Human papillomavirus 16 in breast cancer of women treated for high grade cervical intraepithelial neoplasia (CIN III). (original) (raw)
References
IARC (WHO): Cancer incidence in five continents. Vol 6: 957, 1992 (Lyon)
APMIS: Prediction of cancer mortality in the Nordic countries up to the years 2000 and 2010. Vol 103 (Suppl 49), 1995 Google Scholar
Hall JM, Lee MK, Newman B, Morrow JE, Anderson LA, Huey B, King M-C: Linkage of early onset familial breast cancer to chromosome 17q21. Science 250: 1684–1689, 1990 Google Scholar
Easton DF, Bishop DT, Ford D, Crockford GP:Genetic linkage analysis in familial breast and ovarian cancer: results from 214 families. The breast cancer linkage consortium. Am J Hum Gen 52: 678–701, 1993 Google Scholar
Wooster R, Neuhausen SL, Mangion J, Quirk Y, Ford D, Collins N, et al.: Localization of a breast cancer susceptibility gene, BRCA 2, to chromosome 13q 12–13. Science 265: 2088–2090, 1994 Google Scholar
Cornelisse CJ, Cornelis RS, Devilee P: Genes responsible for familial breast cancer. Path Res Pract 192: 684–693, 1996 Google Scholar
Medina D: Preneoplastic lesions in murine mammary cancer. Cancer Res 36 (7 PT 2): 2589–2595, 1996 Google Scholar
Dickson C: Role of the Int-genes in murine mammary tumor development and implications for human breast cancer. Int J Cancer 5 (suppl): 51–54, 1990 Google Scholar
Vokaer A:Viruses and mammary carcinogenesis. Jgynecol Obstet Biol Reprod Paris 4 (suppl 2): 199–205, 1975 Google Scholar
IARC (WHO): Cancer incidence in five continents. Vol 6: 960, 1992 (Lyon)
IARC (WHO): Monographs on the evaluation of carcinogenic risks to humans. Human papillomaviruses. Vol 64: 90–102, 1995 (Lyon) Google Scholar
Scholefield JH, Palmer JG, Sheperd NA, Love S, Miller KJ, Northover JM: Clinical and pathological correlates of HPV type 16 DNA in anal cancer. Int J Colorect Dis 5: 219–222, 1990 Google Scholar
Scholefield JH, Kerr IB, Sheperd NA, Miller KJ, Bloomfield R, Nortover JM: Human papillomavirus type 16 DNA in anal cancers from six different countries. Gut 32: 674–676, 1991 Google Scholar
Shibutani YF, Schoenberg MP, Carpiniello VL, Malloy TR: Human papillomavirus associated with bladder cancer. Urology 40: 15–17, 1992 Google Scholar
Agliano AM, Gradiglione A, Gazzaniga P, Napolitano M, Vercillo R, Albonici L, Naso G, Frati L, Vecchione A: High frequency of human papillomavirus detection in urinary bladder cancer. Urol Int 53: 125–129, 1994 Google Scholar
Lopez-Beltran A, Escudero AL, Carrasco-Aznar JC, Vicioso-Recio L: Human papillomavirus infection and transitional cell carcinoma of the bladder. Immunohistochemistry and in situ hybridization. Pathol Res Pract 192: 154–159, 1996 Google Scholar
Watts SL, Brewer EE, Fry TL: Human papillomavirus DNA types in squamous cell carcinomas of the head and neck. Oral Surg Oral Med Oral Pathol 71: 701–707, 1991 Google Scholar
Kasperbauer JL, O'Halloran GL, Espy MJ, Smith TF, Lewis JE: Polymerase chain reaction (PCR) identification of human papillomavirus (HPV) DNA in verrucous carcinomas of the larynx. Laryngoscope 103: 416–420, 1993 Google Scholar
Chang F, Syrjanen S, Shen Q, Wang L, Wang D, Syrja-nen K: Human papillomavirus involvement in esophagealprecancerous lesions and squamous cell carcinomas as evi-denced by microscopy and different DNAtechniques. Scand J Gastroenterol 27: 553–563, 1992 Google Scholar
Togawa K, Jaskiewicz K, Takahashi H, Meltzer SJ, Rustgi AK: Human papillomavirus DNA sequences in esophagus squamous cell carcinoma. Gastroenterology 107: 128–136, 1994 Google Scholar
Bejui-Thivolet F, Chardonnet Y, Patricot L: Human papillomavirus type 11 DNA in papillomas and squamous cell lung carcinoma. Virchows Arch (A) 417: 457–461, 1990 Google Scholar
Yousem SA, Ohori VP, Sonmez-Alpan E: Occurrence of human papillomavirus DNA in primary lung neoplasms. Cancer 69: 693–697, 1992 Google Scholar
Noutsou A, Koffa M, Ergazaki M, Siafakas NM, Spandidos DA: Detection of human papillomavirus (HPV) and K-ras mutations in human lung carcinomas. Int J Onc 8: 1089–1093, 1996 Google Scholar
Gordon AN, Bornstein J, Kaufman RH, Estrada RG, Adams E, Adler-Storthz K: Human papillomavirus associated with adenocarcinoma and adenosquamous carcinoma of the 134 EM Hennig et al. cervix: analysis by in situ hybridization. Gynecol Oncol 35: 345–348, 1989 Google Scholar
Di Lonardo A, Venuti A, Marcante ML: Human papillomavirus in breast cancer. Breast Cancer Res Treat 21: 95–100, 1992 Google Scholar
Pater MM, Mittal R, Pater A: Role of steroid hormones in potentiating transformation of cervical cells by human papillomaviruses. Trends Microbiol 2: 229–234, 1994 Google Scholar
Mittal R, Pater MM:Multiple human papillomavirus type 16 glucocorticoid response elements for transformation, transient expression, and DNA-protein interactions. J Virol 67: 5656–5659, 1993 Google Scholar
Chan S-Y, Klock G, Bernard HU: Progesterone and glucocorticoid response elements occur in the long control regions of several human papillomaviruses involved in anogenital neoplasia. J Virol 63: 3261–3269, 1989 Google Scholar
Chen YH, Huang LH, Chen TM: Differential effects of progestins and estrogens on long control regions of human papillomaviruses type 16 and 18. Biochem Biophys Res Commun 224: 651–659, 1996 Google Scholar
Pater A, Bayatpour M, Pater MM: Oncogenic transformation by human papillomavirus type 16 deoxyribonucleic acid in the presence of progesterone and progestins from oral contraceptives. Am J Obstet Gynecol 162: 1099–2003, 1990 Google Scholar
Monsonego J, Magdelenat H, Catalan F, Coscas Y, Zerat L, Sastre X: Estrogen and progesterone receptors in cervical human papillomavirus related lesions. Int J Cancer 48: 533–539, 1991 Google Scholar
Band V, Zajchowski D, Kuleska V, Sager R: Human papillomavirus DNAs immortalize normal human mammary epithelial cells and reduce their growth factor requirements. Proc Natl Acad Sci USA 88: 463–467, 1990 Google Scholar
Pao CC, Lin SS, Lin CY, Maa JS, Lai C, Hsieh TT: Identification of human papillomavirus DNA sequences in peripheral blood mononuclear cells. Am J Clin Pathol 95: 540–546, 1991 Google Scholar
Mies C, Houldsworth J, Changanti RSK: Extraction ofDNA from paraffin blocks for southern-blot analysis. Am J Surg Pathol 15: 169–194, 1991 Google Scholar
Shibata DK Arnheim N, Martin WJ: Detection of human papillomavirus in paraffin embedded tissue by using the polymerase chain reaction. J Exp Med 167: 225–230, 1988 Google Scholar
Human papillomaviruses. Theoretical Biology and Biophysics, Los Alamos National Laboratory, New Mexico, USA, 1994 Google Scholar
de Roda Husman AM, Waalboomers JMM, van den Brule AJC, Meijer CJLM, Snijders PJF: The use of general primers GP5 and GP6 elongated at their 30 ends with adjacent highly conserved sequences improves human papillomavirus detection by PCR. J Gen Virol 76: 1057–1062, 1995 Google Scholar
Arends MJ, Donaldson YK, Duvall E, Wyline AH, Bird CC: HPV in full thickness cervical biopsies: High prevalence in CIN 2 and CIN 3 detected by a sensitive PCR method. J Pathol 165: 301–309, 1991 Google Scholar
Karlsen F, Kalantari M, Jenkins A, Pettersen K, Kristensen G, Holm R, Johansson B, Hagmar B: Use of multiple PCR sets for optimal detection of human papillomavirus. J Clin Microbiol 34: 2095–2100, 1996 Google Scholar
Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Ehrlich HA, Arnheim N: Enzymatic amplification of ___-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230: 1350–1354, 1985 Google Scholar
D¨urst M, Gissmann L, Ikenberg H, zur Hausen H:Apapillomavirus DNA from a cervical carcinoma and its prevalence in cancer biopsy samples from different geographic regions. Proc Natl Acad Sci USA 80: 3812–3815, 1983 Google Scholar
Boshart M, Gissmann L, Ikenberg H, Kleinheinz A, Scheurlen W, zur Hausen H: A new type of papillomavirus DNA, its presence in genital cancer biopsies and in cell lines derived from cervical cancer. EMBO J 3: 1151–1157, 1984 Google Scholar
Gissmann L, Diehl V, Schultz-Coulon HJ, zur Hausen H: Molecular cloning and characterization of human papillomavirus DNA derived from laryngeal papilloma. J Virol 44: 393–400, 1982 Google Scholar
Holm R, Karlsen K, Nesland JM: In situ hybridization with non-isotopic probes using different detection systems. Mod Pathol 5: 315–320, 1992 Google Scholar
Elston CW, Ellis IO: Pathological prognostic factors in breast cancer. 1. The value of histological grade in breast cancer.Experience from a large study with long-term-follow up. Histopathology 19: 403–410, 1991 Google Scholar
Wrede D, Luqmani YA, Coombs RC, Vousden KH: Absence of HPV 16 and 18 in breast cancer. Br J Cancer 65: 891–894, 1992 Google Scholar
Bratthauer GL, Tavassoli FA, O'Leary TJ: Etiology of breast carcinoma: no apparent role for papillomavirus types 6/11/16/18. Path Res Pract 188: 384–386, 1992 Google Scholar
Gopalakrishna V, Singh UR, Sodhani P, Sharma ST, Hedau AK, Mandal AK, Das BC: Absence of human papillomavirus DNA in breast cancer as revealed by polymerase chain reaction. Breast Cancer Res Treat 39: 197–202, 1996 Google Scholar
Yee C, Krishnan-Hewlett I, Baker CC, Schlegel R, Howley PM: Presence and expression of human papillomavirus sequences in human cervical carcinoma cell lines.AmJ Pathol 119: 361–366, 1985 Google Scholar
Masih AS, Stoler MH, Farrow GM, Johansson SL: Human papillomavirus in penile squamous cell lesions. A comparison of an isotopic RNA and two commercial nonisotopic DNA in situ hybridization methods. Arch Pathol Lab Med 117: 302–307, 1993 Google Scholar
Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higechi R, Horn GT, Mullis KB, Erlich HA: Primer directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487–491, 1988 Google Scholar
Ogura H, Watanabe S, Fukishima K, Masuda Y, Fujiwara T, Yabe Y: Human papillomavirus DNA in squamous cell carcinoma of the respiratory and upper digestive tracts. Jpn J Clin Oncol 23: 221–225, 1993 Google Scholar
Popper H, el Shabrawi Y, Wockel W, Hofler G, Kenner L, Juttner-Smolle FM, Pongratz MG:Prognostic importance of human papillomavirus typing in squamous cell papilloma of the bronchus: comparision of in situ hybridization and the polymerase chain reaction. Hum Pathol 25: 1191–1197, 1994 Google Scholar
Rabkin CS, Biggar RJ, Melbye M, Curtis RE: Second primary cancers following anal and cervical carcinoma: evidence of shared etiological factors. Am J Epidem 136: 54–58, 1994 Google Scholar
Bjørge T, Hennig EM, Skare GB, Søreide O, Thoresen S: Second primary cancers in patients with carcinoma in situ of the uterine cervix. The Norwegian experience 1970–1992. Int J Cancer 62: 29–33, 1995 Google Scholar
Levi F, Randimson L, LaVecchia C, Franceschi S: Incidence of invasive cancers following carcinoma of the cervix. Br J Cancer 74: 1321–1323, 1996 Google Scholar
Sturgeon SR, Curtis RE, Johnson K, Ries L, Brinton LA: Second primary cancers after vulvar and vaginal cancers. Am J Obset Gyn 174: 929–933, 1996 Google Scholar
Majewski S, Jablonska S: Human papillomavirusassociated tumors of the skin and mucosa. J Am Acad Dermatol 36: 659–685, 1997 Google Scholar
Mc Neil C: News: HPV vaccines for cervical cancer move toward clinic, encounter social issues. J Natl Cancer Inst 89: 1664–1666, 1997 Google Scholar
Helland A, Børresen AL, Kaern J, Rønningen KS, Thorsby E:HLAantigens and cervical carcinoma. Nature 356 (Letter to editor): 23, 1992 Google Scholar
Tay SK, Jenkins D, Maddox P, Campion M, Singer A: Subpopulation of Langerhans' cells in cervical neoplasia. Br J Obstet Gynaecol 94: 10–15, 1987 Google Scholar
Apple RJ, Erlich HA, Klitz W, Manos MM, Becker TM, Wheeler CM: HLA DR-DQ association with cervical carcinoma shows papillomavirus-type specificity. Nat Genet 6: 157–162, 1994 Google Scholar
Tay SK, Jenkins D, Maddox P, Singer A: Lymphocyte phenotypes in cervical intraepithelial neoplasia and human papillomavirus infection. Br J Obstet Gynaecol 94: 16–21, 1987 Google Scholar
Petry KU, Scheffel D, Bode U, Gabrysiak T, Kochel H, Kupsch E, Glaubitz M, Niesert S, Kuhnle H, Schedel I: Cellular immunodeficiency enhances the progression of human papillomavirus associated cervical lesions. Int Jcancer 67: 836–840, 1994 Google Scholar
zur Hausen H: Intracellular surveillance of persisting viral infections. Human genital cancer results from deficient cellular control of papillomavirus gene expression. Lancet 2: 489–491, 1986 Google Scholar
Majewski S, Jablonska S: Epidermodysplasia verruciformis as amodel of human papillomavirus induced genetic cancer of the skin. Arch Dermatol 131: 1312–1318, 1995 Google Scholar
Perera FP, Estabrook A, Hewer A, Channing K, Rundle A, Mooney LA, Whyatt R, Phillips DH: Cancer DNA adducts in human breast tissue. Cancer Epidemiol Biomarkers Prev 4: 233–238, 1995 Google Scholar
Simons AM, Phillips DH, Coleman DV: DNA adduct assay in cervical epithelium.Diagn Cytopathol 10: 284–288, 1994 Google Scholar
zur Hausen H: Papillomavirus infections – a major cause of human cancers. Biochim Biophys Acta 1288: F55–F78, 1996 Google Scholar