The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides | Quarterly Reviews of Biophysics | Cambridge Core (original) (raw)

Extract

Although the importance of the polyelectrolyte character of DNA has been recognized for some time (Felsenfeld & Miles 1967), few of the implications have been explored, primarily because of a lag in translating the breakthroughs in polyelectrolyte theory of the last decade into a form that is well adapted to the analysis of the specialized problems of biophysical chemistry. Perhaps an analogous situation existed in the field of protein chemistry during the period after the formulation and confirmation of the Debye—Hückel theory of ionic solutions but before Scatchard's incorporation of the theory into his analysis of the binding properties of proteins. An achievement for polynucleotide solutions parallel to Scatchard's was recently presented by Record, Lohman, & de Haseth (1976) and further developed and reviewed by Record, Anderson & Lohman (1978).

References

Abramson, H. S.Moyer, L. S. & Gorin, M. H. (1942). Electrophoresis of Proteins. New York: Reinhold.Google Scholar

Anderson, C. F.Record, M. T. Jr & Hart, P. A. (1978). Sodium-23 NMR studies of cation—DNA interactions. Biophys. Chem. 7, 301–316.CrossRefGoogle ScholarPubMed

Archer, B. C.Craney, C. L. & Krakauer, H. (1972). The interaction of Na ions with synthetic polynucleotides. Biopolymers II, 781–809.CrossRefGoogle Scholar

Bailey, J. M. (1973). A comparison of two cluster expansion approaches to polyelectrolyte theory. Biopolymers 12, 1705–1708.CrossRefGoogle Scholar

Bhat, K. R. (1974). Physicochemical investigations of magnesium—DNA— proflavine system. Ph.D. thesis, Rutgers University (dir., U. P. Strauss).Google Scholar

Bloomfield, V. A.Crothers, D. M. & Tinoco, I. Jr (1974). Physical Chemistry of Nucleic Acids. New York: Harper and Row.Google Scholar

Boyd, G. E.Wilson, D. P. & Manning, G. S. (1976). Enthalpies of mixing of polyelectrolytes with simple aqueous electrolyte solutions. J. Phys. Chem. 80, 808–810.CrossRefGoogle Scholar

Brun, F.Toulmé, J. & Héléne, C. (1975). Interactions of aromatic residues of proteins with nucleic acids. Fluorescence studies of the binding of oligopeptides containing tryptophan and tyrosine residues to polynucleotides. Biochemistry, N.Y. 14, 558–563.CrossRefGoogle ScholarPubMed

Camerman, N.Fawcett, J. K. & Camerman, A. (1976). Molecular structure of a deoxyribose-dinucleotide, sodium thymidylyl-(5' → 3')-thymidylate- (5') hydrate (pTpT), and a possible structural model for polythymidylate. J. molec Biol. 107, 601–621.CrossRefGoogle Scholar

Clarke, H. B.Cusworth, D.C. & Datta, S. P. (1954). Thermodynamic quantities for the dissociation equilibria of biologically important compounds. 3. The dissociations of the magnesium salts of phosphoric acid, glucose i-phosphoric acid and glycerol 2-phosphoric acid. Biochem. J. 146–154.Google Scholar

Clement, R. M.Sturm, J. & Daune, M. P. (1973). Interaction of metallic cations with DNA. VI. Specific binding of Mg++ and Mn++. Biopolymers 12, 405–421.CrossRefGoogle Scholar

Daune, M. (1970). Binding of divalent cations to DNA. Stud. Biophys. 24/25, 287–297.Google Scholar

deHaseth, P. L.Lohman, T. M. & Record, M. T. Jr (1977). The nonspecific interaction of lac repressor with DNA: an association reaction driven by counterion release. Biochemistry, N. Y. 16, 4783–4790.CrossRefGoogle ScholarPubMed

De, Marky N. & Manning, G. S. (1975). On the application of polyelectrolyte limiting laws to the helix-coil transition of DNA. III. Dependence of helix stability on excess univalent salt and on polynucleotide phosphate concentration for variable equivalent ratios of divalent metal ion to phosphate. Biopolymers 14, 1407–1422.Google Scholar

Devore, D. I. & Manning, S. (1974). Application of polyelectrolyte limiting laws to virial and asymptotic expansions for the Donnan equilibrium. Biophys. Chem. 2, 42–48.CrossRefGoogle ScholarPubMed

Dove, W. F. & Davidson, N. (1962). Cation effects on the denaturation of DNA. J. molec. Biol. 5, 467–478.CrossRefGoogle Scholar

Eigen, M. (1963). Fast elementary steps in chemical reaction mechanisms. Pure appl. Chem. 6, 97–115.CrossRefGoogle Scholar

Felsenfeld, G. & Miles, H. T. (1967). The physical and chemical properties of nucleic acids. A. Rev. Biochem. 36, 407–448.CrossRefGoogle ScholarPubMed

Felsenfeld, G. & Rich, A. (1957). Studies on the formation of two- and three-stranded polyribonucleotides. Biochim. biophys. Acta 26, 457–468.CrossRefGoogle ScholarPubMed

Gilbert, W.Maxam, A. & Mirzabekov, A. (1975). In Control of Ribosome Synthesis. Alfred Benson Symposium IX, Copenhagen.Google Scholar

Greenwald, I.Redish, J. & Kibrick, A. C. (1940). The dissociation of calcium and magnesium phosphates. J. biol. Chem. 135, 65–76.CrossRefGoogle Scholar

Gulick, A.Inoue, H. & Luzzati, V. (1970). Conformation of single-stranded polynucleotides: small-angle X-ray scattering and spectroscopic study of polyribocytidylic acid in water and in water-alcohol solutions. J. molec. Biol. 53, 221–238.CrossRefGoogle Scholar

Gruenwedel, D. W.Hsu, C. H. & Lu, D. S. (1971). The effects of aqueous neutral-salt solutions on the melting temperatures of deoxyribonucleic acids. Biopolymers 10, 47–68.CrossRefGoogle ScholarPubMed

Harrington, R. E. (1978). The optico-hydrodynamic properties of high molecular weight DNA. III. The effects of NaCl concentration. Biopolymers 17, 919–936,CrossRefGoogle Scholar

Hen, J. & Strauss, U. P. (1974). Studies of counterion binding by poly (vinylsulfonate). J. Phys. Chem. 78, 1013–1017.CrossRefGoogle Scholar

Hirsch, J. & Schleif, R. (1976). High resolution electron microscopic studies of genetic regulation. J. molec. Biol. 108, 471–490.CrossRefGoogle Scholar

Iwasa, K. (1977). An examination of the limiting laws of polyelectrolytes and counterion condensation. J. Phys. Chem. 81, 1829–1833.CrossRefGoogle Scholar

Kielman, H. S.Van, Der Hoeven J. M. A. M. & Leyte, J. C. (1976). Nuclear magnetic relaxation of 23Na and 7Li ions in polyphosphate solutions. Biophys. Chem. 4, 103–111.CrossRefGoogle ScholarPubMed

Kirkwood, J. G. & Oppenheim, I. (1961). Chemical Thermodynamics. New York: McGraw-Hill.Google Scholar

Kolchinsky, A. M.Mirzaeekov, A. D.Gilbert, W. & Li, L. (1976). Preferential protection of the minor groove of non-operator DNA by lac repressor against methylation by dimethyl sulphate. Nucl. Acids Res. 3, 11–18.CrossRefGoogle ScholarPubMed

Krakauer, H. (1974). A thermodynamic analysis of the influence of simple mono- and divalent cations on the conformational transitions of polynucleotide complexes. Biochemistry, N.Y. 13, 2579–2589.CrossRefGoogle ScholarPubMed

Krakauer, H. & Sturtevant, J. M. (1968). Heats of the helix-coil transitions of the polyA-polyU complexes. Biopolymers 6, 491–512.CrossRefGoogle Scholar

Kwak, J. C. T.O'Brien, M. C. & MacLean, D. A. (1975). Mean activity coefficients for the simple electrolyte in aqueous mixtures of polyelectrolyte and simple electrolyte. The systems potassium chloridepotassium poly(styrenesulfonate), magnesium chloride-magnesium poly (styrenesulfonate), and calcium chloride-calcium poly(styrenesulfonate). J. Phys. Chem. 79, 2381–2386.CrossRefGoogle Scholar

Latt, S. & Sober, H. (1967). Protein—nucleic acid interactions. II. Oligopeptide-polyribonucleotide binding studies. Biochemistry, N. Y. 6, 3293–3306.CrossRefGoogle ScholarPubMed

Leng, M. & Felsenfeld, G. (1966). The preferential interactions of poly lysine and polyarginine with specific base sequences in DNA. Proc. natn. Acad. Sci. USA 56, 1325–1332.CrossRefGoogle Scholar

Lin, S. Y. & Riggs, A. D. (1972). Lac repressor binding to non-operator DNA: detailed studies and a comparison of equilibrium and rate competition methods. J. molec. Biol. 72, 671–690.CrossRefGoogle Scholar

Lyons, J. W. & Kotin, L. (1965). Ion-binding in polyelectrolyte systems with or without added salt. J. Amer. chein. Soc. 87, 1670–1678.CrossRefGoogle Scholar

Manning, G. S. (1969). Limiting laws and counterion condensation in polyelectrolyte solutions. I. Colligative properties. J. chem. Phys. 51, 924–933.CrossRefGoogle Scholar

Manning, G. S. (1972 b). On the application of polyelectrolyte limiting laws to the helix-coil transition of DNA. I. Excess univalent cations. Biopolymers II, 937–949.CrossRefGoogle Scholar

Manning, G. S. (1972c). On the application of polyelectrolyte limiting laws to the helix-coil transition of DNA. II. The effect of Mg+ counterions. Biopolymers II, 951–955.CrossRefGoogle Scholar

Manning, G. S. (1974). Limiting laws for equilibrium and transport properties and polyelectrolyte solutions. In Polyelectrolytes (ed. Selegny, E.), Dordrecht, Holland: Reidel.Google Scholar

Manning, G. S. (1975). Remarks on the paper ‘Nucleic magnetic relaxation of 23Na in polyelectrolyte solutions’ by van der Klink, Zuiderweg, and Leyte. J. chem. Phys. 62, 748–749.CrossRefGoogle Scholar

Manning, G. S. (1976 a). The application of polyelectrolyte limiting laws to the helix-coil transition of DNA. VI. The numerical value of the axial phosphate spacing for the coil form. Biopolymers 15, 2385–2390.CrossRefGoogle Scholar

Manning, G. S. (1976 b). On the application of polyelectrolyte limiting laws to the helix-coil transition of DNA. V. Ionic effects on renaturation kinetics. Biopolymers 15, 1333–1343.CrossRefGoogle Scholar

Manning, G. S. (1977 a). Limiting laws and counterion condensation in polyelectrolyte solutions. IV. The approach to the limit and the extraordinary stability of the charge fraction. Biophys. Chem. 7, 95–102.CrossRefGoogle Scholar

Manning, G. S. (1977 b). Theory of the delocalized binding of Mg(II) to DNA: preliminary analysis for low binding levels. Biophys. Chem. 7, 141–145.CrossRefGoogle ScholarPubMed

Manning, G. S. (1977 c). A field-dissociation relation for polyelectrolytes with an application to field-induced conformational changes of poiynucleotides. Biophys. Chem. 7, 189–192.CrossRefGoogle Scholar

Manning, G. S. (1978). Limiting laws and counterion condensation in polyelectrolyte solutions. V. Further development of the chemical model. Biophys. Chem. (in the Press).CrossRefGoogle Scholar

Manning, G. S. & Zimm, B. H. (1965). Cluster theory of polyelectrolyte solutions. I. Activity coefficients of the mobile ions. J. chem. Phys. 43, 4250–4259.CrossRefGoogle Scholar

Melchior, W. B. Jr & Von, Hippel P. H. (1973). Alteration of the relative stability of dA·dT and dG·dC base pairs in DNA. Proc. natn Acad. Sci. U.S.A. 70, 298–302.CrossRefGoogle ScholarPubMed

Mirzabekov, A. D. & Melnikova, A. F. (1974). Localization of chromatin proteins within DNA grooves by methylation of chromatin with di- methyl sulphate. Mol. Biol. Reports I, 379–384.CrossRefGoogle Scholar

Olson, W. K. (1975). Configuration-dependent properties of randomly coiling polynucleotide chains. I. A comparison of theoretical energy estimates. Biopolymers 14, 1775–1795.CrossRefGoogle Scholar

Olson, W. K. & Manning, G. S. (1976). A configurational interpretation of the axial phosphate spacing in polynucleotide helices and random coils. Biopolymers 15, 2391–2405.CrossRefGoogle ScholarPubMed

Onsager, L. (1934). Deviations from Ohm's law in weak electrolytes. J. chem. Phys. 2, 599–615.CrossRefGoogle Scholar

Onsager, L. & Liu, C. T. (1965). Zur Theorie des Wienseffekts in schwachen Elektrolyten. Z. phys. Chem. 228, 428–432.CrossRefGoogle Scholar

Pless, R. C. & Ts'o, P. O. P. (1977). Duplex formation of a nonionic oligo (deoxythymidylate) analogue [heptadeoxythymidylyl-(3'-5')-deoxythy- midine heptaethyl ester (d-[Tp(Et)]7T)] with poly (deoxyadenylate). Evaluation of the electrostatic interaction. Biochemistry, N.Y. 16, 1239–1250.CrossRefGoogle Scholar

Pörschke, D. (1976a). Thermodynamic and kinetic parameters of ion condensation to polynucleotides. Outer sphere complex formed by Mg++ ions. Biophys. Chem. 4, 383–394.CrossRefGoogle ScholarPubMed

Pörschke, D. (1976 b). Threshold effects observed in conformation changes induced by electric fields. Biopolymers 15, 1917–1928.CrossRefGoogle ScholarPubMed

Record, M. T. Jr (1975). Effects of Na+ and Mg++ ions on the helix-coil transition of DNA. Biopolymers 14, 2137–2158.CrossRefGoogle Scholar

Record, M. T. JrAnderson, C. F., & Lohman, T. M. (1978). Thermodynamic analysis of ion effects on the binding and conformational equilibria of proteins and nucleic acids: the roles of ion association or release, screening, and ion effects on water activity. Q. Rev. Biophys. 00, 000–000.Google Scholar

Record, M. T. JrdeHaseth, P. L. & Lohman, T. M. (1977). Interpretation of monovalent and divalent ion effects on the lac repressor-operator interaction. Biochemistry, N. Y. 16, 4791–4796.CrossRefGoogle ScholarPubMed

Record, M. T. JrLohman, T. M. & De, Haseth P. L. (1976). Ion effects on ligand-nucleic acid interactions. J. molec. Biol. 107, 145–158.CrossRefGoogle ScholarPubMed

Record, M. T. JrWoodbury, C. P. & Lohman, T. M. (1976). Na+ effects on transitions of DNA and polynucleotides of variable linear charge density. Biopolymers 15, 893–915.CrossRefGoogle ScholarPubMed

Reuben, J.Shporer, M. & Gabbay, E. J. (1975). The alkali-ion-DNA interaction as reflected in the nuclear relaxation rates of 23Na and 87Rb. Proc. natn Acad. Sci. U.S.A. 72, 245–247.CrossRefGoogle Scholar

Revzin, A. & Neumann, E. (1974) Conformation changes in rRNA induced by electric impulses. Biophys. Chem. 2, 144–150.CrossRefGoogle ScholarPubMed

Revzin, A. & Von, Hippel P. H. (1977). Direct measurements of association constants for the binding of Escherichia coli lac repressor to non-operator DNA. Biochemistry, N. Y. 16, 4769–4776.CrossRefGoogle ScholarPubMed

Richmond, T. J. & Steitz, T. A. (1976). Protein-DNA interaction investigated by binding Escherichia coli lac repressor protein to poiy [d(A. U-HgX)]. J. molec. Biol. 103, 25–38.CrossRefGoogle Scholar

Riemer, S. C. & Bloomfield, V. A. (1978). Packaging of DNA in bacteriophage heads; some considerations on energetics. Biopolymers 17, 785–794.CrossRefGoogle ScholarPubMed

Riggs, A. D.Bourgeois, S. & Cohn, M. (1970). The lac repressor-operator interaction. III. Kinetic studies. J. molec. Biol. 53, 401–417.CrossRefGoogle Scholar

Robinson, B. A. & Stokes, R. H. (1959). Electrolyte Solutions. London: Butterworths.Google Scholar

Ross, P. D. & Scruggs, R. L. (1964). Electrophoresis of DNA. III. The effect of several univalent electrolytes on the mobility of DNA. Biopolymers 2, 231–236.CrossRefGoogle Scholar

Ross, P. D. & Shapiro, J. T. (1974). Heat of interaction of DNA with polylysine, spermine, and Mg++. Biopolymers 13, 415–416.CrossRefGoogle ScholarPubMed

Ross, P. D. & Sturtevant, J. M. (1960). The kinetics of double helix formation from polyriboadenylic acid and polyribouridylic acid. Proc. natn Acad. Sci. U.S.A. 46, 1360–1365.CrossRefGoogle ScholarPubMed

Schildkraut, C. & Lifson, S. (1965). Dependence of the melting temperature of DNA on salt concentration. Biopolymers 3, 195–208.CrossRefGoogle ScholarPubMed

Seeman, N. C.Rosenberg, J. M.Suddath, F. L.Kim, J. J. P. & Rich, A. (1976). RNA double-helical fragments at atomic resolution: I. The crystal and molecular structure of sodium adenylyl-3',5'-uridine hexahydrate. J. molec. Biol. 104, 109–144.CrossRefGoogle ScholarPubMed

Shapiro, J. T.Leng, M. & Felsenfeld, G. (1969 a). Deoxyribonucleic acid—polylysine complexes. Structure and nucleotide specificity. Biochemistry, N. Y. 8, 3219–3232.CrossRefGoogle ScholarPubMed

Shapiro, J. T.Stannard, B. S. & Felsenfeld, G. (1969b). The binding of small cations to deoxyribonucleic acid. Nucleotide specificity. Biochemistry, N. Y. 8, 3233–3241.CrossRefGoogle ScholarPubMed

Skerjanc, J. & Strauss, U. P. (1968). Interactions of polyelectrolytes with simple electrolytes. III. The binding of magnesium ion by deoxyribonucleic acid. J. Am. Chem. Soc. 90, 3081–3085.CrossRefGoogle Scholar

Spegt, P. & Weill, G. (1976). Magnetic resonance distinction between site bound and atmospherically bound paramagnetic counter-ions in polyelectrolyte solutions. Biophys. Chem. 4, 143–149.CrossRefGoogle Scholar

Stannard, B. S. & Felsenfeld, G. (1975). The conformation of polyriboadenylic acid at low temperature and neutral pH. A single-stranded rodlike structure. Biopolymers 14, 299–307.CrossRefGoogle Scholar

Strauss, U. P. (1974). Short-range interactions between polyions and small ions. In Polyeiectrolytes (ed. Selegny, E.), Dordrecht-Holland: Reidel.Google Scholar

Strauss, U. P. & Siegel, A. (1963). Counterion binding by polyelectrolytes VI. The binding of magnesium ion by polyphosphates in aqueous solutions. J. Phys. Chem. 67, 2683–2687.CrossRefGoogle Scholar

Studier, F. W. (1969). Effects of the conformation of single-stranded DNA on renaturation and aggregation. J. molec. Biol. 41, 199–209.CrossRefGoogle ScholarPubMed

Tunis, M. J. B. & Hearst, J. E. (1968). On the hydration of DNA. II. Base composition dependence of the net hydration of DNA. Biopolymers 6, 1345–1353.CrossRefGoogle Scholar

Weintraub, H.Palter, K. & Van, Lente F. (1975). Histones H2a, H2b, H3, and H4 form a tetrameric complex in solutions of high salt. Cell 6, 85–110.CrossRefGoogle Scholar

Wetmur, J. G. (1976). Hybridization and renaturation kinetics of nucleic acids. A. Rev. Biophys. Bioeng. 5, 337–361.CrossRefGoogle ScholarPubMed

Zana, R.Tondre, C.Rinaudo, M. & Milas, M. (1971). Étude ultrasonore de la fixation sur site des ions alcalins sur des carboxymethylcelluloses de densité de charge variable. J. Chim. phys. Physicochim. Biol. 68, 1258–1266.CrossRefGoogle Scholar

Zubay, G. & Doty, P. (1958). Nucleic acid interactions with metal ions and amino acids. Biochim. biophys. Acta 29, 47–58.CrossRefGoogle ScholarPubMed