Cryo-electron microscopy of vitrified specimens | Quarterly Reviews of Biophysics | Cambridge Core (original) (raw)

References

Adrian, M., Dubochet, J., Lepault, J. & McDowall, A. W. (1984). Cryo-electron microscopy of viruses. Nature 308, 32–36.CrossRefGoogle ScholarPubMed

Amos, L. A., Henderson, R. & Unwin, P. N. T. (1982). Three-dimensional structure determination by electron microscopy of two-dimensional crystals. Prog. Biophys. molec. Biol. 39, 183–231.CrossRefGoogle ScholarPubMed

Angell, C. A. & Choi, Y. (1986). Crystallization and vitrification in aqueous systems. J. Microsc. 141, 251–261.CrossRefGoogle Scholar

Bellare, J. R., Davis, H. T., Scriven, L. E. & Talmon, Y. (1986). An improved controlled-environment vitrification system (CEVS) for cryofixation of hydrated TEM samples. In Proc. XIth Int. Conf. Elec. Microsc., Kyoto, vol. 11 (ed. Imura, T., Maruse, S. and Suzuki, T.), pp. 367–368.Google Scholar

Bernal, J. D. & Fowler, R. H. (1933). A theory of water and ionic solution with particular reference to hydrogen and hydroxyl ions. J. chem. Phys. 1, 515–548.CrossRefGoogle Scholar

Berry, R. S., Rice, S. A. & Ross, J. (1980). Physical Chemistry. New York: Wiley.Google Scholar

Born, M. & Wolf, E. (1975). Principles of Optics, 5th ed.Oxford: Pergamon Press.Google Scholar

Box, H. C. (1975). Cryoprotection of irradiated specimens. In Physical Aspects of Electron Microscopy and Microbeam Analysis (ed. Siegel, B. M. and Beaman, D. R.), pp. 279–285. New York: Wiley.Google Scholar

Brüggeller, P. & Mayer, E. (1980). Complete vitrification in pure liquid water and dilute aqueous solutions. Nature 288, 569–571.CrossRefGoogle Scholar

Burton, E. F. & Oliver, W. F. (1935). The crystal structure of ice at low temperature.Proc. R. Soc. Lond. A 153, 166–172.CrossRefGoogle Scholar

Cantor, C. R. & Schimmel, R. P. (1980). Biophysical Chemistry, vol. 1–3. San Francisco: Freeman.Google Scholar

Chang, C.-F., Ohno, T. & Glaeser, R. M. (1985). The fatty acid monolayer technique for preparing frozen hydrated specimens. J. elec. Microsc. Techn. 2, 59–65.CrossRefGoogle Scholar

Chang, J.-J., McDowall, A. W., Lepault, J., Freeman, R., Walter, C. A. & Dubochet, J. (1983). Freezing, sectioning and observation artefacts of frozen hydrated sections for electron microscopy. J. Microsc. 132, 109–123.CrossRefGoogle Scholar

Chiu, W. (1982). High resolution electron microscopy of unstained hydrated protein crystals. In Electron Microscopy of Proteins, vol. 2 (ed. Harris, J. R.), pp. 233–259. London: Academic Press.Google Scholar

Chiu, W. (1986). Electron microscopy of frozen, hydrated biological specimens. A. Rev. Biophys. Chem. 15, 237–257.CrossRefGoogle ScholarPubMed

Christensen, A. K. (1971). Frozen thin sections of fresh tissue for electron microscopy, with a description of pancreas and liver. J. Cell Biol. 51, 772–804.CrossRefGoogle Scholar

Clegg, J. S. (1982). Alternative views on the role of water in cell function. In Biophysics of Water (ed. Franks, F. and Mathias, S.), pp. 365–383. Chichester: Wiley.Google Scholar

Coslett, V. E. (1978). Radiation damage in the high resolution electron microscopy of biological materials: a review. J. Microsc. 113, 113–129.CrossRefGoogle Scholar

Crew, A. V. (1973). Considerations of specimen damage for the transmission electron microscope, conventional versus scanning. J. molec. Biol. 80, 315–325.CrossRefGoogle Scholar

Davidson, D. W. (1973). Clathrate hydrates. In Water: A Comprehensive Treatise, vol. 2, (ed. Franks, F.), pp. 115–234. New York: Plenum Press.Google Scholar

Davy, J. D. & Branton, D. (1970). Subliming ice surfaces: freeze-etch electron microscopy. Science 163, 1216–1218.CrossRefGoogle Scholar

Dietrich, I., Formanek, H., Fox, F., Knapek, E. & Weyl, R. (1979). Reduction of radiation damage in an electron microscope with superconducting lens system. Nature 277, 380–381.CrossRefGoogle Scholar

Dietrich, I., Fox, F., Heide, H. G., Knapek, E. & Weyl, R. (1978). Radiation damage due to knock-on processes on carbon foils cooled to liquid helium temperature. Ultramicroscopy 3, 185–189.CrossRefGoogle ScholarPubMed

Dowell, L. G. & Rinfret, A. P. (1960). Low-temperature forms of ice as studied by X-ray diffraction. Nature 188, 1144–1148.CrossRefGoogle Scholar

Dubochet, J. (1975). Carbon loss during irradiation of T4 bacteriophages and E. coli bacteria in electron microscopes. J. Ultrastruct. Res. 52, 276–288.CrossRefGoogle Scholar

Dubochet, J., Adrian, M., Lepault, J. & McDowall, A. W. (1985). Cryo-electron microscopy of vitrified biological specimens. Trends in Biochem. Sci. 10, 143–146.CrossRefGoogle Scholar

Dubochet, J., Adrian, M., Schultz, P. & Oudet, P. (1986). Cryo-electron microscopy of vitrified SV40 minichromosomes. The liquid drop model. EMBO J. 5, 519–528.CrossRefGoogle ScholarPubMed

Dubochet, J., Adrian, M., Teixeira, J., Kadiyali, R. K., Alba, C. M., Macfarlane, D. R. & Angell, C. A. (1984). Glass-forming microemulsions: vitrification of simple liquids and electron microscope probing of droplet packing modes. J. phys. Chem. 88, 6727–6732.CrossRefGoogle Scholar

Dubochet, J., Adrian, M. & Vogel, R. H. (1983 a). Amorphous solid water obtained by vapour condensation or by liquid cooling: a comparison. Cryo-Letters 4, 233–240.Google Scholar

Dubochet, J., Chang, J.-J., Freeman, R., Lepault, J. & McDowall, A. W. (1982 a). Frozen aqueous suspensions. Ultramicroscopy 10, 55–62.CrossRefGoogle Scholar

Dubochet, J., Groom, M. & Müller, , Neuteboom, S. (1982 b). The mounting of macromolecules for electron microscopy. In Advances in Optical and Electron Microscopy, vol. 8 (ed. Cosslett, V. E. and Barer, R.), pp. 107–135. London: Academic Press.Google Scholar

Dubochet, J. & Kellenberger, E. (1972). Selective adsorption of particles to the supporting film and its consequences on particle counts in electron microscopy. Microscopica Acta 72, 119–130.Google Scholar

Dubochet, J. & Lepault, J. (1984). Cryo-electron microscopy of vitrified water J. Physics 45, C7/85–94.Google Scholar

Dubochet, J., Lepault, J., Freeman, R., Berriman, J. A. & Homo, J.-CL. (1982 c). Electron microscopy of frozen water and aqueous solutions. J. Microsc. 128, 219–237.CrossRefGoogle Scholar

Dubochet, J. & McDowall, A. W. (1981). Vitrification of pure water for electron microscopy. J. Microsc. 124, RP3–4.CrossRefGoogle Scholar

Dubochet, J. & McDowall, A. W. (1984 a). Frozen hydrated sections. In Science of Biological Specimen Preparation, pp. 147–152. Chicago: SEM Inc., AMF O'Hare.Google Scholar

Dubochet, J. & McDowall, A. W. (1984 b). Cryo-ultramicrotomy: study of ice crystals and freezing damage.In Proc. 8th Eur. Congr. Elec. Microsc., Budapest (ed. Csanady, A., Röhlich, P. and Szabo, D.), vol. 2, pp. 1407–1410. Budapest: Progr. Committee.Google Scholar

Dubochet, J., McDowall, A. W., Menge, B., Schmid, E. N. & Lickfeld, K. G. (1983 b). Electron microscopy of frozen-hydrated bacteria. J. Bact. 155, 381–390.CrossRefGoogle ScholarPubMed

Eisenberg, D. & Crothers, D. (1979). Physical Chemistry with Applications to the Life Sciences. Menlo Park, CA.: Benjamin/Cumming.Google Scholar

Eisenberg, D. & Kauzmann, W. (1969). The Structure and Properties of Water. Oxford University Press.Google Scholar

Erickson, H. P. & Klug, A. (1971). Measurement and compensation of defocusing and aberrations by Fourrier processing of electron microgrpahs. Phil. Trans. R. Soc. Lond. B 261, 105–118.Google Scholar

Escaig, J. (1982 a). New instruments which facilitate rapid freezing at 83 K and 6 K. J. Microsc. 126, 221–229.CrossRefGoogle Scholar

Escaig, J. (1982 a). Ultra-rapid freezing of cells and cellular material: a review of methods.In Proc. 10th Int. Congr. Elec. Microsc., Hamburg, vol. 3, pp. 169–176. Frankfurt: Deutsche Ges. für Elecktronenmikroskopie, e.V.Google Scholar

Eusemann, R., Rose, H. & Dubochet, J. (1982). Electron scattering in ice and organic materials, J. Microsc. 128, 239–249.CrossRefGoogle Scholar

Fahy, G. M., Macfarlane, D. R., Angell, C. A. & Meryman, H. T. (1984). Vitrification as an approach to cryo-preservation., Cryobiology 21, 407–426.CrossRefGoogle Scholar

Fernandez-Moran, H. (1960). Low temperature preparation techniques for electron microscopy of biological specimens based on rapid freezing with liquid helium II. Ann. N. Y. Acad. Sci. 85, 689–713.CrossRefGoogle ScholarPubMed

Fernandez–Moran, H. (1966). High-resolution electron microscopy with super-conducting lenses at liquid helium temperatures.Proc. Natn. Acad. Sci. U.S.A. 56, 801–808.CrossRefGoogle Scholar

Fernandez-Moran, H. (1985). Cryo-electron microscopy and ultramicrotomy: Reminiscences and reflections. In Advances in Electronics and Electron Physics, supplement 16, pp. 167–223. New York: Academic Press.Google Scholar

Feynman, R. P., Leighton, R. B. & Sands, M. (1965). Lectures on Physics, vol. I–III. Reading, Massachusetts: Addision-Wesley.Google Scholar

Finney, J. L. (1986). The role of water perturbations in biological process. In Water and Aqueous Solutions (ed. Neilson, G. W. and Enderby, J. E.), pp. 227–244. Bristol: Hilger.Google Scholar

Franks, F. (1972–1982). Water: A Comprehensive Treatise, vol. 1–7 (ed. Franks, F.). New York: Plenum Press.Google Scholar

Franks, F. (1982). The properties of aqueous solutions at subzero temperatures. In Water: A Comprehensive Treatise, vol. 7 (ed. Franks, F.), pp. 215–338. New York: Plenum Press.Google Scholar

Frederik, P. M., Busing, W. M. & Persson, A. (1982). Concerning the nature of the cryosectioning process. J. Microsc. 125, 167–175.CrossRefGoogle ScholarPubMed

Frederik, P. M., Busing, W. M. & Persson, A. (1984). Surface defects on thin cryosections. In Scanning Electron Microscopy, vol. 1, pp. 433–443. Chicago: SEM Inc., AMF O'Hare.Google Scholar

Freeman, R., Leonard, K. R. & Dubochet, J. (1980). The temperature dependence of beam damage to biological samples in the scanning transmission electron microscope (STEM).Proc. 7th. Eur. Congr. Elec. Microsc., The Haag, vol. 2 (ed. Brederoo, P. and Boom, G.), pp. 640–641. Leiden: The 7th. Eur. Congr. Foundation.Google Scholar

Fujiyoshi, Y., Uyeda, N., Yamajishi, H., Morikawa, K., Mizusaki, T., Aoki, Y., Kihara, H. & Harada, Y. (1986). Biological marcromolecules observed with high resolution cryo-electron microscope.In Proc. XIth Int. Cong. Elec. Microsc., Kyoto, vol. III (ed. Imura, T., Maruse, S. and Susuki, T.), pp. 1829–1832. Tokyo: Jap. Soc. Elec. Microsc.Google Scholar

Fukami, A. & Adachi, K. (1965). A new method of preparation of a self-perforated micro-plastic grid and its application. J. Elec. Microsc. (Japan) 14, 112–118.Google ScholarPubMed

Fukami, A., Adachi, K. & Katoh, M. (1972). Micro grid techniques (continued) and their contribution to specimen preparation techniques for high resolution work. J. Elec. Microsc. (Japan) 21, 99–108.Google Scholar

Fuller, S. D. (1987). The T = 4 envelope of Sindbis virus is organized by interactions with a complementary T = 3 capsid. Cell 48, 923–934.CrossRefGoogle Scholar

Fuller, S. D. & Argos, P. (1987). Is Sindbis a simple picornavirus with an evelope? EMBO J. 26, 1503–1511.Google Scholar

Geiger, A., Mausbach, P. & Schnitker, J. (1986). Computer simulation study of the hydrogen-bond network in metastable water. In Water and Aqueous Solutions (ed. Neilson, G. W. and Enderby, J. E.), pp. 31–40. Bristol: Adam Hilger.Google Scholar

De Gennes, P. G. (1984). Comment s'étale une goutte. Pour la Science 79, 88–96.Google Scholar

De Gennes, P. G. (1985). Wetting: statistics and dynamics. Rev. mod. Phys. (USA) 57, 827–863.CrossRefGoogle Scholar

Glaeser, R. M. (1971). Limitation to significant information in biological electron microscopy as a result of radiation damage. J. Ultrastruct. Res. 36, 466–482.CrossRefGoogle ScholarPubMed

Glaeser, R. M. (1975). Radiation damage and biological electron microscopy. In Physical Aspects of Electron Microscopy and Microbeam Analysis (ed. Siegel, B. M. and Bearman, D. R.), p. 205. New York: Wiley.Google Scholar

Glaeser, R. M. & Taylor, K. A. (1978). Radiation damage relative to transmission electron microscopy of biological specimens at low temperature: a review. J. Microsc. 112, 127–138.CrossRefGoogle ScholarPubMed

Griffiths, G., McDowall, A. W., Back, R. & Dubochet, J. (1984). On the preparation of cryosections for immunocrytochemistry. J. Ultrastruct. Res. 89, 65–78.CrossRefGoogle Scholar

Griffiths, G., Simons, K., Warren, G. & Tokuyasu, K. T. (1983). Immunoelectron microscopy using thin, frozen sections: application to studies of the intracellular transport of Semliki forest virus spike glycoproteins. Meth. Enzymol. 96, 435–450.Google ScholarPubMed

Gupta, B. L. & Hall, T. A. (1981). The X-ray microanalysis of frozen-hydrated sections in scanning electron microscopy: an evaluation. Tissue Cell 13, 623–643.CrossRefGoogle ScholarPubMed

Hahn, M. (1980). Properties of commerical films for electron microscopy. In Electron Microscopy and Molecular Dimensions (ed. Baumesiter, W. and Vogell, W.), pp. 200–207. Heidelberg: Springer-Verlag.CrossRefGoogle Scholar

Hall, T. A. & Gupta, B. L. (1974). Beam-induced loss of organic mass under electron microscope conditions. J. Microsc. 100, 177–188.CrossRefGoogle Scholar

Handley, D. A., Alexander, J. T. & Chien, S. (1981). The design and use of a simple device for rapid quench-freezing of biological samples. J. Microsc. 121, 273–282.CrossRefGoogle ScholarPubMed

v. Harreveld, A., Trubatch, J. & Steiner, J. (1974). Rapid freezing and electron microscopy for the arrest of physiological processes, J. Microsc. 100, 189–198.CrossRefGoogle Scholar

Hart, R. K., Kassner, T. F. & Maurin, J. K. (1970). Contamination of surfaces during high-energy electron radiation. Phil. Mag. 21, 453–467.CrossRefGoogle Scholar

Hayat, M. A. (1970). Principles and Techniques of Electron Microscopy. Biological Applications, vol. 1. London: Van Nostrand Reinhold.Google Scholar

Hayward, S. B., Grano, D. A., Glaeser, R. M. & Fisher, K. A. (1978). Molecular orientation of bacteriorhodopsin within the purple membrane of halobacterium halobium.Proc. natn. Acad. Sci. U.S.A. 75, 4320–4324.CrossRefGoogle Scholar

van Heel, M. & Frank, J. (1981). Use of multivariate statistics in image analysing the images of biological macromolecules. Ultramicroscopy. 6, 187–194.Google ScholarPubMed

Heide, H. G. (1982 a). On the irradiation of organic samples in the vicinity of ice. Ultramicroscopy. 7, 299–300.CrossRefGoogle Scholar

Heide, H. G. (1982 b). Design and operation of cold stages. Ultramicroscopy. 10, 125–154.CrossRefGoogle Scholar

Heide, H. G. & Grund, S. (1974). Eine Tiefkühlkette zum Überführen von wasserhaltigen biologischen Objekten im Elektronenmikroskop. J. Ultrastruct. Res. 48, 259–268.CrossRefGoogle Scholar

Heide, H. G. & Zeitler, E. (1985). The physical behaviour of solid water at low temperatures and the embedding of electron microscopical specimens. Ultramicroscopy 16, 151–160.CrossRefGoogle Scholar

Heidenreich, R. R. (1964). Fundamentals of Transmission Electron Microscopy. New York: Interscience Publ.Google Scholar

Heuser, J. E., Reese, T. S., Dennis, M. J., Jan, Y., Jan, L. & Evans, L. (1979). Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release. J. Cell Biol. 81, 275–300.CrossRefGoogle Scholar

Hiromi, K. (1979). Kinetics of Fast Enzyme Reactions. Theory and Practice. Kodansha Scientific Books. New York: Wiley.Google Scholar

Hobbs, P. V. (1974). Ice Physics. Oxford: Clarendon Press.Google Scholar

Homo, J.-Cl., Booy, F., Labouesse, P., Lepault, J. & Dubochet, J. (1984). Improved anticontaminator for cryo-electron microscopy with Philips EM 400. J. Microscopy 136, 337–340.CrossRefGoogle Scholar

Hutchinson, T. E., Bacaner, M., Brodhurst, J. & Lilley, J. (1974). Electron microscopy of frozen biological tissue. Rev. scient. Instrum. 45, 252–255.CrossRefGoogle ScholarPubMed

Huttermann, J. (1982 a). Physical mechanisms of electron interaction with organic solids. Ultramicroscopy. 10, 7–14.CrossRefGoogle Scholar

Huttermann, J. (1982 b). Solid-state radiation chemistry of DNA and its constituents. Ultramicroscopy. 10, 25–40.CrossRefGoogle ScholarPubMed

International Expermental Study Group (1986). Cryoprotection in electron microscopy. J. Microsc. 141, 385–391.CrossRefGoogle Scholar

Isaacson, M. S. (1977). Specimen damage in the electron microscope. In Principles and Techniques of Electron Microscopy. Biological Applications, vol. 7 (ed. Hayat, M. A.), pp. 1–78. New York: Van Nostrand Reinhold.Google Scholar

Jaffe, J. S. & Glaeser, R. M. (1984). Preparation of frozen-hydrated specimens for high resolution electron microscopy. Ultramicroscopy 13, 373–378.CrossRefGoogle ScholarPubMed

Jakubowski, U. (1985). Can heat pipes solve the problems of drift and vibration of cryoholders? Ultramicroscopy. 17, 379–382.CrossRefGoogle Scholar

Jeng, T.-W. & Chiu, W. (1984). Quantitative assessment of radiation damage in a thin protein crystal. J. Microsc. 136, 35–44.CrossRefGoogle Scholar

Jesior, J.-Cl. (1987). How to avoid compression. II. The influence of sectioning conditions. J. Ultrastruct. Res. (In the Press.)Google Scholar

Johari, G. P. (1977). On the heat capacity, entropy and glass transition of vitreous ice. Phil. Mag. 35 (4), 1077–1090.CrossRefGoogle Scholar

Kellenberger, E. (1987). The response of biological macromolecules and supramolecular structures to the physics of cryo-specimen preparation. In Cryotechniques in Biological Electron Microscopy (ed. Steinbrecht, R. A. and Zierold, K., pp. 35–63. Heidelberg: Springer-Verlag.CrossRefGoogle Scholar

Kellenberger, E., Carlemalm, E. & Villiger, W. (1986 b). Physics of the preparation and observation of specimens that involve cryoprocedure. In Science of Biological Specimen Preparation (ed. Müller, M., Becker, R., Boyde, A. and Wolosewick, J.), pp. 1–20. Chicago: SEM Inc., AMF O'Hare.Google Scholar

Kellenberger, E., Häner, M. & Wurtz, M. (1982). The wrapping phenomenon in air-dried and negatively stained preparations. Ultramicroscopy. 9, 139–150.CrossRefGoogle ScholarPubMed

Kellenberger, E. & Kistler, J. (1979). The physics of specimen preparation. In Advances in Structure Research by Diffraction Methods, vol. VIII (ed. Hoppe, W. and Mason, R.), pp. 49–79. Wiesbaden: Friedr. Vieweg.Google Scholar

Kleinschmidt, A. K. & Zahn, R. K. (1959). Über Deoxyribonucleinsäure-Molekulen in Protein-Mischfilmen. Z. Naturf. 14b, 770–779.CrossRefGoogle Scholar

Knapek, E. & Dubochet, J. (1980). Beam damage to organic crystals is considerably reduced in cryo-electron microscopy. J. molec. Biol. 141, 147–161.CrossRefGoogle Scholar

Kobayashi, K. & Sakaoku, K. (1965). Irradiation changes in organic polymers at various acceleration voltages. Lab. Investigation 14, 1097–1114.Google Scholar

König, H. (1943). Eine kubische Eismodification. Z. Krisṫallogr. 105, 279–286.Google Scholar

Kohl, H., Rose, H. & Schnabl, H. (1981). Dose-rate effect at low temperatures in FBEM and STEM due to object-heating. Optik 58, 11–24.Google Scholar

Lamvik, M. K., Kopf, D. A. & Robertson, J. D. (1983). Radiation damage in L-valine at liquid helium temperature. Nature 301, 332–334.CrossRefGoogle Scholar

Leisegang, S. (1954). Zur Erwärmung elektronenmikroskopischer Objekte bei kleinem Strahlquerschnitt.In. Proc. 3rd Int. Conf. Elec. Microsc., London, pp. 176–188.Google Scholar

Lenz, S. (1954). Zur Streuung mittelschneller Elektronen in kleinste Winkel. Z. Naturf. 9 a, 185–204.CrossRefGoogle Scholar

Lepault, J., Booy, F. P. & Dubochet, J. (1983 a). Electron microscopy of frozen biological suspensions. J. Microsc. 129, 89–102.CrossRefGoogle ScholarPubMed

Lepault, J. & Dubochet, J. (1980). Freezing, fracturing and etching artefacts in particulate suspensions. J. Ultrastruct. Res. 72, 223–233.CrossRefGoogle ScholarPubMed

Lepault, J. & Dubochet, J. (1986 a). Electron microscopy of frozen hydrated specimens: preparation and characteristics. In Meth. Enzymol. 127, 719–730.CrossRefGoogle ScholarPubMed

Lepault, J. & Dubochet, J. (1986 b). Beam damage and frozen-hydrated specimens.In Proc. XIth Int. Cong. Elec. Microsc., Kyoto, vol. 1 (ed. Imura, T., Maruse, S. and Suzuki, T.), pp. 25–28. Tokyo: Japanese Society for Electron Microscopy.Google Scholar

Lepault, J., Dubochet, J., Baschong, W. & Kellenberger, E. (1987). Organization of double-stranded DNA in bacteriophages: a study by cryo-electron microscopy of vitrified samples. EMBO J. 6, 1507–1512.CrossRefGoogle ScholarPubMed

Lepault, J., Dubochet, J., Dietrich, I., Knapek, E. & Zeitler, E. (1983 b). Amendment to: Electron beam damage to organic specimens at liquid helium temperature. J. molec. Biol. 163, 511.CrossRefGoogle Scholar

Lepault, J., Freeman, R. & Dubochet, J. (1983 c). Electron beam induced ‘vitrified ice’. J. Microsc. 132, RP3–RP4.CrossRefGoogle Scholar

Lepault, J. & Leonard, K. (1985). Three-dimensional structure of unstained frozen-hydrated extended tails of bacteriophage T4. J. molec. Biol. 182, 431–441.CrossRefGoogle ScholarPubMed

Lepault, J., Pattus, F. & Martin, N. (1985). Cryo-electron microscopy of artificial biological membranes. Biochim. biophys. Acta 820, 315–318.CrossRefGoogle Scholar

Lepault, J. & Pitt, T. (1984). Projected structure of unstained, frozen-hydrated T-layer of Bacillus brevis. EMBO J. 3, 101–105.CrossRefGoogle ScholarPubMed

Lickfeld, K. G. (1985). Ein Beitrag zur Frage welche Kräfte und Faktoren Dünnschneiden bewirken. J. Ultrastruct. Res. 93, 101–115.CrossRefGoogle Scholar

Luyet, B. J. & Gehenio, P. M. (1940). Life and Death at Low Temperatures. Normandy, Missouri: Biodynamica.Google Scholar

Mackenzie, A. P. (1977). Non equilibrium freezing behaviour of aqueous systems. Phil. Trans. R. Soc. Lond. B 278, 167–189.Google ScholarPubMed

Mandelkow, E.-M., Rapp, R. & Mandelkow, E. (1986). Microtubule structure studied by quick freezing: cryo-electron microscopy and freeze fracture. J. Microsc. 141, 361–373.CrossRefGoogle Scholar

Mayer, E. & Brüggeller, P. (1982). Vitrification of pure liquid water by high pressure jet freezing. Nature 298, 715–718.CrossRefGoogle Scholar

Mayer, E. & Brüggeller, P. (1983). Devitrification of glassy water. Evidence for a discontinuity of states. J. phys. Chem. 87, 4744–4749.CrossRefGoogle Scholar

McDowall, A. W., Chang, J.-J., Freeman, R., Lepault, J., Walter, C. A. & Dubochet, J. (1983). Electron microscopy of frozen hydrated sections of vitreous ice and vitrified biological samples. J. Microsc. 131, 1–9.CrossRefGoogle ScholarPubMed

McDowall, A. W., Hofmann, W., Lepault, J., Adrian, M. & Dubochet, J. (1984). Cryo-electron microscopy of vitrified insect flight muscle. J. molec. Biol. 178, 105–111.CrossRefGoogle ScholarPubMed

McDowall, A. W., Smith, J. M. & Dubochet, J. (1986). Cryo-electron microscopy of vitrified chromosomes in situ. EMBO J. 5, 1395–1402.CrossRefGoogle ScholarPubMed

Menco, B. P. M. (1986). A survey of ultra-rapid cryofixation methods with particular emphasis on applications to freeze-fracturing, freeze-etching, and freeze-substitution. J. Elec. Microsc. Techn. 4, 177–240.CrossRefGoogle Scholar

Mishima, O., Calvert, L. D. & Whalley, E. (1984). ‘Melting ice’ I at 77K and 10Kbar: a new method of making amorphous solids. Nature 310, 393–395.CrossRefGoogle Scholar

Moor, H. (1987). Theory and practice of high pressure freezing. In Cryotechniques in Biological Electron Microscopy (ed. Steinbrecht, A. and Zierold, K.). Heidelberg: Springer Verlag, (in the Press).Google Scholar

Müller, M., Meister, N. & Moor, H. (1980). Freezing in a propane jet and its application in freeze-fracturing. Mikroskopie (Vienna) 36, 129–140.Google Scholar

Müller, M. & Moor, H. (1984). Cryofixation of thick specimens by high pressure freezing. In Science of Biological Specimen Preparation, vol. 2 (ed. Revel, J.-P., Barnard, T. and Haggis, G. H.), pp. 131–138. Chicago: SEM Inc., AMF O'Hare.Google Scholar

Narten, A. H. & Levy, H. A. (1969). Observed diffraction pattern and proposed models of liquid water. Science 165, 447–454.CrossRefGoogle ScholarPubMed

Neilson, G. W. & Enderby, J. E. (eds.) (1986). Water and Aqueous Solutions. Bristol & Boston: A. Hilger.Google Scholar

Nittmann, J. & Stanley, H. E. (1986). Tip splitting without interfacial tension and dendritic growth patterns arising from molecular anisotropy. Nature 321, 663–668.CrossRefGoogle Scholar

Parsegian, V. A. (1975). Long range van der Waals forces. In Physical Chemistry: Enriching Topics from Colloid and Surface Science (ed. Olphen, H. V. & Mysels, K. J.), pp. 27–72. Série IUPAC.Google Scholar

Pauling, L. (1970). General Chemistry, 3rd ed. San Francisco: Freeman.Google Scholar

Plattner, H. & Bachmann, L. (1982). Cryofixation: A tool in biological ultrastructural research. Int. Rev. Cytol. 79, 237–304.CrossRefGoogle ScholarPubMed

Plattner, H. & Knoll, G. (1984). Cryofixation of biological materials for electron microscopy by the methods of spray-, sandwich-, cryogen-jet- and sandwich-cryogen-jet-freezing: A comparison of techniques. In Science of Biological Specimen Preparation, vol. 2 (ed. Revel, J.-P., Barnard, T. and Haggis, G. H.), pp. 139–146. Chicago: SEM Inc., AMF O'Hare.Google Scholar

Polge, C., Smith, A. U. & Parkes, A. S. (1949). Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature 164, 666–667.CrossRefGoogle ScholarPubMed

Polian, A. & Grimsditch, M. (1984). New high pressure phase of H2O: Ice X. Phys. Rev. Lett. 52, 1312–1314.CrossRefGoogle Scholar

Rachel, R., Jakubowski, U., Tietz, H., Hegerl, R. & Baumeister, W. (1986). Projected structure of the surface protein of deinococcus radiodurans determined to 8 Å resolution by cryomicroscopy. Ultramicroscopy, 20, 305–316.CrossRefGoogle Scholar

Rahman, A., & Stillinger, F. H. (1971). Molecular dynamics study of liquid water. J. chem. Phys. 55, 3336–3359.CrossRefGoogle Scholar

Rasmussen, D. H. & Mackenzie, A. P. (1973). Clustering in supercooled water. J. chem. Phys. 59, 5003–5013.CrossRefGoogle Scholar

Reimer, L. (1975). Review of the radiation damage problem of organic specimens in electron microscopy. In Physical Aspects of Electron Microscopy and Microbeam Analysis (ed. Siegel, B. M. and Beaman, D. R.), pp. 231–245. New York: Wiley.Google Scholar

Reimer, L. (1984). Electron microscopy. Heidelberg: Springer Verlag.Google Scholar

Riehle, U. (1968). Schnellgefrieren organischer Präparate für die Elektronen-Mikroskopie. Chemie-Ing. Techn. 40, 213–218.CrossRefGoogle Scholar

Riehle, U. & Hochli, M. (1973). The theory and technique of high pressure freezing. In Freeze-Etching Techniques and Applications (ed. Benedetti, E. L. and Farvard, P.), pp. 31–61. Paris: Société Française de Microscopie Electronique.Google Scholar

Robards, A. W. & Sleytr, U. B. (1985). Low Temperature Methods in Biological Electron Microscopy. New York: Elsevier.Google Scholar

Roberts, I. M. (1975). Tungstein coating – a method of improving glass microtome knives for cutting ultrathin sections. J. Microsc. 103, 113–119.CrossRefGoogle Scholar

Saxton, W. O. (1978). Computer Techniques for Image Processing in Electron Microscopy. Academic Press.Google Scholar

Sceats, M. G. & Rice, S. A. (1982). Amorphous solid water and its relationship to liquid water: A random network model for water. In Water: A Comprehensive Treatise (ed. Franks, F.), pp. 83–214. New York: Plenum Press.Google Scholar

Schäfer, L., Yates, A. C., Bonham, R. A. (1971). New values for the partial wave electron scattering factor for the elements 1 ≤ Z ≤ 57 and 72 ≤ Z ≤ 90 for incident electron energies of 10, 40, 70 and 100 keV. J. chem. Phys. 55, 3055–3056.CrossRefGoogle Scholar

Scherzer, O. (1949). The theoretical resolution limit of the electron microscope, J. appl. Phys. 20, 20–29.CrossRefGoogle Scholar

Siegel, G. (1972). The influence of very low temperature on the radiation damage of organic crystals irradiated by 100 kV electrons. Z. Naturf. A 27, 325–332.CrossRefGoogle Scholar

Sitte, H., Edelmann, L. & Neumann, K. (1987). Cryofixation without pretreatment at ambient pressure. In Cryotechniques in Biological Electron Microscopy (ed. Steinbrecht, R. A. and Zierold, K., pp. 87–113). Heidelberg: Springer Verlag.CrossRefGoogle Scholar

Sitte, H. & Neumann, K. (1983). Beitrag 1. 1. 2. In Methodensammlung der Elektronenmikroskopie (ed. Schimmel, G. and Vogell, W.), pp. 1–248. Stuttgart: Wiss. Verlag GmbH.Google Scholar

Sitte, H., Neumann, K., Hässig, H., Kleber, H. & Kappl, G. (1980). FC4 cryochamber for Reichert OmU4-ultramicrotome Ultracut.In Proc. 7th Eur. Congr. Elec. Microsc., The Hague, vol. 2 (ed. Brederoo, P. and Boom, G.), pp. 540–541. Leiden: Eur. Congr. Fundation.Google Scholar

Sleytr, U. B. & Robards, A. W. (1977). Plastic deformation during freezing-cleavage: a review. J. Microsc. 110, 1–25.CrossRefGoogle ScholarPubMed

Stanley, H. E. & Teixeira, J. (1980). Interpretation of the unusual behaviour of H2O and D2O at low temperatures: tests of a percolation model. J. chem. Phys. 73, 3404–3422.CrossRefGoogle Scholar

Stewart, M. & Vigers, G. (1986). Electron microscopy of frozen-hydrated biological material. Nature 319, 631–636.CrossRefGoogle ScholarPubMed

Stillinger, F. H. & Weber, T. A. (1984). Packing structures and transitions in liquids and solids. Science 225, 983–989.CrossRefGoogle ScholarPubMed

Symons, M. C. R. (1982 a). Chemical aspects of electron beam interactions in the solid state. Ultramicroscopy 10, 15–24.CrossRefGoogle Scholar

Talmon, Y. (1982). Thermal and radiation damage to frozen hydrated specimens. J. Microsc. 125, 227–237.CrossRefGoogle Scholar

Talmon, Y., Adrian, M. & Dubochet, J. (1986). Electron beam damage to organic inclusions in vitreous, cubic and hexagonal ice. J. Microsc. 141, 375–384.CrossRefGoogle Scholar

Talmon, Y., Davis, H. T., Scriven, L. E., & Thomas, E. L. (1979). Mass loss and etching of frozen hydrated specimens. J. Microsc. 117, 321–332.CrossRefGoogle Scholar

Talmon, Y. & Thomas, E. L. (1977 a). Beam heating of a moderately thick cold stage specimen in the SEM/STEM. J. Microsc. III, 151–164.CrossRefGoogle Scholar

Talmon, Y. & Thomas, E. L. (1977 b). Temperature rise and sublimation of water from this frozen hydrated specimens in cold stage microscopy. Scanning Elec. Microsc. 1, 265–272.Google Scholar

Talmon, Y. & Thomas, E. L. (1978). Electron beam heating temperature profiles in moderately thick cold stage STEM/SEM specimens. J. Microsc. 113, 69–75.CrossRefGoogle Scholar

Talmon, Y. & Thomas, E. L. (1979). Open system microthermometry – a technique for the measurement of local specimen temperature in the electron microscope. J. Mater. Sci. 14, 1647–1650.CrossRefGoogle Scholar

Tanford, C. (1961). Physical Chemistry of Macromolecules. New York: Wiley.Google Scholar

Taylor, K. A. (1978). Structure determination of frozen, hydrated, crystalline biological specimens. J. Microsc. 112, 15–125.CrossRefGoogle ScholarPubMed

Taylor, K. A. & Glaeser, R. M. (1974). Electron diffraction of frozen, hydrated protein crystals. Science 106, 1036–37.CrossRefGoogle Scholar

Taylor, K. A. & Glaeser, R. M. (1976). Electron microscopy of frozen hydrated biological specimens. J. Ultrastruct. Res. 55, 448–456.CrossRefGoogle ScholarPubMed

Taylor, K. J., Chanzy, H. & Marchessault, R. H. (1975). Electron diffraction for hydrated crystalline biopolymers: Nigeran. J. molec. Biol. 92, 165–167.CrossRefGoogle ScholarPubMed

Teixeira, J., Stanley, E., Bottinga, Y. & Richet, P. (1983). Application of a percolation model to supercooled liquids with a tetrahedral structure. Bull. Minéral. 106, 99–105.CrossRefGoogle Scholar

Thornbury, W. & Mengers, P. E. (1957). An analysis of frozen section techniques. I. Sectioning of fresh-frozen tissues. J. Histochem. Cytochem. 5, 47–52.CrossRefGoogle Scholar

Tokuyasu, K. T. (1973). A technique for ultracryotomy of cell suspensions and tissues. J. Cell Biol. 57, 551–565.CrossRefGoogle Scholar

Tokuyasu, K. T. & Okamura, S. (1959). A new method for making glass knives for thin sectioning. J. Biophys. Biochem. Cytol. 6, 305–308.CrossRefGoogle ScholarPubMed

Trinick, J., Cooper, J., Seymour, J. & Egelman, E. H. (1986). Cryo-electron microscopy and three-dimensional reconstruction of actin filaments. J. Microsc. 141, 349–360.CrossRefGoogle ScholarPubMed

Typke, D. & Radermacher, M. (1982). Determination of the phase of complex atomic scattering amplitudes from light-optical diffractograms of electron microscope images. Ultramicroscopy 9, 131–138.CrossRefGoogle Scholar

Unwin, P. N. T. (1972). Electron microscopy of biological specimens by means of an electrostatic phase plate.Proc. R. Soc. London A 329, 327–359.Google Scholar

Unwin, P. N. T. (1974). Electron microscopy of the stacked dish aggregate of Tobacco Mosaic Virus protein. II. The influence of electron irradiation on the stain distribution, J. molec. Biol. 87, 657–670.CrossRefGoogle Scholar

Unwin, P. N.T. & Henderson, R. (1975). Molecular structure determination by electron microscopy of unstained crystalline specimens. J. molec. Biol. 94, 425–440.CrossRefGoogle ScholarPubMed

Unwin, P. N.T. & Muguruma, J. (1971). Transmission electron microscopy of ice. J. appl. Phys. 42, 3640–3641.CrossRefGoogle Scholar

Unwin, P. N.T. & Muguruma, J. (1972). Electron microscope observations on the defect structure of ice. Physica status solidi (a) 14, 207–216.CrossRefGoogle Scholar

Valentine, R. C. (1966). Response of photographic materials to electrons. In Advances in Optical and Electron Microscopy, vol. 1 (ed. Barer, R. and Cosslett, V. E.), pp. 180–202. London: Academic Press.Google Scholar

Vigers, G. P. A., Crowther, R. A. & Pearse, B. M. F. (1986 a). Three-dimensional structure of clathrin cages in ice. EMBO J. 5, 529–534.CrossRefGoogle ScholarPubMed

Vigers, G. P. A., Crowther, R. A. & Pearse, B. M. F. (1986 b). Location of the 100kD–50kD accessory proteins in clathrin coats. EMBO J. 5, 2079–2085.CrossRefGoogle ScholarPubMed

Vogel, R. H., Provencher, S. W., Von Bonsdorff, C.-H., Adrian, M. & Dubochet, J. (1986). Envelope structure of Semliki forest virus reconstructed from cryo-electron micrographs. Nature 320, 533–535.CrossRefGoogle ScholarPubMed

Wade, R. H. (1984). The temperature dependence of radiation damage in organic and biological material. Ultramicroscopy 14, 265–270.CrossRefGoogle Scholar

Wall, J., Bittner, J. W. & Hainfeld, J. (1977). Contamination at low temperature.In Proc. 35th Ann. EMSA Meeting, Boston, pp. 558–559.CrossRefGoogle Scholar

Wall, J., Isaacson, M. & Langmore, J. (1974). The collection of scattered electrons in dark-field electron microscopy. II. Inelastic scattering. Optik 39, 359–374.Google Scholar

Wilson, D. (1979). Supercold: An Introduction to Low Temperature Technology, London & Boston: Faber & Faber.Google Scholar

Zierold, K. (1982). Preparation of biological cryosections for analytical electron microscopy. Ultramicroscopy 10, 45–54.CrossRefGoogle ScholarPubMed

Zierold, K. (1984). The morphology of ultrathin cryosections. Ultramicroscopy 14, 201–209.CrossRefGoogle Scholar

Zierold, K. (1987). Cryoultramicrotomy. In Cryotechniques in Biological Electron Microscopy (ed. Steinbrecht, A. and Zierold, K., pp. 132–148). Heidelberg: Springer Verlag.CrossRefGoogle Scholar