Functional analysis of the proteasome regulatory particle (original) (raw)
Abstract
We have developed S. cerevisiae as a model system for mechanistic studies of the 26S proteasome. The subunits of the yeast 19S complex, or regulatory particle (RP), have been defined, and are closely related to those of mammalian proteasomes. The multiubiquitin chain binding subunit (S5a/Mcb1/Rpn10) was found, surprisingly, to be nonessential for the degradation of a variety of ubiquitin-protein conjugates in vivo. Biochemical studies of proteasomes from Δrpn10 mutants revealed the existence of two structural subassemblies within the RP, the lid and the base. The lid and the base are both composed of 8 subunits. By electron microscopy, the base and the lid correspond to the proximal and distal masses of the RP, respectively. The base is sufficient to activate the 20S core particle for degradation of peptides, but the lid is required for ubiquitin-dependent degradation. The lid subunits share sequence motifs with components of the COP9/signalosome complex, suggesting that these functionally diverse particles have a common evolutionary ancestry. Analysis of equivalent point mutations in the six ATPases of the base indicate that they have well-differentiated functions. In particular, mutations in one ATPase gene, RPT2, result in an unexpected defect in peptide hydrolysis by the core particle. One interpretation of this result is that Rpt2 participates in gating of the channel through which substrates enter the core particle.
Access this article
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime Subscribe now
Buy Now
Price excludes VAT (USA)
Tax calculation will be finalised during checkout.
Instant access to the full article PDF.
Similar content being viewed by others
References
- Löwe J, Stock D, Jap B, Zwickl P, Baumeister W & Huber R (1995) Science 268: 533–539
Google Scholar - Baumeister W, Walz J, Zuhl F & Seemuller E (1998) Cell 92: 367–380
Google Scholar - Pickart C (1997) FASEB J. 11: 1055–1066
Google Scholar - Glickman MH, Rubin DM, Fried VA & Finley D (1998) Mol. Cell. Biol. 18: 3149–3162
Google Scholar - Hoffman L & Rechsteiner M (1994) J. Biol. Chem. 269: 16890–16895
Google Scholar - DeMartino GN, Moomaw CR, Zagnitko OP, Proske RJ, Ma CP, Afendis SJ, Swaffield JC & Slaughter CA (1994) J. Biol. Chem. 269: 20878–20884
Google Scholar - Groll M, Ditzel L, Löwe J, Stock D, Bochtler m, Bartunik HD & Huber R (1997) Nature 386: 463–477
Google Scholar - Fujimuro M, Tanaka K, Yokosawa H & Toh-e A (1998) FEBS Lett. 423: 149–154
Google Scholar - Patel S & Latterich m (1998) Trends Cell Biol. 8: 65–71
Google Scholar - Beyer A (1997) Prot. Sci. 6: 2043–2058
Google Scholar - Finley D, et al. (1998) Trends Biochem. Sci. 23: 244–245
Google Scholar - Deveraux Q, Ustrell V, Pickart C & Rechsteiner M (1994) J. Biol. Chem. 269: 7059–7061
Google Scholar - Deveraux Q, Jensen C & Rechsteiner M (1995) J. Biol. Chem. 270: 23726–23729
Google Scholar - van Nocker S, Sadis S, Rubin DM, Glickman MH, Fu H, Coux O, Wefes I, Finley D & Vierstra RD (1996) Mol. Cell. Biol. 11: 6020–6028
Google Scholar - van Nocker S, Deveraux Q, Rechsteiner M & Vierstra RD (1996) Proc. Natl. Acad. Sci. 93: 856–860
Google Scholar - Kominami K, Okura N, Kawamura M, DeMartino GN, Slaughter CA, Shimbara N, Chung CH, Fujimura M, Yokosawa H, Shimizu Y, Tanahashi N, Tanaka K & Toh-e A (1997) Mol. Biol. Cell 8: 171–187
Google Scholar - Haracska L & Udvardy A (1997) FEBS Lett. 412: 331–336
Google Scholar - Haracska L & Udvardy A (1995) Eur. J. Biochem. 231: 720–725
Google Scholar - Young P, Deveraux Q, Beal RE, Pickart CM & Rechsteiner M (1998) J. Biol. Chem. 273: 5461–5467
Google Scholar - Fu H, Sadis S, Rubin DM, Glickman MH, van Nocker S, Finley D& Vierstra RD (1998) J. Biol. Chem. 273: 1970–1989
Google Scholar - Glickman MH, Rubin DM, Coux O, Wefes I, Pfeifer G, Cjeka Z, Baumeister W, Fried VA & Finley D (1998) Cell 94: 615–623
Google Scholar - Hofmann K & Bucher P (1998) Trends Biol. Chem. 23: 204–205
Google Scholar - Aravind L & Ponting CP (1998) Prot. Sci. 7: 1250–1254
Google Scholar - Wei N, Tsuge T, Serino G, Dohmae N, Takio K, Matsui M & Deng, XW (1998) Curr. Biol. 8: 919–922
Google Scholar - Seeger M, Kraft R, Ferrel K, Bech-Otschir D, Dumdey R, Schade R, Gordon C, Naumann M & Dubiel W (1998) FASEB J. 12: 469–478
Google Scholar - Wolf S, Nagy I, Lupas A, Pfeifer G, Cejka Z, Müller SA, Engel A, De Mot R & Baumeister W(1998) J. Mol. Biol. 277: 13–25
Google Scholar - Zwickl P, Woo KM, Klenk HP & Goldberg, AL (Submitted).
- Rubin DM, Glickman MH, Larsen CN, Dhruvakumar S & Finley D (1998) EMBO 17: 4909–4919
Google Scholar - Lupas A & Baumeister W (1997) Trends Biochem. Sci. 22: 195–196
Google Scholar - Gottesman S, Maurizi MR & Wickner S (1997) Cell 91: 435–438
Google Scholar - Gottesman S, Wickner S & Maurizi MR (1997) Genes Devel. 11: 815–823
Google Scholar - Hershko A, Leshinsky E, Ganoth D & Heller H (1984) Proc. Natl. Acad. Sci. USA 81: 1619–1623
Google Scholar - Ditzel L, Lowe J, Stock D, Stetter KO, Huber H, Huber R & Steinbacher S (1998) Cell 93: 125–138
Google Scholar - Fenton WA & Horwich AL (1997) Protein Science 6: 743–760
Google Scholar - Horovitz A (1998) Curr. Op. Struc. Biol. 8: 93–100
Google Scholar - Kim S, Willison KR & Horwich AL (1994) Trends Biochem. Sci. 19: 543–548
Google Scholar - Ghislain M, Udvardy A & Mann C (1993) Nature 366: 358–361
Google Scholar - Schnall R, Mannhaupt G, Stuka R, Tauer R, Ehnle S, Schwarzlose C, Vetter I & Feldmann H (1994) Yeast 10: 1141–1155
Google Scholar - Russell SJ, Sathyanarayana UG & Johnston SA (1996) J. Biol. Chem. 271: 32810–32817 28
Google Scholar - Chu-Ping M, Vu JH, Proske RJ, Slaughter CA & DeMartino GN (1992) J. Biol. Chem. 269: 3539–3547
Google Scholar - Hough R, Pratt G & Rechsteiner M (1986) J. Biol. Chem. 261: 2400–2408
Google Scholar - Hough R, Pratt G & Rechsteiner M (1987) J. Biol. Chem. 262: 8303–8313
Google Scholar - Asano K, Vornlocher HP, Richter-Cook NJ, Merrick WC, Hinnebusch AG & Hershey JWB (1997) J. Biol. Chem. 272: 27042–27052
Google Scholar - Asano K, Kinzy TG, Merrick WC & Hershey JWB (1997) J. Biol. Chem. 272: 1101–1109
Google Scholar
Author information
Authors and Affiliations
- Dept. of Cell Biology, Harvard Medical School, 240 Longwood Ave, Boston, MA, 02115, USA
Michael H. Glickman, David M. Rubin, Christopher N. Larsen, Inge Wefes & Daniel Finley - Dept. of Horticulture, University of Wisconsin, Madison, WI, 53706, USA
Hongyong Fu & Richard Vierstra - CRBM-CNRS, B.P. 5051, Route de Mende, Montpellier, France
Olivier Coux - Max-Planck-Institut für Biochemie, D-82152, Martinsried, Germany
Günter Pfeifer, Zdenka Cjeka & Wolfgang Baumeister - Dept. of Cell Biology, New York Medical College, Valhalla, NY, 10595, USA
Günter Pfeifer, Zdenka Cjeka & Victor Fried
Authors
- Michael H. Glickman
You can also search for this author inPubMed Google Scholar - David M. Rubin
You can also search for this author inPubMed Google Scholar - Hongyong Fu
You can also search for this author inPubMed Google Scholar - Christopher N. Larsen
You can also search for this author inPubMed Google Scholar - Olivier Coux
You can also search for this author inPubMed Google Scholar - Inge Wefes
You can also search for this author inPubMed Google Scholar - Günter Pfeifer
You can also search for this author inPubMed Google Scholar - Zdenka Cjeka
You can also search for this author inPubMed Google Scholar - Richard Vierstra
You can also search for this author inPubMed Google Scholar - Wolfgang Baumeister
You can also search for this author inPubMed Google Scholar - Victor Fried
You can also search for this author inPubMed Google Scholar - Daniel Finley
You can also search for this author inPubMed Google Scholar
Rights and permissions
About this article
Cite this article
Glickman, M.H., Rubin, D.M., Fu, H. et al. Functional analysis of the proteasome regulatory particle.Mol Biol Rep 26, 21–28 (1999). https://doi.org/10.1023/A:1006928316738
- Issue Date: April 1999
- DOI: https://doi.org/10.1023/A:1006928316738