Normalization of cell responses in cat striate cortex | Visual Neuroscience | Cambridge Core (original) (raw)

Abstract

Simple cells in the striate cortex have been depicted as half-wave-rectified linear operators. Complex cells have been depicted as energy mechanisms, constructed from the squared sum of the outputs of quadrature pairs of linear operators. However, the linear/energy model falls short of a complete explanation of striate cell responses. In this paper, a modified version of the linear/energy model is presented in which striate cells mutually inhibit one another, effectively normalizing their responses with respect to stimulus contrast. This paper reviews experimental measurements of striate cell responses, and shows that the new model explains a significantly larger body of physiological data.

References

Adelson, E.H. & Bergen, J.R. (1985). Spatiotemporal energy models for the perception of motion. Journal of the Optical Society of America A 2, 284–299.CrossRefGoogle ScholarPubMed

Albrecht, D.G., Farrar, S.B. & Hamilton, D.B. (1984). Spatial contrast adaptation characteristics of neurones recorded in the cat's visual cortex. Journal of Physiology (London) 347, 713–739.CrossRefGoogle ScholarPubMed

Albrecht, D.G. & Geisler, W.S. (1991). Motion sensitivity and the contrast-response function of simple cells in the visual cortex. Visual Neuroscience 7, 531–546.CrossRefGoogle ScholarPubMed

Albrecht, D.G. & Hamilton, D.B. (1982). Striate cortex of monkey and cat: Contrast response function. Journal of Neurophysiology 48, 217–237.CrossRefGoogle ScholarPubMed

Bishop, P.O., Coombs, J.S. & Henry, G.H. (1973). Receptive fields of simple cells in the cat striate cortex. Journal of Physiology (London) 231, 31–60.CrossRefGoogle ScholarPubMed

Blakemore, C. & Tobin, E.A. (1972). Lateral inhibition between orientation detectors in the cat's visual cortex. Experimental Brain Research 15, 439–440.CrossRefGoogle ScholarPubMed

Bolz, J. & Gilbert, C.D. (1986). Generation of end-inhibition in the visual cortex via interlaminar connections. Nature 320, 362–365.CrossRefGoogle ScholarPubMed

Bonds, A.B. (1989). Role of inhibition in the specification of orientation selectivity of cells in the cat striate cortex. Visual Neuroscience 2, 41–55.CrossRefGoogle ScholarPubMed

Bonds, A.B. (1991). Temporal dynamics of contrast gain in single cells of the cat striate cortex. Visual Neuroscience 6, 239–255.CrossRefGoogle ScholarPubMed

Bonds, A.B., DeBusk, B.C. & Ming, S. (1990). Stimulation far beyond the receptive field of cat striate cortical cells strongly mediates responsiveness: A mechanism for global inhibition. Investigative Opthalmology and Visual Science (Suppl.) 31, 429.Google Scholar

Bullier, J. & Henry, G.H. (1979a). Ordinal position of neurons in cat striate cortex. Journal of Neurophysiology 42, 1251–1263.CrossRefGoogle ScholarPubMed

Bullier, J. & Henry, G.H. (1979b). Neural path taken by afferent streams in striate cortex of the cat. Journal of Neurophysiology 42, 1264–1270.CrossRefGoogle ScholarPubMed

Bullier, J. & Henry, G.H. (1979c). Laminar distribution of first-order neurons and afferent terminals in cat striate cortex. Journal of Neurophysiology 42, 1271–1281.CrossRefGoogle ScholarPubMed

Campbell, F.W., Cooper, G.F. & Enroth-Cugell, C. (1968). The angular selectivity of visual cortical cells to moving gratings. Journal of Physiology (London) 198, 237–250.CrossRefGoogle ScholarPubMed

Campbell, F.W., Cooper, G.F. & Enroth-Cugell, C. (1969). The spatial selectivity of visual cells of the cat. Journal of Phvsiology (London) 203, 223–235.Google ScholarPubMed

Chao-Yi, Li. & Creutzfeldt, O. (1984). The representation of contrast and other stimulus parameters by single neurons in area 17 of the cat. Pflugers Archives 401, 304–314.CrossRefGoogle Scholar

Dean, A.F. (1980). The contrast-dependence of direction selectivity. Journal of Physiology (London) 303, 38p-39p.Google Scholar

Dean, A.F. (1981). The relationship between response amplitude and contrast for cat striate cortical neurones. Journal of Physiology (London) 318, 413–427.CrossRefGoogle ScholarPubMed

Dean, A.F. (1983). Adaptation-induced alteration of the relation between response amplitude and contrast in cat striate cortical mechanisms. Vision Research 23, 249–256.CrossRefGoogle Scholar

Dean, A.F., Hess, R.F. & Tolhurst, D.J. (1980). Divisive inhibition involved in direction selectivity. Journal of Physiology (London) 308, 84p-85p.Google Scholar

Dean, A.F. & Tolhurst, D.J. (1983). On the distinctiveness of simple and complex cells in the visual cortex of the cat. Journal of Physiology (London) 344, 305–325.CrossRefGoogle ScholarPubMed

Dean, A.F. & Tolhurst, D.J. (1986). Factors influencing the temporal phase of response to bar and grating stimuli for simple cells in the cat striate cortex. Experimental Brain Research 62, 143–151.CrossRefGoogle ScholarPubMed

Dean, A.F., Tolhurst, D.J. & Walker, N.S. (1982). Nonlinear temporal summation by simple cells in cat striate cortex demonstrated by failure of superposition. Experimental Brain Research 45, 456–458.CrossRefGoogle ScholarPubMed

DeAngelis, G.C., Ohzawa, I., Freeman, R.D. & Ghose, G. (1990). Properties of length and width tuning of cells in the cat's striate cortex. Investigative Opthalmology and Visual Science (Suppl.) 32, 430.Google Scholar

DeAngelis, G.C., Robson, J.G., Ohzawa, I. & Freeman, R.D. (1992). The organization of suppression in receptive fields of neurons in the cat's visual cortex. Journal of Neurophysiology (in press).Google Scholar

DeBruvn, E.J. & Bonds, A.B. (1986). Contrast adaptation in the cat is not mediated by GABA. Brain Research 383, 339–342.CrossRefGoogle Scholar

Derrington, A.M. & Lennie, P. (1984). Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. Journal of Physiology (London) 357, 219–240.CrossRefGoogle ScholarPubMed

DeValois, K. & Tootell, R. (1983). Spatial-frequency-specific inhibition in cat striate cortex cells. Journal of Physiology (London) 336, 359–376.CrossRefGoogle Scholar

DeValois, R.L., Thorell, L.G. & Albrecht, D.G. (1985). Periodicity of striate-cortex-cell receptive fields. Journal of the Optical Society of America A 2, 1115–1123.CrossRefGoogle Scholar

Douglas, R.J., Martin, K.A.C. & Whitteridge, D. (1988). Selective responses of visual cortical cells do not depend on shunting inhibition. Nature 332, 642–644.CrossRefGoogle Scholar

Dreher, B. (1972). Hypercomplex cells in the cat's striate cortex. Investigative Opthalmology 11, 355–356.Google ScholarPubMed

Emerson, R.C. & Citron, M.C. (1989). Linear and nonlinear mechanisms of motion selectivity in single neurons of the cat's visual cortex. In Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, ed pp. 448–453. Cambridge, Massachusetts: IEEE.CrossRefGoogle Scholar

Ferster, D. (1981). A comparison of binocular depth mechanisms in areas 17 and 18 of the cat visual cortex. Journal of Physiology (London) 311, 623–655.CrossRefGoogle ScholarPubMed

Ferster, D. & Lindstrom, S. (1983). An intracellular analysis of geniculo-cortical connectivity in area 17 of the cat. Journal of Physiology (London) 342, 181–215.CrossRefGoogle ScholarPubMed

Freeman, R.D., Ohzawa, I. & Robson, J.G. (1987). A comparison of monocular and binocular inhibitory processes in the visual cortex of cat. Journal of Physiology (London) 396, 69p.Google Scholar

Gilbert, C.D. (1977). Laminar differences in receptive properties of cells in cat primary visual cortex. Journal of Physiology (London) 268, 391–421.CrossRefGoogle ScholarPubMed

Gilbert, C.D. & Wiesel, T.N. (1990). The influence of contextual stimuli on the orientation selectivity of cells in primary visual cortex of the cat. Vision Research 30, 1689–1701.CrossRefGoogle ScholarPubMed

Glezer, V.D., Tscherbach, T.A., Gauselman, V.E. & Bondarko, V.E. (1980). Linear and nonlinear properties of simple and complex receptive fields in area 17 of the cat visual cortex. Biological Cybernetics 37, 195–208.CrossRefGoogle ScholarPubMed

Glezer, V.D., Tscherbach, T.A., Gauselman, V.E. & Bondarko, V.E. (1982). Spatio-temporal organization of receptive fields of the cat striate cortex. Biological Cybernetics 43, 35–49.CrossRefGoogle ScholarPubMed

Gulyas, B., Orban, G.A., Duysens, J. & Maes, H. (1987). The suppressive influence of moving textured backgrounds on responses of cat striate neurons to moving bars. Journal of Neurophysiology 57, 1767–1791.CrossRefGoogle ScholarPubMed

Hammond, P. & Ahmed, B. (1985). Length summation of complex cells in cat striate cortex: A reappraisal of the special/standard classification. Neuroscience 15, 639–649.CrossRefGoogle ScholarPubMed

Hammond, P. & MacKay, D.M. (1977). Differential responsiveness of simple and complex cells in cat striate cortex to visual texture. Experimental Brain Research 30, 275–296.Google ScholarPubMed

Hammond, P. & MacKay, D.M. (1978). Modulation of simple cell activity in cat by moving textured backgrounds. Journal of Physiology (London) 284, 117p.Google ScholarPubMed

Hammond, P. & MacKay, D.M. (1981). Modulatory influences of moving textured backgrounds on responsiveness of simple cells in feline striate cortex. Journal of Physiology (London) 319, 431–442.CrossRefGoogle ScholarPubMed

Hammond, P., Mouat, G.S. & Smith, A.T. (1985). Motion after-effects in cat striate cortex elicited by moving gratings. Experimental Brain Research 60, 411–416.CrossRefGoogle ScholarPubMed

Hammond, P., Mouat, G.S. & Smith, A.T. (1986). Motion after-effects in cat striate cortex elicited by moving texture. Vision Research 26, 1055–1060.CrossRefGoogle ScholarPubMed

Hammond, P., Mouat, G.S. & Smith, A.T. (1988). Neural correlates of motion after-effects in cat striate cortical neurones: Monocular adaptation. Experimental Brain Research 72, 1–20.CrossRefGoogle ScholarPubMed

Hammond, P., Pomfrett, C.J.D. & Ahmed, B. (1989). Neural motion after-effects in the cat's striate cortex: Orientation selectivity. Vision Research 29, 1671–1683.CrossRefGoogle ScholarPubMed

Hata, Y., Tsumoto, T., Sato, H., Hagihara, K. & Tamura, H. (1988). Inhibition contributes to orientation selectivity in visual cortex of cat. Nature 335, 815–817.CrossRefGoogle ScholarPubMed

Heeger, D.J. (1990). Nonlinear model of cat striate physiology. Society for Neuroscience Abstracts 16, 229.Google Scholar

Heeger, D.J. (1991). Nonlinear model of neural responses in cat visual cortex. In Computational Models of Visual Processing, ed Landy, M., Movshon, J.A., pp. 119–133. Cambridge, Massachusetts: MIT Press.Google Scholar

Heeger, D.J. (1992a). Half-squaring in responses of cat simple cells. Visual Neuroscience (in press).Google Scholar

Heeger, D.J. (1992b). Modeling simple cell direction selectivity with normalized, half-squared, linear operators. Investigative Ophthalmology and Visual Science (Suppl.) 33 (in press).Google Scholar

Heeger, D.J. & Adelson, E.H. (1989). Nonlinear model of cat striate cortex. Optics News 15, A-42.Google Scholar

Hess, R., Negishi, K. & Creutzfeldt, O.D. (1975). The horizontal spread of intracortical inhibition in the visual cortex. Experimental Brain Research 22, 415–419.CrossRefGoogle Scholar

Hoffman, K.R. & Stone, J. (1971). Conduction velocity of afferent to cat visual cortex: A correlation with cortical receptive fields of single cells in cat striate cortex. Brain Research 32, 460–466.CrossRefGoogle Scholar

Holub, R.A. & Morton-Gibson, M. (1981). Response of visual cortical neurons of the cat to moving sinusoidal gratings: Response-contrast functions and spatiotemporal integration. Journal of Neurophysiology 46, 1244–1259.CrossRefGoogle Scholar

Hubel, D. & Wiesel, T. (1962). Receptive fields, binocular interaction, and functional architecture in the cat's visual cortex. Journal of Physiology (London) 160, 106–154.CrossRefGoogle ScholarPubMed

Hubel, D. & Wiesel, T. (1965). Receptive field and functional architecture in two nonstriate visual areas (18–19) of the cat. Journal of Neurophysiology 28, 229–289.CrossRefGoogle Scholar

Kaji, S. & Kawabata, N. (1985). Neural interactions of two moving patterns in the direction and orientation domain in the complex cells of cat's visual cortex. Vision Research 25, 749–753.CrossRefGoogle ScholarPubMed

Kato, H., Bishop, P.O. & Orban, G.A. (1978). Hypercomplex and simple/complex cell classifications in cat striate cortex. Journal of Neurophysiology 41, 1071–1095.CrossRefGoogle ScholarPubMed

Kulikowski, J.J. & Bishop, P.O. (1982). Silent periodic cells in the cat striate cortex. Vision Research 22, 191–200.CrossRefGoogle ScholarPubMed

Kulikowski, J.J., Bishop, P.O. & Kato, H. (1981). Spatial arrangement of responses by cells in the cat visual cortex to light and dark bars and edges. Experimental Brain Research 44, 371–385.CrossRefGoogle ScholarPubMed

Maddess, T., McCourt, M.E., Blakeslee, B. & Cunningham, R.B. (1988). Factors governing the adaptation of cells in area 17 of the cat visual cortex. Biological Cybernetics 59, 229–236.CrossRefGoogle ScholarPubMed

Maffei, L. & Fiorentini, A. (1973). The visual cortex as a spatialfrequency analyzer. Vision Research 13, 1255–1267.CrossRefGoogle Scholar

Maffei, L. & Fiorentini, A. (1976). The unresponsive regions of visual cortical receptive fields. Vision Research 16, 1131–1139.CrossRefGoogle ScholarPubMed

Maffei, L., Fiorentini, A. & Bisti, S. (1973). Neural correlate of perceptual adaptation to gratings. Science 182, 1036–1038.CrossRefGoogle ScholarPubMed

Marlin, S.G., Hasan, S.J. & Cynader, M.S. (1988). Direction-selective adaptation in simple and complex cells in cat striate cortex. Journal of Neurophysiology 59, 1314–1330.CrossRefGoogle ScholarPubMed

Martin, K.A.C. & Whitteridge, D. (1984). Form, function and intracortical projections of spiny neurones in the striate visual cortex of the cat. Journal of Physiology (London) 353, 463–504.CrossRefGoogle ScholarPubMed

McLean, J. & Palmer, L.A. (1989). Contribution of linear spatiotemporal receptive-field structure to velocity selectivity of simple cells in area 17 of cat. Vision Research 29, 675–679.CrossRefGoogle ScholarPubMed

Morrone, M.C., Burr, D.C. & Maffei, L. (1982). Functional implications of cross-orientation inhibition of cortical visual cells. Proceedings of the Royal Society B (London) 216, 335–354.Google ScholarPubMed

Movshon, J.A. (1975). The velocity tuning of single units in cat striate cortex. Journal of Physiology (London) 249, 445–468.CrossRefGoogle ScholarPubMed

Movshon, J.A. & Lennie, P. (1979). Pattern-selective adaptation in visual cortical neurones. Nature 278, 850–852.CrossRefGoogle ScholarPubMed

Movshon, J.A., Thompson, I.D. & Tolhurst, D.J. (1978a). Spatial summation in the receptive fields of simple cells in the cat's striate cortex. Journal of Physiology (London) 283, 53–77.CrossRefGoogle ScholarPubMed

Movshon, J.A., Thompson, I.D. & Tolhurst, D.J. (1978b). Receptive-field organization of complex cells in the cat's striate cortex. Journal of Physiology (London) 283, 79–99.CrossRefGoogle ScholarPubMed

Movshon, J.A., Thompson, I.D. & Tolhurst, D.J. (1978c). Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat's visual cortex. Journal of Physiology (London) 283, 101–120.CrossRefGoogle ScholarPubMed

Murphy, P.C. & Sillito, A.M. (1987). Corticofugal feedback influences the generation of length tuning in the visual pathway. Nature 329, 727–729.CrossRefGoogle ScholarPubMed

Nelson, J.I., Lingner, I. & Bremmer, F. (1991). Adaptation and disadaptation in cat A17 cells stimulated only beyond their classic receptive fields. Investigative Ophthalmology and Visual Science (Suppl.) 32, 1252.Google Scholar

Nelson, J.J. & Frost, B.J. (1978). Orientation-selective inhibition from beyond the classic visual receptive field. Brain Research 139, 359–365.CrossRefGoogle ScholarPubMed

Nelson, S.B. (1991). Temporal interactions in the cat visual system. I. Orientation-selective suppression in visual cortex. Journal of Neuroscience 11, 344–356.CrossRefGoogle ScholarPubMed

Ohzawa, I. & Freeman, R.D. (1986). The binocular organization of simple cells in the cat's visual cortex. Journal of Neurophysiology 56, 221–242.CrossRefGoogle ScholarPubMed

Ohzawa, I., Sclar, G. & Freeman, R.D. (1982). Contrast gain control in the cat visual cortex. Nature 298, 266–268.CrossRefGoogle ScholarPubMed

Ohzawa, I., Sclar, G. & Freeman, R.D. (1985). Contrast gain control in the cat's visual system. Journal of Neurophysiology 54, 651–667.CrossRefGoogle ScholarPubMed

Pettigrew, J.D., Nikara, T. & Bishop, P.O. (1968). Responses to moving slits by single units in cat striate cortex. Experimental Brain Research 6, 373–390.Google ScholarPubMed

Pollen, D. & Ronner, S. (1983). Visual cortical neurons as localized spatial-frequency filters. IEEE Transactions on Systems, Man, and Cybernetics 13, 907–916.CrossRefGoogle Scholar

Pollen, D.A., Andrews, B.W. & Feldon, S.E. (1978). Spatial-frequency selectivity of periodic complex cells in the visual cortex of the cat. Vision Research 18, 665–682.CrossRefGoogle ScholarPubMed

Pollen, D.A., Gaska, J.P. & Jacobson, L.D. (1989). Physiological constraints on models of visual cortical function. In Models of Brain Function, ed Cotterill, R.M.J., Cambridge University Press.Google Scholar

Reid, R.C., Soodak, R.E. & Shapley, R.M. (1987). Linear mechanisms of directional selectivity in simple cells of cat striate cortex. Proceedings of the National Academy of Sciences of the U.S.A. 84, 8740–8744.CrossRefGoogle ScholarPubMed

Reid, R.C., Soodak, R.E. & Shapley, R.M. (1991). Directional selectivity and spatiotemporal structure of receptive fields of simple cells in cat striate cortex. Journal of Neurophysiology 66, 505–529.CrossRefGoogle ScholarPubMed

Robson, J.G. (1988). Linear and nonlinear operations in the visual system. Investigative Ophthalmology and Visual Science (Suppl.) 29, 117.Google Scholar

Robson, J.G., Deangelis, G.C., Ohzawa, I. & Freeman, R.D. (1991). Cross-orientation inhibition in cat cortical cells originates from within the receptive field. Investigative Ophthalmology and Visual Science (Suppl.) 32, 429.Google Scholar

Rose, D. (1977). Responses of single units in cat visual cortex to moving bars of light as a function of bar length. Journal of Physiology (London) 271, 1–23.CrossRefGoogle ScholarPubMed

Saul, A.B. & Cynader, M.S. (1989a). Adaptation in single units in the visual cortex: The tuning of aftereffects in the spatial domain. Visual Neuroscience 2, 593–607.CrossRefGoogle ScholarPubMed

Saul, A.B. & Cynader, M.S. (1989b). Adaptation in single units in the visual cortex: The tuning of aftereffects in the temporal domain. Visual Neuroscience 2, 609–620.CrossRefGoogle ScholarPubMed

Sclar, G. & Freeman, R.D. (1982). Orientation selectivity of the cat's striate cortex is invariant with stimulus contrast. Experimental Brain Research 46, 457–461.CrossRefGoogle ScholarPubMed

Sclar, G., Maunsell, J.H.R. & Lennie, P. (1990). Coding of image contrast in central visual pathways of the macaque monkey. Vision Research 30, 1–10.CrossRefGoogle ScholarPubMed

Shapley, R. & Enroth-Cugell, C. (1984). Visual adaptation and retinal gain control. Progress in Retinal Research 3, 263–346.CrossRefGoogle Scholar

Singer, W., Tretter, F. & Cynader, M. (1975). Organization of cat striate cortex: A correlation of receptive-field properties with afferent and efferent connections. Journal of Neurophysiology 38, 1080–1098.CrossRefGoogle ScholarPubMed

Skottun, B.C., Bradley, A., Sclar, G., Ohzawa, I. & Freeman, R.D. (1987). The effects of contrast on visual orientation and spatial-frequency discrimination: A comparison of single cells and behavior. Journal of Neurophysiology 57, 773–786.CrossRefGoogle ScholarPubMed

Spekreuse, H. & van den Berg, T.J.T.P. (1971). Interaction between colour and spatial coded processes converging to retinal ganglion cells in goldfish. Journal of Physiology (London) 215, 679–692.CrossRefGoogle Scholar

Sperling, G. & Sondhi, M.M. (1968). Model for visual luminance discrimination and flicker detection. Journal of the Optical Society of America 58, 1133–1145.CrossRefGoogle ScholarPubMed

Stone, J. & Dreher, B. (1973). Projection of X- and Y-cells of the cat's lateral geniculate nucleus to areas 17 and 18 of visual cortex. Journal of Neurophysiology 36, 551–567.CrossRefGoogle ScholarPubMed

Tanaka, K. (1983). Cross-correlation analysis of geniculostriate neuronal relationships in cats. Journal of Neurophysiology 49, 1303–1318.CrossRefGoogle ScholarPubMed

Tanaka, K. (1985). Organization of geniculate inputs to visual cortical cells in the cat. Vision Research 25, 357–364.CrossRefGoogle ScholarPubMed

Tolhurst, D.J. & Dean, A.F. (1987). Spatial summation by simple cells in the striate cortex of the cat. Experimental Brain Research 66, 607–620.CrossRefGoogle ScholarPubMed

Tolhurst, D.J. & Dean, A.F. (1991). Evaluation of a linear model of directional selectivity in simple cells of the cat's striate cortex. Visual Neuroscience 6, 421–428.CrossRefGoogle ScholarPubMed

Tolhurst, D.J., Walker, N.S., Thompson, I.D. & Dean, A.F. (1980). Nonlinearities of temporal summation in neurones in area 17 of the cat. Experimental Brain Research 38, 431–435.CrossRefGoogle ScholarPubMed

Toyama, K., Kimura, M. & Tanaka, T. (1981). Organization of cat visual cortex as investigated by cross-correlation technique. Journal of Neurophysiology 46, 202–214.CrossRefGoogle ScholarPubMed

Ullman, S. & Schechtman, G. (1982). Adaptation and gain normalization. Proceedings of the Royal Society B (London) 216, 299–313.Google ScholarPubMed

Vautin, R.G. & Berkeley, M.A. (1977). Responses of single cells in cat visual cortex to prolonged stimulus movement: Neural correlates of visual aftereffect. Journal of Neurophysiology 40, 1051–1065.CrossRefGoogle Scholar

Vidyasaoar, T.R. (1990). Pattern adaptation in cat visual cortex is a cooperative phenomenon. Neuroscience 36, 175–179.CrossRefGoogle Scholar

von der Heydt, R., Hanny, P. & Adorjani, C. (1978). Movement aftereffects in the visual system. Archives of Italian Biology 116, 248–254.Google Scholar