A randomized controlled trial of intranasal ketamine in major depressive disorder. Biological Psychiatry. Published online: 3 April 2014. doi:10.1016/j.biopsych.2014.03.026.Google Scholar

Lara, DR, Bisol, LW, Munari, LR (2013). Antidepressant, mood stabilizing and recognitive effects of very low dose sublingual ketamine in refractory unipolar and bipolar depression. International Journal of Neuropsychopharmacology 16, 2111–2117.Google Scholar

Luckenbaugh, D, Niciu, MJ, Ionescu, DF, Nolan, NM, Richards, EM, Brutsche, NE, Guevara, S, Zarate, CA (2014). Do the dissociative effects of ketamine mediate its antidepressant effects? Journal of Affective Disorders 159, 58–61.Google Scholar

Mathew, SJ, Shah, A, Lapidus, K, Clark, C, Jarun, N, Ostermeyer, B, Murrough, JW (2012). Ketamine for treatment-resistant unipolar depression: current evidence. CNS Drugs 26, 189–204.Google Scholar

Montgomery, SA, Asberg, M (1979). A new depression scale designed to be sensitive to change. British Journal of Psychiatry 134, 382–389.Google Scholar

Murrough, JW (2012). Ketamine as a novel antidepressant: from synapse to behavior. Clinical Pharmacology and Therapeutics 91, 303–309.Google Scholar

Murrough, JW, Iosifescu, DV, Chang, LC, Al Jurdi, RK, Green, CE, Perez, AM, Iqbal, S, Pillemer, S, Foulkes, A, Shah, A, Charney, DS, Mathew, SJ (2013 a). Antidepressant efficacy of ketamine in treatment-resistant major depression: a two-site randomized controlled trial. American Journal of Psychiatry 170, 1134–1142.10.1176/appi.ajp.2013.13030392Google Scholar

Murrough, JW, Perez, AM, Pillemer, S, Stern, J, Parides, MK, aan het Rot, M, Collins, KA, Mathew, SJ, Charney, DS, Iosifescu, DV (2013 b). Rapid and longer-term antidepressant effects of repeated ketamine infusions in treatment-resistant major depression. Biological Psychiatry 74, 250–256.Google Scholar

Overall, JE, Gorham, DR (1962). The brief psychiatric rating scale. Psychological Reports 10, 799–812.10.2466/pr0.1962.10.3.799Google Scholar

Przegalinski, E, Tatarczynska, E, Deren-Wesolek, A, Chojnacka-Wojcik, E (1997). Antidepressant-like effects of a partial agonist at strychnine-insensitive glycine receptors and a competitive NMDA receptor antagonist. Neuropharmacology 36, 31–37.10.1016/S0028-3908(96)00157-8Google Scholar

Rasmussen, KG, Lineberry, TW, Galardy, CW, Kung, S, Lapid, MI, Palmer, BA, Ritter, MJ, Schak, KM, Sola, CL, Hanson, AJ, Frye, MA (2013). Serial infusions of low-dose ketamine for major depression. Journal of Psychopharmacology 27, 444–450.Google Scholar

Riley, RD, Higgins, JP, Deeks, JJ (2011). Interpretation of random effects meta-analyses. British Medical Journal 342, d549.Google Scholar

Rosenthal, R (1979). The file drawer problem and tolerance for null results. Psychological Bulletin 86, 638–641.Google Scholar

Rosenthal, R (1993). Meta-Analytic Procedures for Social Research. Sage Publications: Newbury Park, CA.Google Scholar

Rush, AJ, Trivedi, MH, Wisniewski, SR, Nierenberg, AA, Stewart, JW, Warden, D, Niederehe, G, Thase, ME, Lavori, PW, Lebowitz, BD, McGrath, PJ, Rosenbaum, JF, Sackeim, HA, Kupfer, DJ, Luther, J, Fava, M (2006). Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. American Journal of Psychiatry 163, 1905–1917.Google Scholar

Sanacora, G, Smith, MA, Pathak, S, Su, HL, Boeijinga, PH, McCarthy, DJ, Quirk, MC (2013). Lanicemine: a low-trapping NMDA channel blocker produces sustained antidepressant efficacy with minimal psychotomimetic adverse effects. Molecular Psychiatry. Published online: 15 October 2013. doi:10.1038/mp.2013.130.Google Scholar

Sanacora, G, Zarate, CA, Krystal, JH, Manji, HK (2008). Targeting the glutamatergic system to develop novel, improved therapeutics for mood disorders. Nature Reviews Drug Discovery 7, 426–437.10.1038/nrd2462Google Scholar

Sequeira, A, Mamdani, F, Ernst, C, Vawter, MP, Bunney, WE, Lebel, V, Rehal, S, Klempan, T, Gratton, A, Benkelfat, C, Rouleau, GA, Mechawar, N, Turecki, G (2009). Global brain gene expression analysis links glutamatergic and GABAergic alterations to suicide and major depression. PLoS One 4, e6585.Google Scholar

Shiroma, PR, Johns, B, Kuskowski, M, Wels, J, Thuras, P, Albott, CS, Lim, KO (2014). Augmentation of response and remission to serial intravenous subanesthetic ketamine in treatment resistant depression. Journal of Affective Disorders 155, 123–129.Google Scholar

Skolnick, P, Layer, RT, Popik, P, Nowak, G, Paul, IA, Trullas, R (1996). Adaptation of N-methyl-D-aspartate (NMDA) receptors following antidepressant treatment: implications for the pharmacotherapy of depression. Pharmacopsychiatry 29, 23–26.Google Scholar

Skolnick, P, Popik, P, Trullas, R (2009). Glutamate-based antidepressants: 20 years on. Trends in Pharmacological Science 30, 563–569.Google Scholar

Sos, P, Klirova, M, Novak, T, Kohutova, B, Horacek, J, Palenicek, T (2013). Relationship of ketamine's antidepressant and psychotomimetic effects in unipolar depression. Neuroendocrinology Letters 34, 287–293.Google Scholar

Trullas, R, Skolnick, P (1990). Functional antagonists at the NMDA receptor complex exhibit antidepressant actions. European Journal of Pharmacology 185, 1–10.Google Scholar

WHO (1992). The ICD-10 Classification of Mental and Behavioural Disorders: Clinical Descriptions and Diagnostic Guidelines. World Health Organization: Geneva, Switzerland.Google Scholar

WHO (2008). The Global Burden of Disease: 2004 Update. WHO Press: Geneva.Google Scholar

Zarate, CA Jr., Brutsche, NE, Ibrahim, L, Franco-Chaves, J, Diazgranados, N, Cravchik, A, Selter, J, Marquardt, CA, Liberty, V, Luckenbaugh, DA (2012). Replication of ketamine's antidepressant efficacy in bipolar depression: a randomized controlled add-on trial. Biological Psychiatry 71, 939–946.Google Scholar

Zarate, CA Jr., Mathews, D, Ibrahim, L, Chaves, JF, Marquardt, C, Ukoh, I, Jolkovsky, L, Brutsche, NE, Smith, MA, Luckenbaugh, DA (2013). A randomized trial of a low-trapping nonselective N-methyl-D-aspartate channel blocker in major depression. Biological Psychiatry 74, 257–264.Google Scholar

Zarate, CA Jr., Payne, JL, Quiroz, J, Sporn, J, Denicoff, KK, Luckenbaugh, D, Charney, DS, Manji, HK (2004). An open-label trial of riluzole in patients with treatment-resistant major depression. American Journal of Psychiatry 161, 171–174.Google Scholar

Zarate, CA Jr., Singh, JB, Carlson, PJ, Brutsche, NE, Ameli, R, Luckenbaugh, DA, Charney, DS, Manji, HK (2006). A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Archives of General Psychiatry 63, 856–864.10.1001/archpsyc.63.8.856Google Scholar