A kinetic model of Phanerozoic taxonomic diversity II. Early Phanerozoic families and multiple equilibria | Paleobiology | Cambridge Core (original) (raw)

Abstract

The kinetic model of taxonomic diversity predicts that the long-term diversification of taxa within any large and essentially closed ecological system should approximate a logistic process controlled by changes in origination and extinction rates with changing numbers of taxa. This model is tested with a new compilation of numbers of metazoan families known from Paleozoic stages (including stage-level subdivisions of the Cambrian). These data indicate the occurrence of two intervals of logistic diversification within the Paleozoic. The first interval, spanning the Vendian and Cambrian, includes an approximately exponential increase in families across the Precambrian-Cambrian Boundary and a “pseudo-equilibrium” through the Middle and Late Cambrian, caused by diversity-dependent decrease in origination rate and increase in extinction rate. The second interval begins with a rapid re-diversification in the Ordovician, which leads to a tripling of familial diversity during a span of 50 Myr; by the end of the Ordovician diversity attains a new dynamic equilibrium that is maintained, except for several extinction events, for nearly 200 Myr until near the end of the Paleozoic. A “two-phase” kinetic model is constructed to describe this heterogeneous pattern of early Phanerozoic diversification. The model adequately describes the “multiple equilibria,” the asymmetrical history of the “Cambrian fauna,” the extremely slow initial diversification of the later “Paleozoic fauna,” and the combined patterns of origination and extinction in both faunas. It is suggested that this entire pattern of diversification reflects the early success of ecologically generalized taxa and their later replacement by more specialized taxa.

References

Aitken, J. D. 1966. Middle Cambrian to Middle Ordovician cyclic sedimentation, southern Rocky Mountains of Alberta. Can. Petrol. Geol. Bull. 14:405–441.Google Scholar

Alpert, S. P. 1976. Trilobite and star-like trace fossils from the White-Inyo Mountains, California. J. Paleontol. 50:226–239.Google Scholar

Alpert, S. P. 1977. Trace fossils and the basal Cambrian Boundary. Pp. 1–8. In: Crimes, T. P. and Harper, J. C., eds. Trace Fossils 2. Seel House Press; Liverpool.Google Scholar

Anderson, M. M. 1972. A possible time span for the late Precambrian of the Avalon Peninsula, southeastern Newfoundland, in light of worldwide correlation of fossils, tillites, and rock units within the succession. Can. J. Earth Sci. 9:1710–1726.CrossRefGoogle Scholar

Armstrong, R. L. 1978. Pre-Cenozoic Phanerozoic time scale—computer file of critical dates and consequences of new and in-progress decay-constant revisions. Pp. 73–92. In: Cohee, G. V. et al., eds. The Geologic Time Scale. Am. Assoc. Petrol. Geol.; Tulsa, Oklahoma.Google Scholar

Bambach, R. K. 1977. Species richness in marine benthic habitats through the Phanerozoic. Paleobiology. 3:152–167.CrossRefGoogle Scholar

Bayer, T. N. 1967. Repetitive benthonic communities in the Maquoketa Formation (Ordovician) of Minnesota. J. Paleontol. 41:417–422.Google Scholar

Bengtson, S. 1977a. Aspects of problematic fossils in the early Palaeozoic. Acta Universitatis Upsaliensis, No. 415, 71 pp.Google Scholar

Bengtson, S. 1977b. Early Cambrian button-shaped phosphatic microfossils from the Siberian Platform. Palaeontology. 20:751–762.Google Scholar

Berg-Madsen, V. and Peel, J. S. 1978. Middle Cambrian monoplacophorans from Bornholm and Australia, and the systematic position of the bellerophontiform molluscs. Lethaia. 11:113–126.CrossRefGoogle Scholar

Bergström, J. 1973. Organization, life, and systematics of trilobites. Fossils and Strata, No. 2, 69 pp.Google Scholar

Blalock, H. M. Jr. 1964. Causal Inferences in Nonexperimental Research. 200 pp. W. W. Norton & Co.; New York.Google Scholar

Boucot, A. J. 1975a. Standing diversity of fossil groups in successive intervals of geologic time viewed in the light of changing levels of provincialism. J. Paleontol. 49:1105–1111.Google Scholar

Boucot, A. J. 1975b. Evolution and Extinction Rate Controls. 427 pp. Elsevier; Amsterdam.Google Scholar

Bretsky, P. W. 1969. Evolution of Paleozoic benthic marine invertebrate communities. Palaeogeogr., Palaeoclimat., Palaeoecol. 6:45–59.CrossRefGoogle Scholar

Bretsky, P. W. 1977. Macroinvertebrate teilzones and episodic faunal changes from an Upper Ordovician flysch in Quebec. Can. J. Earth Sci. 7:1674–1686.CrossRefGoogle Scholar

Brett, C. E. and Liddell, W. D. 1978. Preservation and paleoecology of a Middle Ordovician hardground community. Paleobiology. 4:329–348.CrossRefGoogle Scholar

Briggs, D. E. G. 1977. Evolutionary significance of Canadaspis, the earliest positively identified crustacean. J. Paleontol. 51 (Suppl.):4.Google Scholar

Brown, G. R. 1978. Morphologic complexity and its relationship to taxonomic rates of evolution. J. Undergrad. Res., Univ. Rochester, , pp. 139–168.Google Scholar

Cloud, P. E. 1968. Pre-metazoan evolution and the origins of the Metazoa. Pp. 1–72. In: Drake, E. T., ed. Evolution and Environment. Yale Univ. Press; New Haven, Connecticut.Google Scholar

Cloud, P. E. 1976. Major features of crustal evolution. Geol. Soc. South Afr. Trans. Annexure to Vol. 79. 32 pp.Google Scholar

Conway Morris, S. 1977a. A new entoproct-like organism from the Burgess Shale of British Columbia. Palaeontology. 20:833–845.Google Scholar

Conway Morris, S. 1977b. A new metazoan from the Cambrian Burgess Shale of British Columbia. Palaeontology. 20:623–640.Google Scholar

Cowie, J. W. 1964. The Cambrian Period. Pp. 255–258. In: Harland, W. B. et al., eds. The Phanerozoic Time-Scale: A Symposium. Geol. Soc. London; London.Google Scholar

Cowie, J. W. and Cribb, S. J. 1978. The Cambrian System. Pp. 355–362. In: Cohee, G. V. et al., eds. The Geologic Time Scale. Am. Assoc. Petrol. Geol.; Tulsa, Oklahoma.Google Scholar

Cowie, J. W. and Glaessner, M. F. 1975. The Precambrian-Cambrian Boundary: A symposium. Earth-Sci. Rev. 11:209–251.CrossRefGoogle Scholar

Cowie, J. W. and Rozanov, A. Yu. 1974. I.U.G.S. Precambrian/Cambrian Boundary working group in Siberia, 1973. Geol. Mag. 111:237–252.CrossRefGoogle Scholar

Cowie, J. W., Rushton, A. W. A., and Stubblefield, C. J. 1972. A correlation of Cambrian rocks in the British Isles. Geol. Soc. London, Spec. Rept. 2, 42 pp.Google Scholar

Cutbill, J. L. and Funnell, B. M. 1967. Computer analysis of The Fossil Record. Pp. 791–820. In: Harland, W. B. et al., eds. The Fossil Record. Geol. Soc. London; London.Google Scholar

Daily, B. 1972. The base of the Cambrian and the first Cambrian faunas. Univ. Adelaide Centre for Precambrian Res., Spec. Pap. No. 1, pp. 13–42.Google Scholar

Daily, B. and Jago, J. B. 1975. The trilobite Lejopyge Hawle and Corda and the Middle-Upper Cambrian Boundary. Palaeontology. 18:527–550.Google Scholar

Debrenne, F. and Debrenne, M. 1978. Archaeocyathid fauna of the lowest fossiliferous levels of Tiout (Lower Cambrian, southern Morocco). Geol. Mag. 115:101–120.CrossRefGoogle Scholar

Fedonkin, M. A. 1977. Precambrian-Cambrian ichnocoenoses of the East European Platform. Pp. 183–194. In: Crimes, T. P. and Harper, J. C., eds. Trace Fossils 2. Seel House Press; Liverpool.Google Scholar

Fox, W. T. 1968. Quantitative paleoecologic analysis of fossil communities in the Richmond Group. J. Geol. 76:613–640.CrossRefGoogle Scholar

Fritz, W. H. 1970. Cambrian faunas. Pp. 593–600. In: Douglas, R. J., ed. Geology and Economic Minerals of Canada. Dept. Energy, Mines, and Res.; Ottawa, Canada.Google Scholar

Fritz, W. H. 1972. Lower Cambrian trilobites from the Sekwi Formation type section, MacKenzie Mountains, northwestern Canada. , 58 pp.CrossRefGoogle Scholar

Glaessner, M. F. 1958a. The oldest fossil faunas of South Australia. Geol. Rundsch. 47:522–531.CrossRefGoogle Scholar

Glaessner, M. F. 1958b. New fossils from the base of the Cambrian in South Australia. Trans. R. Soc. S. Aust. 81:185–188.Google Scholar

Glaessner, M. F. 1971a. Geographic distribution and time range of the Ediacara Precambrian fauna. Geol. Soc. Am. Bull. 82:509–514.CrossRefGoogle Scholar

Glaessner, M. F. 1971b. The genus Conomedusites Glaessner & Wade and the diversification of the Cnidaria. Paläontol. Z. 45:7–17.CrossRefGoogle Scholar

Glaessner, M. F. and Wade, M. 1966. The late Precambrian fossils from Ediacara, South Australia. Palaeontology. 9:599–628.Google Scholar

Glaessner, M. F. and Wade, M. 1971. Praecambridium—a primitive arthropod. Lethaia. 4:71–77.CrossRefGoogle Scholar

Gould, S. J. 1977. Eternal metaphors of palaeontology. Pp. 1–26. In: Hallam, A., ed. Patterns of Evolution. Elsevier; Amsterdam.Google Scholar

Gould, S. J., Raup, D. M., Sepkoski, J. J. Jr., Schopf, T. J. M., and Simberloff, D. S. 1977. The shape of evolution: A comparison of real and random clades. Paleobiology. 3:23–40.CrossRefGoogle Scholar

Gritsik, V. V. 1969. Litologo-stratigraficheskii razrez Marchinskoi opornoi skrazhini. Pp. 186–201. In: Zhuravleva, I. T., ed. Biostratigrafiya i Paleontologiya Nizhnego Kembriya Sibiri i Dalbiego Vostoka. Nauka; Moscow.Google Scholar

Harland, W. B., Smith, A. G., and Wilcock, B., eds. 1964. The Phanerozoic Time-scale: A Symposium. 458 pp. Geol. Soc. London; London.Google Scholar

Harland, W. B. et al., eds. 1967. The Fossil Record. 828 pp. Geol. Soc. London; London.Google Scholar

Harper, C. W. Jr. 1975. Standing diversity of fossil groups in successive intervals of geologic time: A new measure. J. Paleontol. 49:752–757.Google Scholar

Harrington, H. J. and Moore, R. C. 1956. Dipleurozoa. Pp. F24–F27. In: Moore, R. C., ed. Treatise on Invertebrate Paleontology, Pt. F. Coelenterata. Geol. Soc. Am. and Univ. Kans. Press; Lawrence, Kansas.Google Scholar

Hill, D. 1972. Archaeocyatha. In: Teichert, C., ed. Treatise on Invertebrate Paleontology, , v. 1. 158 pp. Geol. Soc. Am. and Univ. Kans. Press; Lawrence, Kansas.Google Scholar

Hintze, L. F. and Robison, R. A. 1975. Middle Cambrian stratigraphy of the House, Wah Wah, and adjacent ranges in western Utah. Geol. Soc. Am. Bull. 86:881–891.2.0.CO;2>CrossRefGoogle Scholar

Holmes, A. 1959. A revised geological time-scale. Trans. Edinburgh Geol. Soc. 17:183–216.CrossRefGoogle Scholar

Hudson, J. D. 1964. Sedimentation rates in relation to the Phanerozoic time-scale. Pp. 37–42. In: Harland, W. B. et. al., eds. The Phanerozoic Time-scale: A Symposium. Geol. Soc. London; London.Google Scholar

Hupé, P. 1960. Sur le cambrien inférieur du Maroc. , pp. 75–85.Google Scholar

Jell, P. A. and Jell, J. S. 1976. Early Middle Cambrian corals from western New South Wales. Alcheringa. 1:181–195.CrossRefGoogle Scholar

Kobayashi, T. 1966. The Cambro-Ordovician formations and faunas of South Korea. Part X. Stratigraphy of the Chosen Group in Korea and South Manchuria. Section B. The Chosen Group of North Korea and northeast China. J. Fac. Sci., Univ. Tokyo, Sec. 11. 16:209–311.Google Scholar

Kobayashi, T. 1971. The Cambro-Ordovician faunal provinces and the interprovincial correlation. J. Fac. Sci., Univ. Tokyo, Sec. 11. 18:129–299.Google Scholar

Lambert, R. St. J. 1971. The pre-Pleistocene Phanerozoic time scale—a review. Pp. 9–31. In: Harland, W. B. and Francis, E. H., eds. The Phanerozoic Time-scale, A Supplement. Geol. Soc. London; London.Google Scholar

Landing, E., Taylor, M. E., and Erdtmann, B.-D. 1978. Correlation of the Cambrian-Ordovician Boundary between the Acado-Baltic and North American provinces. Geology. 6:75–78.2.0.CO;2>CrossRefGoogle Scholar

Lasker, H. 1978. The measurement of taxonomic evolution: Preservational biases. Paleobiology. 4:135–149.CrossRefGoogle Scholar

Levinton, J. S. 1974. Trophic group and evolution in bivalve molluscs. Palaeontology. 17:579–586.Google Scholar

Levinton, J. S. and Bambach, R. K. 1975. A comparative study of Silurian and Recent deposit-feeding bivalve communities. Paleobiology. 1:97–124.CrossRefGoogle Scholar

Lochman-Balk, C. 1971. The Cambrian of the craton of the United States. Pp. 79–167. In: Holland, C. H., ed. Cambrian of the New World. Wiley-Interscience; New York.Google Scholar

Lochman-Balk, C., and Wilson, J. L. 1958. Cambrian biostratigraphy in North America. J. Paleontol. 32:312–350.Google Scholar

MacArthur, R. H. 1969. Patterns of communities in the tropics. Biol. J. Linn. Soc. 1:19–30.CrossRefGoogle Scholar

MacArthur, R. H. and Wilson, E. O. 1963. An equilibrium theory of insular zoogeography. Evolution. 17:373–387.CrossRefGoogle Scholar

MacArthur, R. H. and Wilson, E. O. 1967. The Theory of Island Biogeography. . 203 pp. Princeton Univ. Press; Princeton, New Jersey.Google Scholar

Martinsson, A. 1974. The Cambrian of Norden. Pp. 185–283. In: Holland, C. H., ed. Cambrian of the British Isles, Norden and Spitsbergen. Wiley-Interscience; New York.Google Scholar

Matthews, S. C. and Missarzhevsky, V. V. 1975. Small shelly fossils of late Precambrian and Early Cambrian age: A review of recent work. J. Geol. Soc. London. 131:289–304.CrossRefGoogle Scholar

McBride, D. J. 1976. Outer shelf communities and trophic groups in the Upper Cambrian of the Great Basin. Pp. 139–152. In: Robison, R. A. and Rowell, A. J., eds. Paleontology and Depositional Environments: Cambrian of Western North America. Brigham Young Univ. Geol. Studies. .Google Scholar

McKerrow, W. S., ed. 1978. The Ecology of Fossils. 384 pp. The MIT Press; Cambridge, Massachusetts.Google Scholar

Moore, R. C. and Teichert, C., eds. 1953-1979. Treatise on Invertebrate Paleontology. Geol. Soc. Am. and Univ. Kans. Press; Lawrence, Kansas.Google Scholar

Nalivkin, D. V. 1973. Geology of the U.S.S.R. (Rast, N., trans.). 855 pp. Univ. Toronto Press; Toronto.Google Scholar

Newell, N. D. 1952. Periodicity in invertebrate evolution. J. Paleontol. 26:371–385.Google Scholar

Newell, N. D. 1967. Revolutions in the history of life. Geol. Soc. Am. Spec. Pap. 89:63–91.Google Scholar

Nitecki, M. H. 1970. North American cyclocrinitid algae. Fieldiana: Geol. 21, 82 pp.Google Scholar

Nitecki, M. H. 1972. North American Silurian receptaculitid algae. Fieldiana: Geol. 28, 108 pp.Google Scholar

Nitecki, M. H. and Debrenne, F. 1979. The nature of radiocyathids and their relationship to receptaculitids and archaeocyathids. Geobios. 12:5–27.CrossRefGoogle Scholar

North, F. K. 1971. The Cambrian of Canada and Alaska. Pp. 219–324. In: Holland, C. H., ed. Cambrian of the New World. Wiley-Interscience; New York.Google Scholar

Öpik, A. A. 1966. The early Upper Cambrian crisis and its correlation. J. Proc. R. Soc. New S. Wales. 100:9–14.CrossRefGoogle Scholar

Öpik, A. A. 1967a. The Ordian Stage of the Cambrian and its Australian Metadoxididae. Aust. Bur. Miner. Res., Geol. and Geophys., Bull. 92:133–169.Google Scholar

Öpik, A. A. 1967b. The Mindyallan fauna of north-western Queensland. Aust. Bur. Miner. Res., Geol. and Geophys., Bull. 74:571 pp.Google Scholar

Öpik, A. A. 1968. Ordian (Cambrian) Crustacea Bradoriida of Australia. Aust. Bur. Miner. Res., Geol. and Geophys., Bull. 103:1–44.Google Scholar

Öpik, A. A. 1975. Cymbric Vale fauna of New South Wales and Early Cambrian biostratigraphy. Aust. Bur. Miner. Res., Geol. and Geophys., Bull. 159:1–74.Google Scholar

Palmer, A. R. 1956. The Cambrian System of the Great Basin in western United States. Pp. 663–681. In: Rodgers, J., ed. El Sistema Cámbrico. .Google Scholar

Palmer, A. R. 1965. Biomere, a new kind of biostratigraphic unit. J. Paleontol. 39:149–153.Google Scholar

Palmer, A. R. 1969. Cambrian trilobite distributions in North America and their bearing on Cambrian paleogeography of Newfoundland. Pp. 139–144. In: Kay, M., ed. North Atlantic—Geology and Continental Drift. Am. Assoc. Petrol. Geol. Mem. ; Tulsa, Oklahoma.Google Scholar

Palmer, A.R. 1971. The Cambrian of the Great Basin and adjacent areas, western United States. Pp. 1–78. In: Holland, C. H., ed. Cambrian of the New World. Wiley-Interscience; New York.Google Scholar

Palmer, A. R. 1977. Biostratigraphy of the Cambrian System—a progress report. Annu. Rev. Earth and Planet. Sci. 5:13–33.CrossRefGoogle Scholar

Palmer, T. J. and Palmer, C. D. 1977. Faunal distribution and colonization strategy in a Middle Ordovician hardground community. Lethaia. 10:179–200.CrossRefGoogle Scholar

Paul, C. R. C. 1977. Evolution of primitive echinoderms. Pp. 124–158. In: Hallam, A., ed. Patterns of Evolution. Elsevier; Amsterdam.Google Scholar

Pflug, H. D. 1972. The Phanerozoic-Cryptozoic Boundary and the origin of Metazoa. , pp. 58–67.Google Scholar

Pitcher, M. 1964. Evolution of Chazyan (Ordovician) reefs of eastern U.S. and Canada. Can. Petrol. Geol. Bull. 12:632–691.Google Scholar

Pitcher, M. 1971. Middle Ordovician reef assemblages. N. Am. Paleontol. Conv., Chicago, , pp. 1341–1357.Google Scholar

Pojeta, J. 1975. Fordilla troyensis Barrande and early pelecypod phylogeny. Bull. Amer. Paleontol. 67:363–384.Google Scholar

Pojeta, J. and Runnegar, B. 1976. The paleontology of rostroconch mollusks and the early history of the phylum Mollusca. U.S. Geol. Surv. Prof. Pap. 968, 88 pp.Google Scholar

Preston, F. W. 1962. The canonical distribution of commonness and rarity. Ecology. 43:185–215.CrossRefGoogle Scholar

Raup, D. M. 1976. Species diversity in the Phanerozoic: A tabulation. Paleobiology. 2:279–288.CrossRefGoogle Scholar

Raup, D. M., Gould, S. J., Schopf, T. J. M., and Simberloff, D. S. 1973. Stochastic models of phylogeny and the evolution of diversity. J. Geol. 81:525–542.CrossRefGoogle Scholar

Raup, D. M. and Stanley, S. M. 1978. Principles of Paleontology, 2nd ed.481 pp. W. H. Freeman and Co.; San Francisco.Google Scholar

Repina, L. N. 1974. K voprosy o granitse Nizhnego i Srednego Kembriya Sibirskoy Platformy i sopredel'nykh territory. Pp. 76–103. In: Zhuravleva, I. T. and Rozanov, A. Yu., eds. Biostratigrafiya i Paleontologiya Nizhnego Kembriya Evropy i Severnoy Asii. Nauka; Moscow.Google Scholar

Richards, R. P. 1972. Autecology of Richmondian brachiopods (Late Ordovician) of Indiana and Ohio. J. Paleontol. 46:386–405.Google Scholar

Richter, R. 1955. Die ältesten Fossilien Süd-Afrikas. Senckenberg. Leth. 36:243–289.Google Scholar

Robison, R. A. 1960. Lower and Middle Cambrian stratigraphy of the eastern Great Basin. Intermountain Assoc. . Pp. 43–52.Google Scholar

Robison, R. A. 1975. Species diversity among agnostid trilobites. Pp. 219–226. In: Martinsson, A., ed. Evolution and Morphology of the Trilobita, Trilobitoidea and Merstomata. .Google Scholar

Robison, R. A., Rosova, A. V., Rowell, A. J., and Fletcher, T. P. 1977. Cambrian boundaries and divisions. Lethaia. 10:257–262.CrossRefGoogle Scholar

Rosenzweig, M. L. 1975. On continental steady states of species diversity. Pp. 121–140. In: Cody, M. L. and Diamond, J. M., eds. Ecology and Evolution of Communities. Belknap Press; Cambridge, Massachusetts.Google Scholar

Rowell, A. J. 1977. Early Cambrian brachiopods from the southwestern Great Basin of California and Nevada. J. Paleontol. 51:68–85.Google Scholar

Rozanov, A. Yu. and Debrenne, F. 1974. Age of archaeocyathid assemblages. Am. J. Sci. 274:833–848.CrossRefGoogle Scholar

Rozanov, A. Yu., Missarzhevsky, V. V., Volkova, N. A., Voronova, L. G., Krylov, I. N., Keller, B. M., Korolyuk, I. K., Lendzion, K., Mikhiak, P., Pykhova, N. G., and Sidorov, A. D. 1969. Tommotsky yarus i problema nizhney granitsy Kembria. Trans. Geol. Inst. Acad. Sci. USSR. 206:5–380.Google Scholar

Runnegar, B. and Jell, P. A. 1976. Australian Middle Cambrian molluscs and their bearing on early molluscan evolution. Alcheringa. 1:109–138.CrossRefGoogle Scholar

Rushton, A. W. A. 1974. The Cambrian of Wales and England. Pp. 43–121. In: Holland, C. H., ed. Cambrian of the British Isles, Norden and Spitsbergen. Wiley-Interscience; New York.Google Scholar

Salop, L. J. 1977. Precambrian of the Northern Hemisphere. 378 pp. Elsevier; Amsterdam.Google Scholar

Schmitt, M. 1978. Stromatolites from the Tiout section, Precambrian-Cambrian Boundary beds, Anti-Atlas, Morocco. Geol. Mag. 115:95–100.CrossRefGoogle Scholar

Sdzuy, K. 1978. The Precambrian-Cambrian Boundary beds in Morocco (preliminary report). Geol. Mag. 115:83–94.CrossRefGoogle Scholar

Sepkoski, J. J. Jr. 1978. A kinetic model of Phanerozoic taxonomic diversity. I. Analysis of marine orders. Paleobiology. 4:223–251.CrossRefGoogle Scholar

Simpson, G. G. 1944. Tempo and Mode in Evolution. 237 pp. Columbia Univ. Press; New York.Google Scholar

Simpson, G. G. 1953. The Major Features of Evolution. 434 pp. Columbia Univ. Press; New York.CrossRefGoogle Scholar

Sokolov, B. S. 1972. The Wendian Stage in Earth history. , pp. 78–84.Google Scholar

Sokolov, B. S. 1973. Vendian of northern Eurasia. Pp. 204–218. In: Pitcher, M. G., ed. Arctic Geology. Am. Assoc. Petrol. Geol.; Tulsa, Oklahoma.Google Scholar

Sokolov, B. S. 1976. Precambrian Metazoa and the Vendian-Cambrian Boundary. Paleontol. J. 10:1–13.Google Scholar

Sprigg, R. C. 1947. Early Cambrian (?) jellyfishes from the Flinders Ranges, South Australia. Trans. R. Soc. S. Aust. 71:219–224.Google Scholar

Sprinkle, J. 1973. Morphology and evolution of blastozoan echinoderms. Spec. Publ. Mus. Comp. Zool., Harvard Univ. 283 pp.Google Scholar

Sprinkle, J. 1976. Biostratigraphy and paleoecology of Cambrian echinoderms from the Rocky Mountains. Pp. 61–73. In: Robison, R. A. and Rowell, A. J., eds. Paleontology and Depositional Environments: Cambrian of Western North America. Brigham Young Geol. Studies. .Google Scholar

Stanley, S. M. 1973. Effects of competition on rates of evolution, with special reference to bivalve mollusks and mammals. Syst. Zool. 22:486–506.CrossRefGoogle Scholar

Stanley, S. M. 1976. Fossil data and the Precambrian-Cambrian evolutionary transition. Am. J. Sci. 276:56–76.CrossRefGoogle Scholar

Stanley, S. M. 1977. Trends, rates, and patterns of evolution in the Bivalvia. Pp. 209–250. In: Hallam, A., ed. Patterns of Evolution. Elsevier; Amsterdam.Google Scholar

Stitt, J. H. 1971. Repeating evolutionary pattern in Late Cambrian trilobite biomeres. J. Paleontol. 45:178–181.Google Scholar

Stitt, J. H. 1975. Adaptive radiation, trilobite paleoecology, and extinction, Ptychaspidid Biomere, Late Cambrian of Oklahoma. Pp. 381–390. In: Martinsson, A., ed. Evolution and Morphology of the Trilobita, Trilobitoidea and Merostomata. .Google Scholar

Taylor, M. E. 1968. Review of: The Mindyallan Fauna of Northwestern Queensland, by A. A. Öpik. J. Paleontol. 42:1319–1321.Google Scholar

Taylor, M. E. 1977. Late Cambrian of western North America: Trilobite biofacies, environmental significance, and biostratigraphic implications. Pp. 397–426. In: Kauffman, E. G. and Hazel, J. E., eds. Concepts and Methods of Biostratigraphy. Dowden, Hutchinson & Ross, Inc.; Stroudsburg, Pennsylvania.Google Scholar

Tchernycheva, N. E. 1959. Systeme Cambrien. Pp. 185–244. In: Markovsky, A. P., ed. Structure Géologique de l'U.R.S.S. Tome 1. Stratigraphie. (de Saint-Aubin, P. and Roger, J., trans.). Centre National de la Recherche Scientifique; Paris.Google Scholar

Tchernycheva, N. E., ed. 1965. Kembriyskaya Sistem. 596 pp. Nedra; Moscow.Google Scholar

Thayer, C. W. 1979. Biological bulldozers and the evolution of marine benthic communities. Science. 203:458–461.CrossRefGoogle ScholarPubMed

Valentine, J. W. 1969. Patterns of taxonomic and ecological structure of the shelf benthos during Phanerozoic time. Palaeontology. 12:684–709.Google Scholar

Valentine, J. W. 1972. Conceptual models of ecosystem evolution. Pp. 192–215. In: Schopf, T. J. M., ed. Models in Paleobiology. Freeman, Cooper & Co.; San Francisco, California.Google Scholar

Valentine, J. W. 1973. Evolutionary Paleoecology of the Marine Biosphere. 511 pp. Prentice-Hall; Englewood Cliffs, New Jersey.Google Scholar

Valentine, J. W. and Moores, E. M. 1970. Plate-tectonic regulation of faunal diversity and sea level: A model. Nature. 228:657–659.CrossRefGoogle ScholarPubMed

Valentine, J. W. and Moores, E. M. 1972. Global tectonics and the fossil record. J. Geol. 80:167–184.CrossRefGoogle Scholar

Van Valen, L. 1973. A new evolutionary law. Evol. Theory. 1:1–30.Google Scholar

Wade, M. 1968. Preservation of soft-bodied animals in Precambrian sandstones at Ediacara, South Australia. Lethaia. 1:238–267.CrossRefGoogle Scholar

Wade, M. 1969. Medusae from uppermost Precambrian or Cambrian sandstones, central Australia. Palaeontology. 12:351–365.Google Scholar

Wade, M. 1971. Bilateral Precambrian chondrophores from the Ediacaran fauna, South Australia. Proc. R. Soc. Victoria. 84:183–188.Google Scholar

Wade, M. 1972. Hydrozoa and Scyphozoa and other medusoids from the Precambrian Ediacara fauna, South Australia. Palaeontology. 15:197–225.Google Scholar

Wager, L. R. 1964. The history of attempts to establish a quantitative time-scale. Pp. 13–28. In: Harland, W. B. et al., eds. The Phanerozoic Time-Scale. A Symposium. Geol. Soc. London; London.Google Scholar

Walker, K. R. 1972. Community ecology of the Middle Ordovician Black River Group of New York State. Geol. Soc. Am. Bull. 83:2499–2524.CrossRefGoogle Scholar

Walker, K. R. and Ferrigno, K. F. 1973. Major Middle Ordovician reef tract in east Tennessee. Am. J. Sci. 273A:294–325.Google Scholar

Walker, K. R. and Laporte, L. F. 1970. Congruent fossil communities from Ordovician and Devonian carbonates of New York. J. Paleontol. 44:928–944.Google Scholar

Webb, S. D. 1969. Extinction-origination equilibria in late Cenozoic land mammals of North America. Evolution. 23:688–702.CrossRefGoogle ScholarPubMed

Whittington, H. B. 1966. Phylogeny and distribution of Ordovician trilobites. J. Paleontol. 40:696–737.Google Scholar

Williams, A. 1969. Ordovician faunal provinces with reference to brachiopod distribution. Pp. 117–154. In: Wood, A., ed. The Pre-Cambrian and Lower Paleozoic Rocks of Wales. Univ. Wales Press; Cardiff.Google Scholar

Yakobson, K. E. and Krylov, N. S. 1978. The lower boundary of the Vendian in its stratotype. Int. Geol. Rev. 20:709–718.CrossRefGoogle Scholar

Zhuravleva, I. T. 1970. Marine faunas and Lower Cambrian stratigraphy. Am. J. Sci. 269:417–445.CrossRefGoogle Scholar

Zhuravleva, I. T. 1972. Early Cambrian biogeography and geochronology according to the Archaeocyathi. , pp. 361–373.Google Scholar

Zhuravleva, I. T. and Miagkova, E. I. 1972. Archaeata—novaja grupa organizmov Paleozoja. Pp. 7–14. In: Paleontologija Miezdunarod Geol. . Nauka; Moscow.Google Scholar

Zhuravleva, I. T. and Miagkova, E. I. 1974. Spravnitelnaja kharakteristika Archeata i Stromatoporoidea. Pp. 63–70. In: Sokolov, B. S., ed. Ancient Cnidaria, v. 1. Nauka; Moscow.Google Scholar