Functional analysis of the proteasome regulatory particle (original) (raw)

Abstract

We have developed S. cerevisiae as a model system for mechanistic studies of the 26S proteasome. The subunits of the yeast 19S complex, or regulatory particle (RP), have been defined, and are closely related to those of mammalian proteasomes. The multiubiquitin chain binding subunit (S5a/Mcb1/Rpn10) was found, surprisingly, to be nonessential for the degradation of a variety of ubiquitin-protein conjugates in vivo. Biochemical studies of proteasomes from Δrpn10 mutants revealed the existence of two structural subassemblies within the RP, the lid and the base. The lid and the base are both composed of 8 subunits. By electron microscopy, the base and the lid correspond to the proximal and distal masses of the RP, respectively. The base is sufficient to activate the 20S core particle for degradation of peptides, but the lid is required for ubiquitin-dependent degradation. The lid subunits share sequence motifs with components of the COP9/signalosome complex, suggesting that these functionally diverse particles have a common evolutionary ancestry. Analysis of equivalent point mutations in the six ATPases of the base indicate that they have well-differentiated functions. In particular, mutations in one ATPase gene, RPT2, result in an unexpected defect in peptide hydrolysis by the core particle. One interpretation of this result is that Rpt2 participates in gating of the channel through which substrates enter the core particle.

Access this article

Log in via an institution

Subscribe and save

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Löwe J, Stock D, Jap B, Zwickl P, Baumeister W & Huber R (1995) Science 268: 533–539
    Google Scholar
  2. Baumeister W, Walz J, Zuhl F & Seemuller E (1998) Cell 92: 367–380
    Google Scholar
  3. Pickart C (1997) FASEB J. 11: 1055–1066
    Google Scholar
  4. Glickman MH, Rubin DM, Fried VA & Finley D (1998) Mol. Cell. Biol. 18: 3149–3162
    Google Scholar
  5. Hoffman L & Rechsteiner M (1994) J. Biol. Chem. 269: 16890–16895
    Google Scholar
  6. DeMartino GN, Moomaw CR, Zagnitko OP, Proske RJ, Ma CP, Afendis SJ, Swaffield JC & Slaughter CA (1994) J. Biol. Chem. 269: 20878–20884
    Google Scholar
  7. Groll M, Ditzel L, Löwe J, Stock D, Bochtler m, Bartunik HD & Huber R (1997) Nature 386: 463–477
    Google Scholar
  8. Fujimuro M, Tanaka K, Yokosawa H & Toh-e A (1998) FEBS Lett. 423: 149–154
    Google Scholar
  9. Patel S & Latterich m (1998) Trends Cell Biol. 8: 65–71
    Google Scholar
  10. Beyer A (1997) Prot. Sci. 6: 2043–2058
    Google Scholar
  11. Finley D, et al. (1998) Trends Biochem. Sci. 23: 244–245
    Google Scholar
  12. Deveraux Q, Ustrell V, Pickart C & Rechsteiner M (1994) J. Biol. Chem. 269: 7059–7061
    Google Scholar
  13. Deveraux Q, Jensen C & Rechsteiner M (1995) J. Biol. Chem. 270: 23726–23729
    Google Scholar
  14. van Nocker S, Sadis S, Rubin DM, Glickman MH, Fu H, Coux O, Wefes I, Finley D & Vierstra RD (1996) Mol. Cell. Biol. 11: 6020–6028
    Google Scholar
  15. van Nocker S, Deveraux Q, Rechsteiner M & Vierstra RD (1996) Proc. Natl. Acad. Sci. 93: 856–860
    Google Scholar
  16. Kominami K, Okura N, Kawamura M, DeMartino GN, Slaughter CA, Shimbara N, Chung CH, Fujimura M, Yokosawa H, Shimizu Y, Tanahashi N, Tanaka K & Toh-e A (1997) Mol. Biol. Cell 8: 171–187
    Google Scholar
  17. Haracska L & Udvardy A (1997) FEBS Lett. 412: 331–336
    Google Scholar
  18. Haracska L & Udvardy A (1995) Eur. J. Biochem. 231: 720–725
    Google Scholar
  19. Young P, Deveraux Q, Beal RE, Pickart CM & Rechsteiner M (1998) J. Biol. Chem. 273: 5461–5467
    Google Scholar
  20. Fu H, Sadis S, Rubin DM, Glickman MH, van Nocker S, Finley D& Vierstra RD (1998) J. Biol. Chem. 273: 1970–1989
    Google Scholar
  21. Glickman MH, Rubin DM, Coux O, Wefes I, Pfeifer G, Cjeka Z, Baumeister W, Fried VA & Finley D (1998) Cell 94: 615–623
    Google Scholar
  22. Hofmann K & Bucher P (1998) Trends Biol. Chem. 23: 204–205
    Google Scholar
  23. Aravind L & Ponting CP (1998) Prot. Sci. 7: 1250–1254
    Google Scholar
  24. Wei N, Tsuge T, Serino G, Dohmae N, Takio K, Matsui M & Deng, XW (1998) Curr. Biol. 8: 919–922
    Google Scholar
  25. Seeger M, Kraft R, Ferrel K, Bech-Otschir D, Dumdey R, Schade R, Gordon C, Naumann M & Dubiel W (1998) FASEB J. 12: 469–478
    Google Scholar
  26. Wolf S, Nagy I, Lupas A, Pfeifer G, Cejka Z, Müller SA, Engel A, De Mot R & Baumeister W(1998) J. Mol. Biol. 277: 13–25
    Google Scholar
  27. Zwickl P, Woo KM, Klenk HP & Goldberg, AL (Submitted).
  28. Rubin DM, Glickman MH, Larsen CN, Dhruvakumar S & Finley D (1998) EMBO 17: 4909–4919
    Google Scholar
  29. Lupas A & Baumeister W (1997) Trends Biochem. Sci. 22: 195–196
    Google Scholar
  30. Gottesman S, Maurizi MR & Wickner S (1997) Cell 91: 435–438
    Google Scholar
  31. Gottesman S, Wickner S & Maurizi MR (1997) Genes Devel. 11: 815–823
    Google Scholar
  32. Hershko A, Leshinsky E, Ganoth D & Heller H (1984) Proc. Natl. Acad. Sci. USA 81: 1619–1623
    Google Scholar
  33. Ditzel L, Lowe J, Stock D, Stetter KO, Huber H, Huber R & Steinbacher S (1998) Cell 93: 125–138
    Google Scholar
  34. Fenton WA & Horwich AL (1997) Protein Science 6: 743–760
    Google Scholar
  35. Horovitz A (1998) Curr. Op. Struc. Biol. 8: 93–100
    Google Scholar
  36. Kim S, Willison KR & Horwich AL (1994) Trends Biochem. Sci. 19: 543–548
    Google Scholar
  37. Ghislain M, Udvardy A & Mann C (1993) Nature 366: 358–361
    Google Scholar
  38. Schnall R, Mannhaupt G, Stuka R, Tauer R, Ehnle S, Schwarzlose C, Vetter I & Feldmann H (1994) Yeast 10: 1141–1155
    Google Scholar
  39. Russell SJ, Sathyanarayana UG & Johnston SA (1996) J. Biol. Chem. 271: 32810–32817 28
    Google Scholar
  40. Chu-Ping M, Vu JH, Proske RJ, Slaughter CA & DeMartino GN (1992) J. Biol. Chem. 269: 3539–3547
    Google Scholar
  41. Hough R, Pratt G & Rechsteiner M (1986) J. Biol. Chem. 261: 2400–2408
    Google Scholar
  42. Hough R, Pratt G & Rechsteiner M (1987) J. Biol. Chem. 262: 8303–8313
    Google Scholar
  43. Asano K, Vornlocher HP, Richter-Cook NJ, Merrick WC, Hinnebusch AG & Hershey JWB (1997) J. Biol. Chem. 272: 27042–27052
    Google Scholar
  44. Asano K, Kinzy TG, Merrick WC & Hershey JWB (1997) J. Biol. Chem. 272: 1101–1109
    Google Scholar

Download references

Author information

Authors and Affiliations

  1. Dept. of Cell Biology, Harvard Medical School, 240 Longwood Ave, Boston, MA, 02115, USA
    Michael H. Glickman, David M. Rubin, Christopher N. Larsen, Inge Wefes & Daniel Finley
  2. Dept. of Horticulture, University of Wisconsin, Madison, WI, 53706, USA
    Hongyong Fu & Richard Vierstra
  3. CRBM-CNRS, B.P. 5051, Route de Mende, Montpellier, France
    Olivier Coux
  4. Max-Planck-Institut für Biochemie, D-82152, Martinsried, Germany
    Günter Pfeifer, Zdenka Cjeka & Wolfgang Baumeister
  5. Dept. of Cell Biology, New York Medical College, Valhalla, NY, 10595, USA
    Günter Pfeifer, Zdenka Cjeka & Victor Fried

Authors

  1. Michael H. Glickman
    You can also search for this author inPubMed Google Scholar
  2. David M. Rubin
    You can also search for this author inPubMed Google Scholar
  3. Hongyong Fu
    You can also search for this author inPubMed Google Scholar
  4. Christopher N. Larsen
    You can also search for this author inPubMed Google Scholar
  5. Olivier Coux
    You can also search for this author inPubMed Google Scholar
  6. Inge Wefes
    You can also search for this author inPubMed Google Scholar
  7. Günter Pfeifer
    You can also search for this author inPubMed Google Scholar
  8. Zdenka Cjeka
    You can also search for this author inPubMed Google Scholar
  9. Richard Vierstra
    You can also search for this author inPubMed Google Scholar
  10. Wolfgang Baumeister
    You can also search for this author inPubMed Google Scholar
  11. Victor Fried
    You can also search for this author inPubMed Google Scholar
  12. Daniel Finley
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Glickman, M.H., Rubin, D.M., Fu, H. et al. Functional analysis of the proteasome regulatory particle.Mol Biol Rep 26, 21–28 (1999). https://doi.org/10.1023/A:1006928316738

Download citation