A kinetic model of Phanerozoic taxonomic diversity. III. Post-Paleozoic families and mass extinctions | Paleobiology | Cambridge Core (original) (raw)

Abstract

A three-phase kinetic model with time-specific perturbations is used to describe large-scale patterns in the diversification of Phanerozoic marine families. The basic model assumes that the Cambrian, Paleozoic, and Modern evolutionary faunas each diversified logistically as a consequence of early exponential growth and of later slowing of growth as the ecosystems became filled; it also assumes interaction among the evolutionary faunas such that expansion of the combined diversities of all three faunas above any single fauna's equilibrium caused that fauna's diversity to begin to decline. This basic model adequately describes the diversification of the evolutionary faunas through the Paleozoic Era as well as the asymmetrical rise and fall of background extinction rates through the entire Phanerozoic. Declines in diversity and changes in faunal dominance associated with mass extinctions can be accommodated in the model with short-term accelerations in extinction rates or declines in equilibria. Such accelerations, or perturbations, cause diversity to decline exponentially and then to rebound sigmoidally following release. The amount of decline is dependent on the magnitude and duration of the perturbation, the timing of the perturbation with respect to the diversification of the system, and the system's initial per-taxon rates of diversification and turnover. When applied to the three-phase model, such perturbations describe the changes in diversity and faunal dominance during and after major mass extinctions, the long-term rise in total diversity following the Late Permian and Norian mass extinctions, and the peculiar diversification and then decline of the remnants of the Paleozoic fauna during the Mesozoic and Cenozoic Eras. The good fit of this model to data on Phanerozoic familial diversity suggests that many of the large-scale patterns of diversification seen in the marine fossil record of animal families are simple consequences of nonlinear interrelationships among a small number of parameters that are intrinsic to the evolutionary faunas and are largely (but not completely) invariant through time.

References

Ausich, W. I. and Bottjer, D. J. 1982. Tiering in suspension-feeding communities on soft substrata throughout the Phanerozoic. Science. 216:173–174.CrossRefGoogle ScholarPubMed

Bakker, R. T. 1977. Tetrapod mass extinctions—a model of the regulation of speciation rates and immigration by cycles of topographic diversity. Pp. 439–468. In: Hallam, A., ed. Patterns of Evolution. Elsevier; Amsterdam.Google Scholar

Bam bach, R. K. 1977. Species richness in marine benthic habitats through the Phanerozoic. Paleobiology. 3:152–167.CrossRefGoogle Scholar

Bam bach, R. K. 1983. Ecospace utilization and guilds in marine communities through the Phanerozoic. Pp. 719–746. In: Tevesz, M. J. S. and McCall, P. L., eds. Biotic Interactions in Recent and Fossil Benthic Communities. Plenum; New York.CrossRefGoogle Scholar

Bell, W. C. 1950. Stratigraphy: a factor in paleontologic taxonomy. J. Paleontol. 24:492–496.Google Scholar

Carr, T. R. and Kitchell, J. A. 1980. Dynamics of taxonomic diversity. Paleobiology. 6:427–443.CrossRefGoogle Scholar

Cracraft, J. 1981. Pattern and process in paleobiology: the role of cladistic analysis in systematic paleontology. Paleobiology. 7:456–468.CrossRefGoogle Scholar

Dimitriyev, V. Yu. 1978. Some aspects of the study of changes in the systematic diversity of fossil organisms. Paleont. Jour. 12:257–265.Google Scholar

Fenton, C. L. and Fenton, M. A. 1958. The Fossil Book. 482 pp. Doubleday; Garden City, N.Y.Google Scholar

Fischer, A. G. and Arthur, M. A. 1977. Secular variations in the pelagic realm. Pp. 19–50. In: Cook, H. E. and Enos, P., eds. Deep-Water Carbonate Environments. .Google Scholar

Flessa, K. W. 1979. Extinction. Pp. 300–305. In: Fairbridge, R. W. and Jablonski, D., eds. The Encyclopedia of Paleontology. Dowden, Hutchinson & Ross; Stroudsburg, Pa.CrossRefGoogle Scholar

Gould, S. J., Raup, D. M., Sepkoski, J. J. Jr., Schopf, T. J. M., and Simberloff, D. S. 1977. The shape of evolution: a comparison of real and random clades. Paleobiology. 3:23–40.CrossRefGoogle Scholar

Hallam, A. 1981. The end-Triassic bivalve extinction event. Palaeogeogr., Palaeodimat., Palaeoecol. 35:1–44.CrossRefGoogle Scholar

Hansen, T. A. 1980. Influence of larval dispersal and geographic distribution on species longevity in neogastropods. Paleobiology. 6:397–407.CrossRefGoogle Scholar

Harland, W. B., Cox, A. V., Llewellyn, P. G., Pickton, C. A. G., Smith, A. G., and Walters, R. 1982. A Geologic Time Scale. 131 pp. Cambridge Univ. Press; Cambridge.Google Scholar

Hoffman, A. 1981. [Review of] Sepkoski, J. J.: A factor analytic description of the Mesozoic [_sic_] marine fossil record. Allgem. Paleontol. , pp. 108–110.Google Scholar

Jablonski, D. 1982. Evolutionary rates and modes in the Late Cretaceous gastropods: role of larval ecology. Proc. 3d N. Am. Paleontol. Conv. 1:257–262.Google Scholar

Jablonski, D. and Bottjer, D. J. 1983. Soft-bottom epifaunal suspension-feeding assemblages in the Late Cretaceous: implications for the evolution of benthic paleocommunities. Pp. 747–812. In: Tevesz, M. J. S. and McCall, P. L., eds. Biotic Interactions in Recent and Fossil Benthic Communities. Plenum; New York.CrossRefGoogle Scholar

Jablonski, D. and Lutz, R. A. 1983. Larval ecology of marine benthic invertebrates: paleobiological implications. Biol. Rev. 58:21–89.CrossRefGoogle Scholar

Jablonski, D., Sepkoski, J. J. Jr., Bottjer, D. J., and Sheehan, P. M. 1983. Onshore-offshore patterns in the evolution of Phanerozoic shelf communities. Science. 222:1123–1125.CrossRefGoogle ScholarPubMed

Jackson, J. B. C., Goreau, T. F., and Hartman, W. D. 1971. Recent brachiopod-coralline sponge communities and their paleoecological significance. Science. 173:623–625.CrossRefGoogle ScholarPubMed

Kitchell, J. A. and Carr, T. R. 1985. Nonequilibrium model of diversification: faunal turnover dynamics. In: Valentine, J. W., ed. Phanerozoic Diversity Patterns: Profiles in Macroevolution. Am. Assoc. Adv. Sci. and Princeton Univ. Press; Princeton, N.J.Google Scholar

LaBarbera, M. 1981. The ecology of Mesozoic Gryphaea, Exogyra, and Ilymatogyra (Bivalvia: Mollusca) in a modern ocean. Paleobiology. 7:510–526.CrossRefGoogle Scholar

Ludvigsen, R. and Westrop, S. R. 1983. Trilobite biofacies of the Cambrian-Ordovician Boundary interval in northern North America. Alcheringa. 7:301–319.CrossRefGoogle Scholar

MacArthur, R. H. 1969. Patterns of communities in the tropics. Biol. J. Linnean Soc. 1:19–30.CrossRefGoogle Scholar

May, R. M. 1973. Stability and Complexity in Model Ecosystems. 236 pp. Princeton Univ. Press; Princeton, N.J.Google ScholarPubMed

Meyer, D. L. and Macurda, D. B. Jr. 1977. Adaptive radiation of the comatulid crinoids. Paleobiology. 3:74–82.CrossRefGoogle Scholar

Moore, R. C., Lalicker, C. G., and Fischer, A. G. 1952. Invertebrate Fossils. 766 pp. McGraw-Hill; New York.Google Scholar

Moore, R. C., Teichert, C., and Robison, R. A., eds. 1953-1983. Treatise on Invertebrate Paleontology. Geol. Soc. Am. and Univ. Kansas Press; Lawrence, Kansas.Google Scholar

Newell, N. D. 1967. Revolutions in the history of life. Pp. 63–91. In: Albritton, C. C. Jr., ed. Uniformity and Simplicity: A Symposium on the Principle of the Uniformity of Nature. .Google Scholar

Niklas, K. J., Tiffney, B. H., and Knoll, A. H. 1983. Patterns in vascular land plant diversification. Nature. 303:614–616.CrossRefGoogle Scholar

Niklas, K. J., Tiffney, B. H., and Knoll, A. H. 1985. Patterns in vascular land plant diversification: an analysis at the species level. In: Valentine, J. W., ed. Phanerozoic Diversity Patterns: Profiles in Macroevolution. Am. Assoc. Adv. Sci. and Princeton Univ. Press; Princeton, N.J.Google Scholar

Raup, D. M. 1975. Taxonomic diversity estimation using rarefaction. Paleobiology. 1:333–342.CrossRefGoogle Scholar

Raup, D. M. 1976a. Species diversity in the Phanerozoic: a tabulation. Paleobiology. 2:279–288.CrossRefGoogle Scholar

Raup, D. M. 1976b. Species diversity in the Phanerozoic: an interpretation. Paleobiology. 2:289–297.CrossRefGoogle Scholar

Raup, D. M. 1979a. Biases in the fossil record of species and genera. Bull. Carnegie Mus. Nat. Hist. 13:85–91.Google Scholar

Raup, D. M. 1979b. Size of the Permo-Triassic botdeneck and its evolutionary implications. Science. 206:217–218.CrossRefGoogle ScholarPubMed

Raup, D. M., Gould, S. J., Schopf, T. J. M., and Simberloff, D. S. 1973. Stochastic models of phylogeny and the evolution of diversity. J. Geol. 81:525–542.CrossRefGoogle Scholar

Raup, D. M. and Sepkoski, J. J. Jr. 1984. Periodicity of extinctions in the geologic past. Proc. Nat. Acad. Sci. U.S.A. 81:801–805.CrossRefGoogle ScholarPubMed

Rhodes, F. H. T. 1967. Permo-Triassic extinction. Pp. 57–76. In: Harland, W. B. et al., eds. The Fossil Record. Geol. Soc. Lond.; London.Google Scholar

Romer, A. S. 1966. Vertebrate Paleontology. 3d ed.468 pp. Univ. Chicago Press; Chicago.Google Scholar

Rosenzweig, M. L. 1975. On continental steady states of species diversity. Pp. 121–140. In: Cody, M. L. and Diamond, J. M., eds. Ecology and Evolution of Communities. Belknap; Cambridge, Mass.Google Scholar

Scheltema, R. S. 1971. Larval dispersal as a means of genetic exchange between geographically separated populations of shallow-water benthic marine gastropods. Biol. Bull. 140:284–322.CrossRefGoogle Scholar

Schopf, T. J. M. 1974. Permo-Triassic extinctions: relation to sea-floor spreading. J. Geol. 82:129–143.CrossRefGoogle Scholar

Sepkoski, J. J. Jr. 1978. A kinetic model of Phanerozoic taxonomic diversity. I. Analysis of marine orders. Paleobiology. 4:223–251.CrossRefGoogle Scholar

Sepkoski, J. J. Jr. 1979. A kinetic model of Phanerozoic taxonomic diversity. II. Early Phanerozoic families and multiple equilibria. Paleobiology. 5:222–251.CrossRefGoogle Scholar

Sepkoski, J. J. Jr. 1980. The three great evolutionary faunas of the Phanerozoic marine fossil record. Geol. Soc. Am. Abst. with Program 12:520.Google Scholar

Sepkoski, J. J. Jr. 1981a. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology. 7:36–53.CrossRefGoogle Scholar

Sepkoski, J. J. Jr. 1981b. The uniqueness of the Cambrian fauna. Pp. 203–207. In: Taylor, M. E., ed. Short Papers for the Second International Symposium on the Cambrian System. .Google Scholar

Sepkoski, J. J. Jr. 1982. A compendium of fossil marine families. Milwaukee Pub. Mus. Contr. Biol. Geol. 51. 125 pp.Google Scholar

Sepkoski, J. J. Jr., Bambach, R. K., Raup, D. M., and Valentine, J. W. 1981. Phanerozoic marine diversity and the fossil record. Nature. 293:435–437.CrossRefGoogle Scholar

Sepkoski, J. J. Jr. and Miller, A. I. 1985. Evolutionary faunas and the distribution of Paleozoic marine communities in space and time. In: Valentine, J. W., ed. Phanerozoic Diversity Patterns: Profiles in Macroevolution. Am. Assoc. Adv. Sci. and Princeton Univ. Press; Princeton, N.J.Google Scholar

Sepkoski, J. J. Jr. and Sheehan, P. M. 1983. Diversification, faunal change, and community replacement during the Ordovician radiations. Pp. 673–717. In: Tevesz, M. J. S. and McCall, P. J., eds. Biotic Interactions in Recent and Fossil Benthic Communities. Plenum; New York.CrossRefGoogle Scholar

Signor, P. W. III and Brett, C. 1984. The mid-Paleozoic precursor to the Mesozoic faunal revolution. Paleobiology. 10:229–245.CrossRefGoogle Scholar

Simberloff, D. S. 1974. Permo-Triassic extinctions: effects of area on biotic equilibrium. J. Geol. 82:267–274.CrossRefGoogle Scholar

Stanley, S. M. 1973. Effects of competition on rates of evolution, with special reference to bivalve mollusks and mammals. Syst. Zool. 22:486–506.CrossRefGoogle Scholar

Stanley, S. M. 1977. Trends, rates, and patterns of evolution in the Bivalvia. Pp. 209–250. In: Hallam, A., ed. Patterns of Evolution. Elsevier; Amsterdam.Google Scholar

Stanley, S. M. 1979. Macroevolution: Pattern and Process. 332 pp. W. H. Freeman; San Francisco.Google Scholar

Thayer, C. W. 1979. Biological bulldozers and the evolution of marine benthic communities. Science. 203:458–461.CrossRefGoogle ScholarPubMed

Thayer, C. W. 1983. Sediment-mediated biological disturbance and the evolution of marine benthos. Pp. 480–625. In: Tevesz, M. J. S. and McCall, P. J., eds. Biotic Interactions in Recent and Fossil Benthic Communities. Plenum; New York.Google Scholar

Tozer, E. T. 1979. Latest Triassic ammonoid faunas and biochronology, western Canada. Geol. Surv. Can. Pap. 79-1B:127–135.Google Scholar

Valentine, J. W. 1969. Patterns of taxonomic and ecological structure of the shelf benthos during Phanerozoic time. Palaeontology. 12:684–709.Google Scholar

Valentine, J. W. 1973. Evolutionary Paleoecology of the Marine Biosphere. 511 pp. Prentice-Hall; Englewood Cliffs, N.J.Google Scholar

Valentine, J. W. 1980. Determinants of diversity in higher taxonomic categories. Paleobiology. 6:444–450.CrossRefGoogle Scholar

Valentine, J. W. and Jablonski, D. 1983. Larval adaptations and patterns of brachiopod diversity in space and time. Evolution. 37:1052–1061.CrossRefGoogle ScholarPubMed

Van Valen, L. 1973. A new evolutionary law. Evol. Theory. 1:1–30.Google Scholar

Vermeij, G. J. 1977. The Mesozoic marine revolution: evidence from snails, predators, and grazers. Paleobiology. 3:245–258.CrossRefGoogle Scholar

Vermeij, G. J. 1978. Biogeography and Adaptation. 332 pp. Harvard Univ. Press; Cambridge, Mass.Google Scholar

Vermeij, G. J. 1983a. Shell-breaking predation through time. Pp. 649–669. In: Tevesz, M. J. S. and McCall, P. L., eds. Biotic Interactions in Recent and Fossil Benthic Communities. Plenum; New York.CrossRefGoogle Scholar

Vermeij, G.J. 1983b. Traces and trends of predation, with special reference to bivalved animals. Palaeontology. 26:455–466.Google Scholar

Wise, K. P. and Schopf, T. J. M. 1981. Was marine faunal diversity in the Pleistocene affected by changes in sea level? Paleobiology. 7:394–399.CrossRefGoogle Scholar