Mechanisms of cellular uptake of long chain free fatty acids (original) (raw)

References

  1. Distel RJ, Robinson GS, Spiegelman BM: Fatty acid regulation of gene expression. J Biol Chem 267: 5937–5941, 1992
    Google Scholar
  2. Amri E-Z, Ailhaud G, Grimaldi PA: Fatty acids as signal transducing molecules: Involvement in the differentiation of preadipose to adipose cells. J Lip Res 35: 930–937, 1994
    Google Scholar
  3. Noy N, Zakim D: Physical chemical basis for the uptake of organic compounds by cells. In: N. Tavoloni and P.D. Berk (eds). Hepatic Transport and Bile Secretion, Raven Press, New York, 1993, pp 313–335
    Google Scholar
  4. Zakim D: Fatty acids enter cells by simple diffusion. Proc Soc Exptl Biol Med 212: 5–14, 1996
    Google Scholar
  5. Kamp F, Hamilton JA: pH gradients across phospholipid membranes caused by fast flip-flop of un-ionized fatty acids. Proc Natl Acad Sci USA 89: 11367–11370, 1992
    Google Scholar
  6. Kamp F, Hamilton JA: Movement of fatty acids, fatty acid analogues, and bile acids across phospholipid bilayers. Biochem 32: 11074–11086, 1993
    Google Scholar
  7. Kamp F, Zakim D, Zhang F, Noy N, Hamilton JA: Fatty acid flip-flop in phospholipid bilayers is extremely fast. Biochem 34: 11928–11937, 1995
    Google Scholar
  8. Hamilton JA, Civelek VN, Kamp F, Tornheim K, Corkey BE: Changes in internal pH caused by movement of fatty acids into and out of clonal pancreatic β-cells (HIT). J Biol Chem 269: 20852–20856, 1994
    Google Scholar
  9. Civelek VN, Hamilton JA, Tornheim K, Kelly KL, Corkey BE: Intracellular pH in adipocytes: Effects of free fatty acid diffusion across the plasma membrane, lipolytic agonists, and insulin. Proc Natl Acad Sci USA 93: 10139–10144, 1996
    Google Scholar
  10. Kleinfeld AM, Storch J: Transfer of long chain fluorescdnt fatty acids between small and large unilamellar vesicles. Biochem 32: 2053–2061, 1993
    Google Scholar
  11. Sorrentino D, Berk PD: Free fatty acids and the sinusoidal plasma membrane: Concepts, trends and controversies. In: N. Tavoloni and P.D. Berk (eds). Hepatic Transport and Bile Secretion, Raven Press, New York, 1993, pp 197–210
    Google Scholar
  12. Berk PD, Bradbury M, Zhou S-L, Stump D, Han NI: Characterization of membrane transport processes: Lessons from the study of BSP, bilirubin and fatty acid uptake. Semin Liv Dis 16: 107–120, 1996
    Google Scholar
  13. Goresky CA, Stremmel W, Rose CP, et al.: The capillary transport system for free fatty acids in the heart. Circ Res 74: 1015–1026, 1994
    Google Scholar
  14. Vyska K, Meyer W, Stremmel W, Notohamiprodjo G, Minami K, Machulla H-J, Gleichmann U, Meyer H, Körfer R: Fatty acid uptake in normal human myocardium. Circ Res 69: 857–880, 1991
    Google Scholar
  15. Weisiger RA, Gollan J, Ockner R: Receptor for albumin on the liver cell surface may mediate uptake of fatty acids and other albumin bound substances. Science 211: 1048–1051, 1981
    Google Scholar
  16. Sorrentino D, Robinson RB, Kiang C-L, Berk PD: At physiologic albumin/oleate concentrations oleate uptake by isolated hepatocytes, cardiac myocytes and adipocytes is a saturable function of the unbound oleate concentration. J Clin Invest 84: 1325–1333, 1989
    Google Scholar
  17. Sorrentino D, Zifroni A, Van Ness K, Berk PD: Unbound ligand concentrations drive the hepatocellular uptake of taurocholate and sulfobromophthalein at physiologic albumin concentrations. Am J Physiol 266: G425–G432, 1994
    Google Scholar
  18. Sorrentino D, Van Ness K, Stump DD, Berk PD: Oleate uptake kinetics in the perfused rat liver are consistent with pseudofacilitation by albumin. J Hepatol 21: 551–559, 1994
    Google Scholar
  19. Spector AA, Fletcher JE, Ashbrook JD: Analysis of long chain free fatty acid binding to bovine serum albumin by determination of stepwise equilibrium constants. Biochemistry 10: 3229–3232, 1971
    Google Scholar
  20. Richieri GV, Anel A, Kleinfeld AM: Interactions of long chain fatty acids and albumin: Determination of free fatty acid levels using the fluorescent probe ADIFAB. Biochem 32: 7574–7580, 1993
    Google Scholar
  21. Rose H, Conventz M, Fischer Y, Ringling E, Hennecke T, Kammermeier H: Long-chain fatty acid-binding to albumin: Re-evaluation with directly measured concentrations. Biochim Biophys Acta 1215: 321–326, 1994
    Google Scholar
  22. Bojesen IN, Bojesen E: Water-phase palmitate concentrations in equilibrium with albumin-bound palmitate in a biological system. J Lipid Res 33: 1327–1334, 1992
    Google Scholar
  23. Bojesen IN, Bojesen E: Binding of arachidonate and oleate to bovine serum albumin. J Lipid Res 35: 770–7784, 1994
    Google Scholar
  24. Abumrad NA, Perkins RC, Park JH, Park CR: Mechanism of long chain fatty acid permeation in the isolated adipocyte. J Biol Chem 256: 9183–9191, 1981
    Google Scholar
  25. Abumrad NA, Park JH, Park CR: Permeation of long-chain fatty acid into adipocytes. J Biol Chem 259: 8945–8953, 1984
    Google Scholar
  26. Nunes R, Kiang C-L, Sorrentino D, Berk PD: ‘Albumin-receptor’ kinetics do not require an intact lobular architecture and are not specific for albumin. J Hepatol 7: 293–304, 1988
    Google Scholar
  27. Stump, DD, Nunes RM, Sorrentino D, Berk PD: Characteristics of oleate binding to liver plasma membrane and its uptake by isolated hepatocytes. J Hepatol 16: 304–315, 1992
    Google Scholar
  28. Schwieterman W, Sorrentino D, Potter BJ, Rand J, Kiang C-L, Stump D, Berk PD: Uptake of oleate by isolated rat adipocytes is mediated by a 40–kDa plasma membrane fatty acid binding protein closely related to that in liver and gut. Proc Natl Acad Sci USA 85: 359–363, 1988
    Google Scholar
  29. Berk PD, Zhou S-L, Kiang C-L, Stump D, Bradbury M, Isola LM: Uptake of long chain free fatty acids is selectively up-regulated in adipocytes of Zucker rats with genetic obesity and non-insulin-dependent diabetes mellitus. J Biol Chem 272: 8830–8835, 1997
    Google Scholar
  30. Schmider W, Fahr A, Voges R, Gerok W, Kurz G: Irreversible inhibition of fatty acid salt uptake by photoaffinity labeling with 11,11–azistearate. J Lipid Res 37: 739–753, 1996
    Google Scholar
  31. Stremmel W, Berk PD: Hepatocellular influx of [14C]oleate reflects membrane transport rather than intracellular metabolism or binding. Proc Natl Acad Sci USA 83: 3086–3090, 1986
    Google Scholar
  32. Stremmel W, Strohmeyer G, Berk PD: Hepatocellular uptake of oleate is energy dependent, sodium linked, and inhibited by an antibody to a hepatocyte plasma membrane fatty acid binding protein. Proc Natl Acad Sci USA 83: 3584–3588, 1986
    Google Scholar
  33. Stremmel W: Translocation of fatty acids across the basolateral rat liver plasma membrane is driven by an active potential-sensitive sodium-dependent transport system. J Biol Chem 262: 6284–6289, 1987
    Google Scholar
  34. Sorrentino D, Stump D, Potter BJ, Robinson RB, White R, Kiang CL, Berk PD: Oleate uptake by cardiac myocytes is carrier mediated and involves a 40–kD plasma membrane fatty acid binding protein similar to that in liver, adipose tissue and gut. J Clin Invest 82: 928–935, 1988
    Google Scholar
  35. Stremmel W: Fatty acid uptake by isolated rat heart myocytes represents a carrier-mediated transport process. J Clin Invest 81: 844–852, 1988
    Google Scholar
  36. Stremmel W: Uptake of fatty acids by jejunal mucosal cells is mediated by a fatty acid binding membrane protein. J Clin Invest 82: 2001–2010, 1988
    Google Scholar
  37. Trimble ME: Mediated transport of long chain fatty acids by rat renal basolateral membranes. Am J Physiol F539–F546, 1989
  38. Storch J, Lechene C, Kleinfeld A: Direct determination of free fatty acid transport across the adipocyte plasma membrane using quantitative fluorescence microscopy. J Biol Chem 266: 13473–13476, 1991
    Google Scholar
  39. Turcotte LP, Kiens B, Richter EA: Saturation kinetics of palmitate uptake in skeletal muscle. FEBS Lett 279: 327–329, 1991
    Google Scholar
  40. Sorrentino D, Stump DD, Van Ness K, Simard A, Schwab AJ, Zhou S-L, Goresky CA, Berk PD: Oleate uptake by isolated hepatocytes and the perfused rat liver is competitively inhibited by palmitate. Amer J Physiol 270: G385–G392, 1996
    Google Scholar
  41. Zhou S-L, Stump DD, Sorrentino D, Potter BJ, Berk PD: Adipocyte differentiation of 3T3–L1 cells involves augumented expression of a 43 kDa plasma membrane fatty acid binding protein. J Biol Chem 267: 14456–14461, 1992
    Google Scholar
  42. Zhou S-L, Stump DD, Kiang C-L, Isola LM, Berk PD: Mitochondrial aspartate aminotransferase expressed on the surface of 3T3–L1 adipocytes, mediates saturable fatty acid uptake. Proc Soc Exptl Biol Med 208: 263–270, 1995
    Google Scholar
  43. Isola LM, Zhou S-L, Kiang C-L, Stump DD, Bradbury MW, Berk PD: 3T3 fibroblasts transfected with a cDNA for mitochondrial aspartate aminotransferase express plasma membrane fatty acid-binding protein and saturable fatty acid uptake. Proc Nati Acad Sci USA 92: 9866–9870, 1995
    Google Scholar
  44. Daniels C, Noy N, Zakim D: Rates of hydration of fatty acids bound to unilamellar vescicles of phosphatidyl choline or to albumin. Biochem 24: 3286–3292, 1985
    Google Scholar
  45. Storch J, Kleinfeld AM: Transfer of long chain fluorescent free fatty acids between unilamellar vesicles. Biochem 25: 1717–1726, 1986
    Google Scholar
  46. Sorrentino D, Zhou S-L, Kokkoutou E, Berk PD: Sex differences in hepatic fatty acid uptake reflect a greater affinity of the membrane transport system in females. Am J Physiol 263: G380–G385, 1992
    Google Scholar
  47. Skulachev VP: Fatty acid circuit as a physiological mechanism of uncoupling of oxidative phosphorylation. FEBS Letts 294: 158–162, 1991
    Google Scholar
  48. Garlid KD, Orosz DE, Modriansky M, Vassanelli S, Jezek P: On the mechanism of fatty acid induced proton transport by mitochondrial uncoupling protein. J Biol Chern 271: 2615–2620, 1996
    Google Scholar
  49. Stremmel W, Strohmeyer G, Borchard F, Kochwa S, Berk PD: Isolation and partial characterization of a fatty acid binding protein in rat liver plasma membranes. Proc Natl Acad Sci USA 82: 4–8, 1985
    Google Scholar
  50. Fujii S, Kawaguchi H, Yasuda H: Isolation and partial characterization of an amphiphilic 56–kDa fatty acid binding protein from rat renal basolateral membrane. J Biochem Biophys Res 101: 679–684, 1987
    Google Scholar
  51. Fujii S, Kawaguchi H, Yasuda H: Purification of high affinity fatty acid receptors in rat myocardial sarcolemmal membranes. Lipids 22: 544–546, 1987
    Google Scholar
  52. Trigatti BL, Mangaroo D, Gerber GE: Photoaffinity labeling and fatty acid permeation in 3T3–L1 adipocytes. J Biol Chem 266: 22621–22625, 1991
    Google Scholar
  53. Abumrad NA, Raafat El-Maghrabi M, Amri E-Z, Lopez E, and Grimaldi PA: Cloning of a rat adipocyte membrane protein implicated in binding or transport of long-chain fatty acids that is induced during preadipocyte differentiation. J Biol Chem 268: 17665–17668, 1993
    Google Scholar
  54. Schaffer JE, Lodish HF: Expression cloning and characterization of a novel adipocyte long chain fatty acid transport protein. Cell 79: 427–436, 1994
    Google Scholar
  55. Stump DD, Zhou S-L, Berk PD: Comparison of the plasma membrane FABP and the mitochondrial isoform of aspartate amino-transferase from rat liver. Am J Physiol 265: G894–G902, 1993
    Google Scholar
  56. Potter BJ, Berk PD: The liver plasma membrane fatty acid binding protein. In: N. Tavoloni and P.D. Berk (eds). Hepatic Transport and Bile Secretion, Raven Press, New York, 1993, pp 253–267
    Google Scholar
  57. Stremmel W, Theilmann L: Selective inhibition of long chain fatty acid uptake in short-term cultured rat hepatocytes by an antibody to the rat liver plasma membrane fatty acid binding protein. Biochim Biophys Acta 877: 191–197, 1986
    Google Scholar
  58. Stremmel W, Diede HE, Rodilla-Sala E, Vyska K, Schrader M, Fitscher B, Passarella S: The membrane fatty acid binding protein is not identical to mitochondrial glutamic oxaloacetic transaminase (mGOT). Mol Cell Biol 98: 191–199, 1990
    Google Scholar
  59. Berk PD, Wada H, Horio Y, Potter PJ, Sorrentino D, Zhou S-L, Isola LM, Stump D, Kiang C-L, Thung S: Plasma membrane fatty acid binding protein and mitochondrial glutamic-oxaloacetic transaminase of rat liver are related. Proc Natl Acad Sci USA 87: 3484–3488, 1990
    Google Scholar
  60. Zhou S-L, Kiang C-L, Bradbury M, Isola LM, Stump DD, Berk PD: Up-regulation of mitochondrial aspartate aminotransferase mRNA parallels fatty acid uptake in 3T3–L1 cells and adipocytes from obese and diabetic rats (Abstract). Hepatol 22: 313A, 1995
    Google Scholar
  61. Guarnieri F, Stump DD, Roboz J, Yu Q, Berk PD: Mitochondrial aspartate aminotransferase contains a 500 Å3 hydrophobic groove representing a putative fatty acid binding site (Abstact). Hepatol 22: 424A, 1995
    Google Scholar
  62. Zhou S-L, Kiang C-L, Bradbury M, Gordon R, Stump DD, Han NI, Berk PD: Effects of ETOH on mitochondrial aspartate aminotransferase expression and cellular leakage, and fatty acid uptake in HepG2 cells (Abstract). Hepatol 22: 241A, 1995
    Google Scholar
  63. Zhou S-L, Gordon R, Kiang C-L, Stump DD, Bradbury M, Isola LM, Berk PD: Intracellular movement and cellular export of mitochondrial aspartate aminotransferase from hepatoma cell lines (Abstract). Hepatol 24: 128A, 1996
    Google Scholar
  64. Soltys BJ, Gupta RS: Immunoelectron microscopic localization of the 60 kDa heat shock chaperonin protein (Hsp60) in mammalian cells. Exper Cell Res 222: 16–27, 1996
    Google Scholar
  65. Dil M, Cascante M, Cortes A, Bozal J: Intramitochondrial location and some characteristics of chicken liver aspartate aminotransferase. Int J Biochem 19: 355–363, 1987
    Google Scholar
  66. Kava R, Greenwood MRC, Johnson PR: Zucker (fa/fa) rat. ALAR News 32: 4–8, 1990
    Google Scholar
  67. Chua SC Jr, Chung WK, Wu-Peng S, Zhang Y, Liu SM, Tartaglia L, Leibel RL: Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (leptin) receptor. Science 271: 994–996, 1996
    Google Scholar
  68. Phillips MS, Liu Q, Hammond HA, Dugan V, Hey PJ, Caskey CT, Hess JF: Leptin receptor missense mutation in the fatty Zucker rat. Nat Genet 13: 18–19, 1996
    Google Scholar
  69. Iida M, Murakami T, Ishida K, Mizuno A, Kuwajima M, Shima K: Substitution at codon 269 (glutamine→proline)on the leptin receptor (OB-R) is the only mutation found in the Zucker fatty (fa/fa) rat. Biochem Biophys Res Comun 224: 597–604, 1996
    Google Scholar
  70. Chua SC Jr, White DW, Sharon Wu-Peng X, Liu SM, Okada N, Kershaw EE, Chung WK, Power-Kehoe L, Chua M, Tartaglia LA, Leibel RL: Phenotype of fatty due to G1n269Pro mutation in the leptin receptor (Lepr). Diabetes 45: 1141–1143, 1996
    Google Scholar
  71. Pelleymounter MA, Cullen MJ, Baker MB, Hecht R, Winters T, Boone T, Collins F: Effects of the obese gene product on body weight regulation in ob/ob mice. Science 269: 540–543, 1995
    Google Scholar
  72. Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chaoit BT, Rabinowitz D, Lallone RL, Burley SK, Friedman M: Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269: 543–546, 1995
    Google Scholar
  73. Campfield LA, Smith FJ, Guisez Y, Devos R, Burn P: Recombinant mouse OB protein: Evidence for a peripheral signal linking adiposity and central neural networks. Science 269: 546–549, 1995
    Google Scholar
  74. Peterson RG, Shaw WN, Neel MA, Little LA, Eichberg J: Zucker diabetic fatty rat as a model for non-insulin-dependent diabetes mellitus. ALAR News 32: 16–19, 1990
    Google Scholar
  75. Berk PD, Zhou S-L, Bradbury M, Stump D, Kiang C-L, Isola LM: Regulated membrane transport for free fatty acids in adipocytes: Role in obesity and non-insulin dependent diabetes mellitus. Trans Amer Clin Clim Assoc 108: 26–43, 1997
    Google Scholar
  76. Zhang Y, Proenca R, Maffel M, Barone M, Leopold L, Friedman M: Positional cloning of the mouse obese gene and its human homologue. Nature 372: 425–431, 1994
    Google Scholar
  77. Lee GH, Proenca R, Montez M, Carroll KM, Darvishzadeh JG, Lee JI, Friedman JM: Abnormal splicing of the leptin receptor in diabetic mice. Nature 379: 632–635, 1996
    Google Scholar
  78. Chen H, Charlat O, Tartaglia LA, Woolf EA, Weng X, Ellis SJ, Lakey ND, Culpepper J, Moore M, Breitbart RE, Duyk GM, Tepper RI, Morgenstern JP: Evidence that the diabetes gene encodes the leptin receptor: Identification of a mutation in the leptin receptor gene in db/db mice. Cell 84: 491–495, 1996
    Google Scholar
  79. Chua SC Jr, Chung WK, Wu-Peng S, Zhang Y, Liu SM, Tartaglia L, Leibel RL: Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (leptin) receptor. Science 271: 994–996, 1996
    Google Scholar
  80. Schemmel R, Mickelsen J, Gill JL: Dietary obesity in rats: Body weight and body fat accretion in seven strains of rats. J Nutr 100: 1041–1048, 1990
    Google Scholar
  81. Bessesen DH, Rupp CL, Eckel RH: Dietary fat is shunted away from oxidation, toward storage in obese Zucker rats. Obes Res 3: 179–189, 1995
    Google Scholar

Download references