MPTP Susceptibility in the Mouse: Behavioral, Neurochemical, and Histological Analysis of Gender and Strain Differences (original) (raw)
REFERENCES
Ambrosio, S., Gerli, P., Perego, C., and Algeri, S. (1987). Different toxicity of N-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP) on the nigrostriatal and mesolimbic pathways. Eur.J.Pharmacol. 133:239-241. Google Scholar
Archer, J. (1973). Tests for emotionality in rats and mice: A review. Anim.Behav. 21:205-235. Google Scholar
Bradbury, A. J., Costall, B., Jenner, P. G., Kelly, M. E., Marsden, C. D., and Naylor, R. J. (1986). The effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on striatal and limbic catecholamine neurones in white and black mice. Antagonism by monoamine oxidase inhibitors. Neuropharmacology25:897-904. Google Scholar
Colotla, V. A., Flores, E., Oscos, A., Meneses, A., and Tapia, R. (1990). Effects of MPTP on locomotor activity in mice. Neurotoxicol.Teratol. 12:405-407. Google Scholar
Darvasi, A. (1998). Experimental strategies for the genetic dissection of complex traits in animal models. Nature Genet. 18:19-24. Google Scholar
Dluzen, D. E., McDermott, J. L., and Liu, B. (1996). Estrogen alters MPTP-induced neurotoxicity in female mice: Effects on striatal dopamine concentrations and release. J.Neurochem. 66:658-666. Google Scholar
Fink, J. S., and Reis, D. J. (1981). Genetic variations in midbrain dopamine cell number: Parallel with differences in responses to dopaminergic agonists and in naturalistic behaviors mediated by central depaminergic systems. Brain Res. 222:335-349. Google Scholar
Franklin, K. B. J., and Paxinos, G. (1997). The Mouse Brain in Stereotaxic Coordinates, Academic Press, San Diego. Google Scholar
Fredriksson, A., and Archer, T. (1994). MPTP-induced behavioural and biochemical deficits: A parametric analysis. J.Neural Transm.Park.Dis.Dement.Sect. 7:123-132. Google Scholar
Freyaldenhoven, T. E., and Ali, S. F. (1997). Role of heat shock proteins in MPTP-induced neurotoxicity. Ann.N.Y.Acad.Sci.USA825:167-178. Google Scholar
Freyaldenhoven, T. E., Ali, S. F., and Hart, R. W. (1995). MPTPand MPP(+)-induced effects on body temperature exhibit ageand strain-dependence in mice. Brain Res. 688:161-170. Google Scholar
Furness, J. B., Llewellyn-Smith, I. J., Bornstein, J. C., and Costa, M. (1988). Chemical neuroanatomy and the analysis of neuronal circuitry in the enteric nervous system. In Björklund, A., Hökfelt, T., and Owman, C. (eds.), The Peripheral Nervous System. Elsevier, Amsterdam, pp. 161-218.
Gainetdinov, R. R., Fumagalli, F., Jones, S. R., and Caron, M. G. (1997). Dopamine transporter is required for in vivo MPTP neurotoxicity: Evidence from mice lacking the transporter. J.Neurochem. 69:1322-1325. Google Scholar
Gerlach, M., and Riederer, P. (1996). Animal models of Parkinson's disease: An empirical comparison with the phenomenology of the disease in man. J.Neural Transm. 103:987-1041. Google Scholar
German, D. C., Nelson, E. L., Liang, C. L., Speciale, S. G., Sinton, C. M., and Sonsalla, P. K. (1996). The neurotoxin MPTP causes degeneration of specific nucleus A8, A9 and A10 dopaminergic neurons in the mouse. Neurodegeneration5:299-312. Google Scholar
Giovanni, A., Sieber, B. A., Heikkila, R. E., and Sonsalla, P. K. (1991). Correlation between the neostriatal content of the 1-methyl-4-phenylpyridinium species and dopaminergic neurotoxicity following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administration to several strains of mice. J.Pharmacol.Exp.Ther. 257:691-697. Google Scholar
Hallman, H., Olson, L., and Jonsson, G. (1984). Neurotoxicity of the meperidine analogue N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine on brain catecholamine neurons in the mouse. Eur.J.Pharmacol. 97:133-136. Google Scholar
Hochman, A., Sternin, H., Gorodin, S., Korsmeyer, S., Ziv, I., Melamed, E., and Offen, D. (1998). Enhanced oxidative stress and altered antioxidants in brains of Bcl-2-deficient mice. J.Neurochem. 71:741-748. Google Scholar
Hoskins, J. A., and Davis, L. J. (1989). The acute effect on levels of catecholamines and metabolites in brain, of a single dose of MPTP in 8 strains of mice. Neuropharmacology28:1389-1397. Google Scholar
Hung, H. C., and Lee, E. H. (1996). The mesolimbic dopaminergic pathway is more resistant than the nigrostriatal dopaminergic pathway to MPTP and MPP× toxicity: Role of BDNF gene expression. Mol.Brain Res. 41:14-26. Google Scholar
Hung, H. C., and Lee, E. H. (1998). MPTP produces differential oxidative stress and antioxidative responses in the nigrostriatal and mesolimbic dopaminergic pathways. Free Radic.Biol.Med. 24:76-84. Google Scholar
Huston, J. P., Nef, B., Papadopoulos, G., and Welzl, H. (1980). Activation and lateralization of sensorimotor field for perioral biting reflex by intranigral GABA agonist and by systemic apomorphine in the rat. Brain Res.Bull. 5:745-749. Google Scholar
Jossan, S. S., Sakurai, E., and Oreland, L. (1989). MPTP toxicity in relation to age, dopamine uptake and MAO-B activity in two rodent species. Pharmacol.Toxicol. 64:314-318. Google Scholar
Kilbourn, M., and Frey, K. (1996). Striatal concentrations of vesicular monoamine transporters are identical in MPTP-sensitive (C57BL/6) and-insensitive (CD-1) mouse strains. Eur.J.Pharmacol. 307:227-232. Google Scholar
Kupsch, A., Gerlach, M., Pupeter, S. C., Sautter, J., Dirr, A., Arnold, G., Opitz, W., Przuntek, H., Riederer, P., and Oertel, W. H. (1995). Pretreatment with nimodipine prevents MPTP-induced neurotoxicity at the nigral, but not at the striatal level in mice. Neuroreport6:621-625. Google Scholar
Kupsch, A., Sautter, J., Schwarz, J., Riederer, P., Gerlach, M., and Oertel, W. H. (1996). 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity in non-human primates is antagonized by pretreatment with nimodipine at the nigral, but not at the striatal level. Brain Res. 741:185-196. Google Scholar
Lister, R. G. (1987). The use of a plus-maze to measure anxiety in the mouse. Psychopharmacology92:180-185. Google Scholar
Matthews, R. T., Beal, M. F., Fallon, J., Fedorchak, K., Huang, P. L., Fishman, M. C., and Hyman, B. T. (1997). MPP× induced substantia nigra degeneration is attenuated in nNOS knockout mice. Neurobiol.Dis. 4:114-121. Google Scholar
Muthane, U., Ramsay, K. A., Jiang, H., Jackson-Lewis, V., Donaldson, D., Fernando, S., Ferreira, M., and Przedborski, S. (1994). Differences in nigral neuron number and sensitivity to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in C57/bl and CD-1 mice. Exp.Neurol. 126:195-204. Google Scholar
Ng, M. C., Iacopino, A. M., Quintero, E. M., Marches, F., Sonsalla, P. K., Liang, C. L., Speciale, S. G., and German, D. C. (1996). The neurotoxin MPTP increases calbindin-D28k levels in mouse midbrain dopaminergic neurons. Mol.Brain Res. 36:329-336. Google Scholar
Nishi, K., Kondo, T., and Narabayashi, H. (1989). Difference in recovery patterns of striatal dopamine content, tyrosine hydroxylase activity and total biopterin content after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration: A comparison of young and older mice. Brain Res. 489:157-162. Google Scholar
Ogawa, N., Hirose, Y., Ohara, S., Ono, T., and Watanabe, Y. (1985). A simple quantitative bradykinesia test in MPTP-treated mice. Res.Commun.Chem.Pathol.Pharmacol. 50:435-441. Google Scholar
Platel, A., Strolin-Benedetti, M., and Guffroy, C. (1986). MPTP-induced decrease in motor activity in two strains of mice: Its reversal by different monoamine oxidase inhibitors (MAOIs). In Markey, S. P., Castagnoli, N., Jr., Trevor, A. J., and Kopin, I. J. (eds.), MPTP: A Neurotoxin Producing a Parkinsonian Syndrome, Academic Press, Orlando, FL, pp. 443-447. Google Scholar
Przedborski, S., and Jackson-Lewis, V. (1998). Mechanisms of MPTP toxicity. Mov.Disord. 13 (Suppl. 1):35-38. Google Scholar
Riachi, N. J., and Harik, S. I. (1988). Strain differences in systemic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity in mice correlate best with monoamine oxidase activity at the blood-brain barrier. Life Sci. 42:2359-2363. Google Scholar
Rozas, G., López-Martin, E., Guerra, M. J., and Labandeira-Garcia, J. L. (1998). The overall rod performance test in the MPTPtreated-mouse model of Parkinsonism. J.Neurosci.Meth. 83:165-175. Google Scholar
Sanghera, M. K., Manaye, K. F., Liang, C. L., Iacopino, A. M., Bannon, M. J., and German, D. C. (1994). Low dopamine transporter mRNA levels in midbrain regions containing calbindin. Neuroreport5:1641-1644. Google Scholar
Sanghera, M. K., Manaye, K., McMahon, A., Sonsalla, P. K., and German, D. C. (1997). Dopamine transporter mRNA levels are high in midbrain neurons vulnerable to MPTP. Neuroreport8:3327-3331. Google Scholar
Schwarting, R. K. W., and Huston, J. P. (1987). Short-term effects of ether, equithesin and droperidol/fentanyl on catecholamine and indolamine metabolism in the brain of the rat. Neuropharmacology26:457-461. Google Scholar
Schwarting, R. K. W., and Huston, J. P. (1996a). The unilateral 6-hydroxydopamine lesion model in behavioral brain research. Analysis of functional deficits, recovery and treatments. Prog.Neurobiol. 50:275-331. Google Scholar
Schwarting, R. K. W., and Huston, J. P. (1996b). Unilateral 6-hydroxydopamine lesions of meso-striatal dopamine neurons and their physiological sequelae. Prog.Neurobiol. 49:215-266. Google Scholar
Sershen, H., Hashim, A., and Lajtha, A. (1987). Behavioral and biochemical effects of nicotine in an MPTP-induced mouse model of Parkinson's disease. Pharmacol.Biochem.Behav. 28:299-303. Google Scholar
Sherwin, C. M. (1997). Observations on the prevalence of nest-building in non-breeding TO strain mice and their use of two nesting materials. Lab.Anim. 31:125-132. Google Scholar
Siegfried, B., and Bures, J. (1980). Handedness in rats: Blockade of reaching behavior by unilateral 6-OHDA injections into substantia nigra and caudate nucleus. Physiol.Behav. 8:360-368. Google Scholar
Sonsalla, P. K., and Heikkila, R. E. (1986). The influence of dose and dosing interval on MPTP-induced dopaminergic neurotoxicity in mice. Eur.J.Pharmacol. 129:339-345. Google Scholar
Steiner, H., Fuchs, S., and Accili, D. (1997). D3 dopamine receptordeficient mouse: Evidence for reduced anxiety. Physiol.Behav. 63:137-141. Google Scholar
Sundstrom, E., and Samuelsson, E. B. (1997). Comparison of key steps in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxicity in rodents. Pharmacol.Toxicol. 81:226-231. Google Scholar
Sundstrom, E., Stromberg, I., Tsutsumi, T., Olson, L., and Jonsson, G. (1987). Studies on the effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on central catecholamine neurons in C57BL/6 mice. Comparison with three other strains of mice. Brain Res. 405:26-38. Google Scholar
Takahashi, N., Miner, L. L., Sora, I., Ujike, H., Revay, R. S., Kostic, V., Jackson-Lewis, V., Przedborski, S., and Uhl, G. R. (1997). VMAT2 knockout mice: heterozygotes display reduced amphetamine-conditioned reward, enhanced amphetamine locomotion, and enhanced MPTP toxicity. Proc.Natl.Acad.Sci.USA94:9938-9943. Google Scholar
Trimmer, P. A., Smith, T. S., Jung, A. B., and Bennett, J. P. Jr. (1996). Dopamine neurons from transgenic mice with a knockout of the p53 gene resist MPTP neurotoxicity. Neurodegeneration5:233-239. Google Scholar
Willis, G. L., and Donnan, G. A. Histochemical, biochemical and behavioural consequences of MPTP treatment in C-57 black mice. Brain Res. 402:269-274.
Yurek, D. M., Deutch, A. Y., Roth, R. H., Sladek, J. R., Jr. (1989). Morphological, neurochemical, and behavioral characterizations associated with the combined treatment of diethyldithiocarbamate and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice. Brain Res. 497:250-259. Google Scholar