Chromatic properties of neurons in macaque area V2 | Visual Neuroscience | Cambridge Core (original) (raw)

Abstract

We recorded from single cells in area V2 of cynomolgus monkeys using standard acute recording techniques. After measuring each cell's spatial and temporal properties, we performed several tests of its chromatic properties using sine-wave gratings modulated around a mean gray background. Most cells behaved like neurons in area V1 and their responses were adequately described by a model that assumes a linear combination of cone signals. Unlike in V1, we found a subpopulation of cells whose activity was increased or inhibited by stimuli within a narrow range of color combinations. No particular color directions were preferentially represented. V2 cells showing color specificity, including cells showing narrow chromatic tuning, were present in any of the stripe compartments, as defined by cytochrome-oxidase (CO) staining. An addition of chromatic contrast facilitated the responses of most neurons to gratings with various luminance contrasts. Neurons in all three CO compartments gave significant responses to isoluminant gratings. Receptive-field properties of cells were generally similar for luminance and chromatically defined stimuli. We found only a small number of cells with a clearly identifiable double-opponent receptive-field organization.

References

Baizer, J.S., Robinson, D.L. & Dow, B.M. (1977). Visual responses of area 18, neurons in awake behaving monkey. Journal of Neurophysiology 40, 1024–1037.CrossRefGoogle ScholarPubMed

Barlow, H.B., Blakemore, C. & Pettigrew, J.D. (1967). The neural mechanism of binocular depth discrimination. Journal of Physiology 93, 327–342.CrossRefGoogle Scholar

Blasdel, G.G., Lund, J.S. & Fitzpatrick, D. (1985). Intrinsic connections of macaque striate cortex: Axonal projections of cells outside lamina 4C. Journal of Neuroscience 5, 3350–3369.CrossRefGoogle ScholarPubMed

Burkhalter, A. & Van Essen, D.C. (1986). Processing of color, form and disparity information in visual areas VP and V2 of ventral extrastriate cortex in the macaque monkey. Journal of Neuroscience 6, 2327–2351.CrossRefGoogle ScholarPubMed

Chandler, J.P. (1969). STEPIT: Finds local minima of a smooth function of several parameters. Behavioral Science 14, 81–82.Google Scholar

Daw, N.W. (1968). Color-coded ganglion cells in the goldfish retina: Extension of their receptive field by means of new stimuli. Journal of Physiology 197, 567–592.CrossRefGoogle Scholar

de Monasterio, F.M. & Schein, S.J. (1982). Spectral bandwidths of color-opponent cells of geniculostriate pathway of macaque monkeys. Journal of Neurophysiology 47, 214–224.CrossRefGoogle Scholar

Derrington, A.M., Krauskopf, J. & Lennie, P. (1984). Chromatic mechanisms in the lateral geniculate nucleus of macaque. Journal of Physiology 357, 241–265.CrossRefGoogle ScholarPubMed

DeValois, R.L. (1965). Analysis and coding of color vision in the primate visual system. Cold Spring Harbor Symposium on Quantitative Biology 30, 567–579.CrossRefGoogle Scholar

DeYoe, E.A. & Van Essen, D.C. (1985). Segregation of efferent connections and receptive field properties in visual area V2 of the macaque. Nature 317, 58–61.CrossRefGoogle ScholarPubMed

DeYoe, E.A., Hockfield, S., Garren, H. & Van Essen, D.C. (1990). Antibody labeling of functional subdivisions in visual cortex: Cat-301 immunoreactivity in striate and extrastriate cortex of the macaque monkey. Visual Neuroscience 5, 67–81.CrossRefGoogle ScholarPubMed

Dobkins, K.R. & Albright, T.D. (1995). Behavioral and neural effects of chromatic isoluminance in the primate visual motion system. Visual Neuroscience 12, 321–332.Google ScholarPubMed

Dow, B.M. (1974). Functional classes of cells and their laminar distribution in monkey visual cortex. Journal of Neurophysiology 37, 927–946.CrossRefGoogle ScholarPubMed

Dow, B.M. & Gouras, P. (1973). Color and spatial specificity of single units in rhesus monkey foveal striate cortex. Journal of Neurophysiology 36, 79–100.CrossRefGoogle ScholarPubMed

Fitzpatrick, D., Lund, J.S. & Blasdel, G.G. (1985). Intrinsic connections of macaque striate cortex: Afferent and efferent connections of lamina 4C. Journal of Neuroscience 5, 3329–3349.CrossRefGoogle ScholarPubMed

Gegenfurtner, K.R. & Kiper, D.C. (1992). Contrast detection in luminance and chromatic noise. Journal of the Optical Society of America A 9, 1880–1888.CrossRefGoogle ScholarPubMed

Gegenfurtner, K.R., Kiper, D.C., Beusmans, J., Carandini, M., Zaidi, Q. & Movshon, J.A. (1994). Chromatic properties of neurons in macaque MT. Visual Neuroscience 11, 455–466.CrossRefGoogle ScholarPubMed

Gegenfurtner, K.R. & Hawken, M.H. (1996). Interaction of motion and color in the visual pathways. Trends in Neurosciences 19, 394–401.CrossRefGoogle ScholarPubMed

Gegenfurtner, K.R., Kiper, D.C. & Fenstemaker, S.B. (1996). Processing of color, form, and motion in macaque area V2. Visual Neuroscience 13, 161–172.CrossRefGoogle ScholarPubMed

Gershon, R., Jepson, A.D. & Tsotsos, J.K. (1986). Ambient illumination and the determination of material changes. Journal of the Optical Society of America A 3, 1700–1707.CrossRefGoogle ScholarPubMed

Gouras, P. (1974). Opponent-colour cells in different layers of foveal striate cortex. Journal of Physiology 238, 583–602.CrossRefGoogle ScholarPubMed

Healey, G. (1989). Using color for geometry-insensitive segmentation. Journal of the Optical Society of America A 6, 920–937.CrossRefGoogle Scholar

Hering, E. (1878). Zur Lehre vom Lichtsinne. Wien: Carl Gerald's Sohn.Google Scholar

Hubel, D.H. & Wiesel, T.N. (1968). Receptive fields and functional architecture of monkey striate cortex. Journal of Physiology 195, 215–243.CrossRefGoogle ScholarPubMed

Hubel, D.H. & Livingstone, M.S. (1987). Segregation of form, color, and stereopsis in primate area 18. Journal of Neuroscience 4, 309–356.Google Scholar

Hurvich, L.M. & Jameson, D. (1955). Some quantitative aspects of an opponent colors theory: II. Brightness, saturation, and hue in normal and dichromatic vision. Journal of the Optical Society of America 45, 602–616.CrossRefGoogle ScholarPubMed

Krauskopf, J., Williams, D.R. & Heeley, D.W. (1982). Cardinal directions of color space. Vision Research 22, 1123–1131.CrossRefGoogle ScholarPubMed

Krauskopf, J., Wu, H.J. & Farell, B. (1996). Coherence, cardinal directions and higher-order mechanisms. Vision Research 36, 1235–1245.Google ScholarPubMed

Lachica, E.A., Beck, P.D. & Casagrande, V.A. (1992). Parallel pathways in macaque monkey striate cortex: Anatomically defined columns in layer III. Proceedings of the National Academy of Sciences of the U.S.A. 89, 3566–3570.CrossRefGoogle ScholarPubMed

Lee, B.B., Martin, P.R. & Valberg, A. (1988). The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque monkey. Journal of Physiology 404, 323–347.CrossRefGoogle Scholar

Lennie, P., Krauskopf, J. & Sclar, G. (1990). Chromatic mechanisms in striate cortex of macaque. Journal of Neuroscience 10, 649–669.CrossRefGoogle ScholarPubMed

Leventhal, A.G., Thompson, K.G., Liu, D., Zhou, Y. & Ault, S.J. (1995). Concomitant sensitivity to orientation, direction, and color of cells in layers 2, 3, and 4 of monkey striate cortex. Journal of Neuroscience 15, 1808–1818.CrossRefGoogle Scholar

Levitt, J.B., Kiper, D.C. & Movshon, J.A. (1994 a). Receptive fields and functional architecture of macaque V2. Journal of Neurophysiology 71, 2517–2542.CrossRefGoogle ScholarPubMed

Levitt, J.B., Yoshioka, T. & Lund, J.S. (1994 b). Intrinsic cortical connections in macaque area V2: Evidence for interaction between different functional streams. Journal of Comparative Neurology 342, 551–570.CrossRefGoogle ScholarPubMed

Livingstone, M.S. & Hubel, D.H. (1984). Anatomy and physiology of a color system in the primate visual cortex. Journal of Neuroscience 4, 309–356.CrossRefGoogle ScholarPubMed

Lund, J.S. & Boothe, R.G. (1975). Interlaminar connections and pyramidal neuron organization in the visual cortex, area 17, of the macaque monkey. Journal of Comparative Neurology 159, 305–334.CrossRefGoogle Scholar

Merigan, W.H., Nealey, T.A. & Maunsell, J.H.R. (1993). Visual effects of lesions of cortical area V2 in macaques. Journal of Neuroscience 13, 3180–3191.CrossRefGoogle ScholarPubMed

Merrill, E.G. & Ainsworth, A. (1972). Glass-coated platinum-plated tungsten microelectrode. Medical Biology and Engineering 10, 495–504.CrossRefGoogle Scholar

Michael, C.R. (1978 a). Color vision mechanisms in monkey striate cortex: Dual-opponent cells with concentric receptive fields. Journal of Neurophysiology 41, 572–588.CrossRefGoogle ScholarPubMed

Michael, C.R. (1978 b). Color vision mechanisms in monkey striate cortex: Simple cells with dual opponent-color concentric receptive fields. Journal of Neurophysiology 41, 1233–1249.CrossRefGoogle Scholar

Michael, C.R. (1978 c). Color-sensitive complex cells in monkey striate cortex. Journal of Neurophysiology 41, 1250–1266.CrossRefGoogle ScholarPubMed

Michael, C.R. (1979). Color-sensitive hypercomplex cells in monkey striate cortex. Journal of Neurophysiology 42, 726–744.CrossRefGoogle ScholarPubMed

Nathans, J., Thomas, D. & Hogness, D.S. (1986). Molecular genetics of human color vision: The genes encoding blue, green and red pigments. Science 232, 193–202.CrossRefGoogle ScholarPubMed

Nealey, T.A. & Maunsell, J.H.R. (1994). Magnocellular and parvocellular contributions to the responses of neurons in macaque striate cortex. Journal of Neuroscience 14, 2069–2079.CrossRefGoogle Scholar

Rockland, K.S. (1985). A reticular pattern of intrinsic connections in primate area V2 (area 18). Journal of Comparative Neurology 235, 467–478.CrossRefGoogle ScholarPubMed

Roe, A. & Ts'o, D.Y. (1995). Visual topography in primate V2: Multiple representations across functional stripes. Journal of Neuroscience 15, 3689–3715.CrossRefGoogle ScholarPubMed

Rubin, J.M. & Richards, W.A. (1982). Color vision and image intensities: When are changes material? Biological Cybernetics 45, 215–226.CrossRefGoogle ScholarPubMed

Sandell, J.H. (1986). NADPH diaphorase histochemistry in the macaque striate cortex. Journal of Comparative Neurology 251, 388–397.CrossRefGoogle ScholarPubMed

Schein, S.J. & Desimone, R. (1990). Spectral properties of V4 neurons in the macaque. Journal of Neuroscience 10, 3369–3389.CrossRefGoogle ScholarPubMed

Schein, S.J., Marrocco, R.T. & de Monasterio, F.M. (1982). Is there a high concentration of color-selective cells in area V4 of monkey visual cortex? Journal of Neurophysiology 47, 193–213.CrossRefGoogle Scholar

Schiller, P.H. & Colby, C.L. (1983). The responses of single cells in the lateral geniculate nucleus of the rhesus monkey to color and luminance contrast. Vision Research 23, 1631–1641.CrossRefGoogle ScholarPubMed

Schnapf, J.L, Kraft, T.W. & Baylor, D.A. (1987). Spectral sensitivity of human cone photoreceptors. Nature 325, 439–441.CrossRefGoogle ScholarPubMed

Shapley, R. (1990). Visual sensitivity and parallel retinocortical channels. Annual Reviews of Psychology 41, 635–658.CrossRefGoogle ScholarPubMed

Shipp, S. & Zeki, S.M. (1985). Segregation of pathways leading from area V2 to areas V4 and V5 of macaque monkey visual cortex. Nature 315, 322–325.CrossRefGoogle ScholarPubMed

Smith, V.C. & Pokorny, J. (1975). Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm. Vision Research 15, 161–171.CrossRefGoogle Scholar

Thorell, L.G., DeValois, R.L. & Albrecht, D.G. (1984). Spatial mapping of monkey VI cells with pure color and luminance stimuli. Vision Research 24, 751–769.CrossRefGoogle Scholar

Tootell, R.B.H., Silverman, M.S., DeValois, R.L. & Jacobs, G.H. (1983). Functional organization of the second cortical visual area in primates. Science 220, 737–739.CrossRefGoogle ScholarPubMed

Ts'o, D.Y. & Gilbert, C.D. (1988). The organization of chromatic and spatial interactions in the primate striate cortex. Journal of Neuroscience 8, 1712–1727.CrossRefGoogle ScholarPubMed

Valberg, A. & Seim, T. (1983). Chromatic induction: Responses of neurophysiological double opponent units? Biological Cybernetics 46, 149–158.CrossRefGoogle ScholarPubMed

Vautin, R.G. & Dow, B.M. (1985). Color cell groups in foveal striate cortex of the behaving macaque. Journal of Neurophysiology 54, 273–292.CrossRefGoogle ScholarPubMed

Webster, M.A. & Mollon, J.D. (1991). Changes in colour appearance following post-receptoral adaptation. Nature 349, 235–238.CrossRefGoogle ScholarPubMed

Wong-Riley, M. (1979). Changes in the visual system of monocularly sutured and enucleated cat demonstrated with cytochrome oxidase histochemistry. Brain Research 171, 11–28.CrossRefGoogle Scholar

Yates, J.T. (1974). Chromatic information processing in the foveal projection (area striata) of unanesthetized primate. Vision Research 14, 163–173.CrossRefGoogle ScholarPubMed

Yoshioka, T, Levitt, J.B. & Lund, J.S. (1994). Independence and merger of thalamocortical channels within macaque monkey primary visual cortex: Anatomy of interlaminar projections. Visual Neuroscience 11, 467–489.CrossRefGoogle ScholarPubMed

Zaidi, Q. & Halevy, D. (1993). Visual mechanisms that signal the direction of color change. Vision Research 33, 1037–1051.CrossRefGoogle Scholar

Zeki, S.M. (1978). Uniformity and diversity of structure and function in rhesus monkey prestriate visual cortex. Journal of Physiology 277, 273–290.CrossRefGoogle ScholarPubMed