IGF and Insulin Action in the Mammary Gland: Lessons from Transgenic and Knockout Models (original) (raw)
REFERENCES
J. M. Rosen, S. L. Wyszomierski, and D. L. Hadsell (1999). Regulation of milk protein gene expression. Ann. Rev. Nutr.19:407–436. Google Scholar
A. V. Lee, S. G. Hilsnebeck, and D. Yee (1998). IGF system components as prognostic markers in breast cancer. Breast Cancer Res. Treat.47:295–302. Google Scholar
C. L. Arteaga (1992). Interference of the IGF system as a strategy to inhibit breast cancer growth. Breast Cancer Res. Treat.22:101–106. Google Scholar
B. C. Turner, B. G. Haffty, L. Narayanan, J. Yuan, P. A. Havre, A. A. Gumbs, L. Kaplan, J. L. Burgaud, D. Carter, R. Baserga, and P. M. Glazer (1997). Insulin-like growth factor-I receptor overexpression mediates cellular radioresistance and local breast cancer recurrence after lumpectomy and radiation. Cancer Res.57:3079–3083. Google Scholar
B. Lamothe, A. Baudry, P. Desbois, L. Lamotte, D. Bucchini, P. DeMeyts, and R. L. Joshi (1999). Genetic engineering in mice: Impact on insulin signaling and action. Biochem J.335:193–204. Google Scholar
D. R. Clemmons (1997). Insulin-like growth factor binding proteins and their role in controlling IGF actions. Cytokine Growth Factor Rev.8:45–62. Google Scholar
H. S. Kim, S. R. Nagalla, Y. Oh, E. Wilson, C. T. Roberts, Jr. and R. G. Rosenfeld (1997). Identification of a family of low-affinity insulin-like growth factor binding proteins (IGFBPs): Characterization of connective tissue growth factor as a member of the IGFBP superfamily. Proc. Natl. Acad. Sci. U.S.A.94:12981–12986. Google Scholar
Y. Yamanaka, E. M. Wilson, R. G. Rosenfeld, and Y. Oh (1997). Inhibition of insulin receptor activation by insulin-like growth factor binding proteins. J. Biol. Chem.272:30729–30734. Google Scholar
F. Frasca, G. Pandini, P. Scalia, L. Sciacca, R. Mineo, A. Costantino, I. D. Goldfine, A. Belfiore, and R. Vigneri (1999). Insulin receptor isoform A, a newly recognized high affinity insulin-like growth factor II receptor in fetal and cancer cells. Mol. Cell. Biol.19:3278–3288. Google Scholar
D. LeRoith, H. Werner, D. Beitner-Johnson, and C. T. Roberts, Jr. (1995). Molecular and cellular aspects of the insulin-like growth factor I receptor. Endocrine Rev.16:143–163. Google Scholar
E. M. Bailyes, B. T. Navé, M. A. Soos, S. R. Orr, A. C. Hayward, and K. Siddle (1997). Insulin receptor/IGF-I receptor hybrids are widely distributed in mammalian tissues: Quantification of individual receptor species by selective immunoprecipitation and immunoblotting. Biochem. J.327:209–215. Google Scholar
R. Lammers, A. Gray, J. Schlessinger, and A. Ullrich (1989). Differential signaling potential of insulin-and IGF-1-receptor cytoplasmic domains. EMBO8:1369–1375. Google Scholar
M. Kaleko, W. J. Rutter, and D. Miller (1990). Overexpression of the human insulin-like growth factor I receptor promotes ligand dependent neoplastic transformation. Mol. Cell. Biol.10:464–473. Google Scholar
F. Giorgino, A. Belfiore, G. Milazzo, A. Costantino, B. Maddux, J. Whittaker, I. D. Goldfine, and R. Vigneri (1991). Overexpression of insulin receptors in fibroblast and ovary cells induces a ligand-mediated transformed phenotype. Mol. Endocrinol.5:452–459. Google Scholar
L. Frittitta, R. Vigneri, M. R. Stampfer, and I. D. Goldfine (1995). Insulin receptor overexpression in 184B5 human mammary epithelial cells induces a ligand-dependent transformed phenotype. J. Cell. Biochem.57:666–669. Google Scholar
A. M. Geier, R. Haimsohn, R. Beery, R. Hemi, and B. Lunenfeld (1992). Insulin-like growth factor I inhibits cell death induced by cycloheximide in MCF-7 cells: A model for analyzing control of cell death. In Vitro Cell. Dev. Biol.28A:725–729. Google Scholar
C. G. Prosser, L. Sankaran, L. Hennighausen, and Y. J. Topper (1987). Comparison of the roles of insulin and insulin-like growth factor I in casein gene expression and in the development of alpha-lactalbumin and glucose transport activities in the mouse mammary epithelial cell. Endocrinology120: 1411–1416. Google Scholar
A. Virkamäki, K. Ueki and C. R. Kahn (1999). Protein-protein interactions in insulin signaling and the molecular mechanisms of insulin resistance. J. Clin. Invest.103:931–943. Google Scholar
R. Rubin and R. Baserga (1995). Insulin-like growth factor-I receptor. Its role in cell proliferation, apoptosis, and tumorigenicity. Lab. Invest.73:311–331. Google Scholar
D. Beitner-Johnson, V. A. Blakesley, Z. Shen-Orr, M. Jimenez, B. Stannard, L. M. Wang, J. Pierce, and D. LeRoith (1996). The proto-oncogene product c-Crk associates with insulin receptor substrate-1 and 4PS. Modulation by insulin growth factor-I (IGF) and enhanced IGF-I signaling. J. Biol. Chem.271: 9287–9290. Google Scholar
R.W. Furlanetto, B. R. Dey, W. Lopaczynski, and S. P. Nissley (1997). 14–3–3 proteins interact with the insulin-like growth factor receptor but not the insulin receptor. Biochem. J.327:765–771. Google Scholar
G. Dumenil, M. Rubini, G. Dubois, R. Baserga, M. Fellous, and S. Pellegrini (1997). Identification of signaling components in tyrosine kinase cascades using phosphopeptide affinity chromatography. Biochem. Biophys. Res. Commun.234:748–753. Google Scholar
R. O'Connor, A. Kauffmann-Zeh, Y. Liu, S. Lehar, G. I. Evan, R. Baserga, and W. A. Blattler (1997). Identification of domains of the insulin-like growth factor I receptor that are required for protection from apoptosis. Mol. Cell. Biol.17:427–435. Google Scholar
G. Romano, M. Prisco, T. Zanocco-Marani, F. Peruzzi, B. Valentinis, and R. Baserga (1999). Dissociation between resistance to apoptosis and the transformed phenotype in IGF-I receptor signaling. J. Cell. Biochem.72:294–310. Google Scholar
W. He, D.W. Rose, J. M. Olefsky, and T. A. Gustafson (1998). Grb10 interacts differentially with the insulin receptor, insulin-like growth factor I receptor, and epidermal growth factor receptor via the grb10 src homology 2 (SH2) domain and a second novel domain located between the pleckstrin homology and SH2 domains. J. Biol. Chem.273:6860–6867. Google Scholar
D. L. Kleinberg (1998). Role of IGF-I in normal mammary development. Breast Cancer Res. Treat.47:201–208. Google Scholar
M. M. Richert and T. L. Wood (1999). The insulin-like growth factors and IGF type I receptor during postnatal growth of the murine mammary gland: Sites of mRNA expression and potential functions. Endocrinology140:454–461. Google Scholar
M. S. Weber, P. L. Boyle, B. A. Corl, E. A. Wong, F. C. Gwazdauskas, and R. M. Akers (1998). Expression of ovine insulin-like growth factor-1 (IGF-1) stimulates alveolar bud development in mammary glands of transgenic mice. Endocrine8:251–259. Google Scholar
W. Ruan, C. B. Newman, and D. L. Kleinberg (1992). Intact and aminoterminally shortened forms of insulin-like growth factor I induce mammary gland differentiation and development. Proc. Natl. Acad. Sci. U.S.A.89:10872–10876. Google Scholar
D. L. Kleinberg, M. Feldman, and W. Ruan (2000). IGF-I: An essential factor in terminal end bud formation and ductal morphogenesis. J. Mam. Gland Biol. Neoplasia5: xx–xx. Google Scholar
R. G. Richards and R. P. DiAugustine (1999). Insulin-like growth factor (IGF)-I and mammary ductal development. Mutant mouse models that target the growth hormone-IGF-I axis. Progr. Abstr. 81st Ann. Meeting of the Endocrine Society (Abstract):168
D. L. Hadsell, N. M. Greenberg, J. M. Fligger, C. R. Baumrucker, and J. M. Rosen (1996). Targeted expression of factordes( 1–3) human insulin-like growth factor I in transgenic mice influences mammary gland development and IGF-binding protein expression. Endocrinology137:321–330. Google Scholar
S. Neuenschwander, A. Schwartz, T. L. Wood, C. T. Roberts, Jr., L. Hennighausen, and D. LeRoith (1996). Involution of the lactating mammary gland is inhibited by the IGF system in a transgenic mouse model. J. Clin. Invest.97:2225–2232. Google Scholar
D. L. Hadsell, K. L. Murphy, N. Reece, T. Alexeenko, R. Laucirica, and J. M. Rosen (1999). Cooperation between des(1–3)IGF-I and mutant p53 accelerates mammary gland carcinogenesis in bigenic mice. Progr. Abstr. 81st Ann. Meeting of the Endocrine Society (Abstract):477
P. Chomczynski, P. Qasba, and Y. J. Topper (1984). Essential role of insulin in transcription of the rat 25,000 molecular weight casein gene. Science226:1326–1328. Google Scholar
C. G. Prosser, C. Royle, I. R. Fleet, and T. B. Mepham (1991). The galactopoietic effect of bovine growth hormone in goats is associated with increased concentrations of insulin-like growth factor-I in milk and mammary tissue. J. Endocrinol.128: 457–463. Google Scholar
C. G. Prosser, I. R. Fleet, A. N. Corps, E. R. Froesch, and R. B. Heap (1990). Increase in milk secretion and mammary blood flow by intra-arterial infusion of insulin-like growth factor-I into the mammary gland of the goat. J. Endocrinol.126:437–443. Google Scholar
C. G. Prosser, S. R. Davis, V. C. Farr, L. G. Moore, and P. D. Gluckman (1994). Effects of close-arterial (external pudic) infusion of insulin-like growth factor-II on milk yield and mammary blood flow in lactating goats. J. Endocrinol.142:93–99. Google Scholar
S. R. Davis, P. D. Gluckman, S. C. Hodgkinson, V. C. Farr, B. H. Breier, and B. D. Burleigh (1989). Comparison of the effects of administration of recombinant bovine growth hor-mone or N-met insulin-like growth factor-I to lactating goats. J. Endocrinol.123:33–39. Google Scholar
D. J. Flint, E. Tonner, J. Beattie, and D. Panton (1992). Investigation of the mechanism of action of growth hormone in stimulating lactation in the rat. J. Endocrinol.134:377–383. Google Scholar
E. Wolf, P. M. Jehle, M. M. Weber, H. Sauerwein, A. Daxenlike berger, B. H. Breier, U. Besenfelder, L. Frenyo, and G. Brem (1997). Human insulin-like growth factor I (IGF-I) produced in the mammary glands of transgenic rabbits: Yield, receptor binding, mitogenic activity, and effects on IGF-binding proteins. Endocrinology138:307–313. Google Scholar
D. G. Burrin, M. L. Fiorotto, and D. L. Hadsell (1999). Transgenic hypersecretion of des(1–3)human insulin-like growth factor I in mouse milk has limited effects on the gastrothe intestinal tract in suckling pups. J. Nutr.129:51–56. Google Scholar
P. A. Furth (1999). Mammary gland involution and apoptosis of mammary epithelial cells. J. Mam. Gland Biol. Neoplasia4:123–127. Google Scholar
L. R. Lund, J. Romer, N. Thomasset, H. Solberg, C. Pyke, M. J. Bissell, K. Dano, and Z. Werb (1996). Two distinct phases of apoptosis in mammary gland involution:Proteinase-independent and-dependent pathways. Development122:181–193. Google Scholar
L. H. Quarrie, C.V. Addey, and C. J. Wilde (1996). Programmed cell death during mammary tissue involution induced by wean-ing, litter removal, and milk stasis. J. Cell. Physiol.168:559–569. Google Scholar
A. Marti, Z. Feng, H. J. Altermatt, and R. Jaggi (1997). Milk accumulation triggers apoptosis of mammary epithelial cells. Eur. J. Cell. Biol.73:158–165. Google Scholar
A. F. Burnol, A. Leturque, P. Ferré, J. Kande, and J. Girard (1986). Increased insulin sensitivity and responsiveness during lactation in rats. Am. J. Physiol.251:537–541. Google Scholar
E. Tonner, M. C. Barber, M. T. Travers, A. Logan, and D. J. Flint (1997). Hormonal control of insulin-like growth factordes( binding protein-5 production in the involuting mammary gland of the rat. Endocrinology138:5101–5107. Google Scholar
D. J. Flint, E. Tonner, and G. J. Allan (2000). Insulin-like growth factor binding proteins: IGF-dependent and-independent effects in the mammary gland: J. Mam. Gland Biol. Neoplasia5: xx–xx. Google Scholar
N. Farrelly, Y. J. Lee, J. Oliver, C. Dive, and C. H. Streuli (1999). Extracellular matrix regulates apoptosis in mammary epithelium through a control on insulin signaling. J. Cell Biol.144:1337–1347. Google Scholar
Z. Feng, A. Marti, B. Jehn, H. J. Altermatt, G. Chicaiza, and R. Jaggi (1995). Glucocorticoid and progesterone inhibit involution and programmed cell death in the mouse mammary gland. J. Cell Biol.131:1095–1103. Google Scholar
F. J. Ballard, S. E. Knowles, P. E. Walton, K. Edson, P. C. Owens, M. A. Mohler, and B. L. Ferraiolo (1991). Plasma clearance and tissue distribution of labelled insulin-like growth factor-I (IGF-I), IGF-II and des(1–3)IGF-I in rats. J. Endocrinol.128:197–204. Google Scholar
R. Baserga, C. Sell, P. Porcu, and M. Rubini (1994). The role of the IGF-I receptor in growth and transformation of mammalian cells. Cell. Prolif.27:63–71. Google Scholar
C. L. Arteaga, L. J. Kitten, E. B. Coronado, S. Jacobs, F. C. J. Kull, D. C. Allred, and C. K. Osborne (1989). Blockade of the type I somatomedin receptor inhibits growth of human breast cancer cells in athymic mice. J. Clin. Invest.84: 1418–1423. Google Scholar
S. E. Dunn, M. Ehrlich, N. J. Sharp, K. Reiss, G. Solomon, R. Hawkins, R. Baserga, and J. C. Barrett (1998). A dominant negative mutant of the insulin-like growth factor-I receptor inhibits the adhesion, invasion, and metastasis of breast cancer. Cancer Res.58:3353–3361. Google Scholar
M. Resnicoff, D. Ambrose, D. Coppola, and R. Rubin (1993). Insulin-like growth factor-1 and its receptor mediate the autocrine proliferation of human ovarian carcinoma cell lines. Lab. Invest.69:756–760. Google Scholar
P. Bates, R. Fisher, A. Ward, L. Richardson, D. J. Hill, and C. F. Graham (1996). Mammary cancer in transgenic mice expressing insulin-like growth factor II (IGF-II). Brit. J. Cancer72:1189–1193. Google Scholar
D. D. Pravtcheva and T. L. Wise (1999). Metastasizing mammary carcinomas in H19 enhancers-Igf2 transgenic mice. J. Exp. Zool.281:43–57. Google Scholar
T. Dunn (1959). Morphology of mammary tumors in mice. In F. Homburger (ed.), Physiopathology of Cancer, A. J. Phiebig, New York, pp.38–83. Google Scholar
X. J. Wang, D. A. Greenhalgh, A. Jiang, H. Dacheng, L. Zhong, B. R. Brinkley, and D. R. Roop (1999). Analysis of centrosome abnormalities and angiogenesis in epidermal-targeted p53172H mutant and p53-knockout mice after chemical carcinogenesis: Evidence for a gain of function. Mol. Carcinogen.23:185–192. Google Scholar
D. K. Bol K. Kiguchi, I. Gimenez-Conti, T. Rupp, and J. DiGiovanni (1997). Overexpression of insulin-like growth factor-1 induces hyperplasia, dermal abnormalities, and spontaneous tumor formation in transgenic mice. Oncogene14: 1725–1734. Google Scholar
C. E. Rogler, D. Yang, L. Rossetti, J. Donohoe, E. Alt, C. J. Chang, R. Rosenfeld, K. Neely, and R. Hintz (1994). Altered body composition and increased frequency of diverse malignancies in insulin-like growth factor-II transgenic mice. J. Biol. Chem.269:13779–13784. Google Scholar
J. Petrik, J. M. Pell, E. Arany, T. J. McDonald, W. L. Dean, and D. J. Hill (1999). Overexpression of insulin-like growth factor-II in transgenic mice is associated with pancreatic islet cell hyperplasia. Endocrinology140:2353–2363. Google Scholar
M. M. Weber, C. Fottner, P. Schmidt, K. M. Brodowski, K. Gittner, H. Lahm, D. Englehardt, and E. Wolf (1999). Postna-autotal overexpression of insulin-like growth factor II in transgenic mice is associated with adrenocortical hyperplasia and enhanced steroidogenesis. Endocrinology140:2353–2363. Google Scholar
G. Christofori, P. Naik, and D. Hanahan (1994). A second signal supplied by insulin-like growth factor II in oncogeneexpressing induced tumorigenesis. Nature369:414–418. Google Scholar
L. Frittitta, A. Cerrato, M. G. Sacco, N. Weidner, I. D. Goldfine, and R. Vigneri (1997). The insulin receptor content is increased in breast cancers initiated by three different oncogenes in transgenic mice. Breast Cancer Res. Treat.45:141–147. Google Scholar
L. Sciacca, A. Costantino, G. Pandini, R. Mineo, F. Frasca, P. Scalia, P. Sbraccia, and I. D. Goldfine (1999). Insulin receptor activation by IGF-II in breast cancers: Evidence for a new autocrine/paracrine mechanism. Oncogene18:2471–2479. Google Scholar
L. Zhang, M. Kim, Y. H. Choi, B. Goemans, C. Yeung, C. Y. Hu, S. Zhan, P. Seth, and L. J. Helman (1999). Diminished G1 checkpoint after g-irradiation and altered cell cycle regulation by insulin-like growth factor II overexpression. J. Biol. Chem.274:13118–13126. Google Scholar
J. J. Wysolmerski, J. F. McCaughern-Carucci, A. G. Daifotis, A. E. Broadus, and W. M. Philbrick (1995). Overexpression of parathyroid hormone-related protein or parathyroid hormone in transgenic mice impairs branching morphogenesis during mammary gland development. Development121:3539–3547. Google Scholar
D. No, T. P. Yao, and R. M. Evans (1996). Ecdysone-inducible gene expression in mammalian cells and transgenic mice. Proc. Natl. Acad. Sci. U.S.A.93:3346–3651. Google Scholar
D. Ewald, M. Li, S. Efrat, G. Auer, R. J. Wall, P. Furth, and L. Hennighausen (1996). Time-sensitive reversal of hyperplasia in transgenic mice expressing SV40 T antigen. Science273: 1384–1386. Google Scholar
Y. Wang, F. J. DeMayo, S. Y. Tsai, and B.W. O'Malley (1997). Ligand-inducible and liver-specific target gene expression in transgenic mice. Nature Biotechnol.15:239–243. Google Scholar