The INK4A/ARF Locus: Role in Cell Cycle Control and Apoptosis and Implications for Glioma Growth (original) (raw)

References

  1. Weinberg RA: The retinoblastoma protein and cell cycle control. Cell 81: 323–30, 1995
    Google Scholar
  2. Levine AJ: p53, the cellular gatekeeper for growth and division. Cell 88: 323–31, 1997
    Google Scholar
  3. Kamb A, GruisN A, Weaver-Feldhaus J, Liu Q, Harshman K, Tavtigian SV, Stockert E, Day RS, 3rd, Johnson BE, Skolnick MH: A cell cycle regulator potentially involved in genesis of many tumor types. Science 264: 436–40, 1994
    Google Scholar
  4. Serrano M, Hannon GJ, Beach D: A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 366: 704–7, 1993
    Google Scholar
  5. Duro D, Bernard O, Della Valle V, Berger R, Larsen CJ: A new type of p16INK4/MTS1 gene transcript expressed in B-cell malignancies. Oncogene 11: 21–9, 1995
    Google Scholar
  6. Mao L, Merlo A, Bedi G, Shapiro GI, Edwards CD, Rollins BJ, Sidransky D: A novel p16INK4A transcript. Cancer Res 55: 2995–7, 1995
    Google Scholar
  7. Quelle DE, Ashmun RA, Hannon GJ, Rehberger PA, Trono D, Richter KH, Walker C, Beach D, Sherr CJ, Serrano M: Cloning and characterization of murine p16INK4a and p15INK4b genes. Oncogene 11: 635–45, 1995
    Google Scholar
  8. Stone S, Jiang P, Dayananth P, Tavtigian SV, Katcher H, Parry D, Peters G, Kamb A: Complex structure and regulation of the P16 (MTS1) locus. Cancer Res 55: 2988–94, 1995
    Google Scholar
  9. Zindy F, van Deursen J, Grosveld G, Sherr CJ, Roussel MF: INK4d-deficient mice are fertile despite testicular atrophy. Mol Cell Biol 20: 372–8, 2000
    Google Scholar
  10. Franklin DS, Godfrey VL, Lee H, Kovalev GI, Schoonhoven R, Chen-Kiang S, Su L, Xiong Y: CDK inhibitors p18(INK4c) and p27(Kip1) mediate two separate pathways to collaboratively suppress pituitary tumorigenesis. Genes Dev 12: 2899–911, 1998
    Google Scholar
  11. Roussel MF: The INK4 family of cell cycle inhibitors in cancer. Oncogene 18: 5311–7, 1999
    Google Scholar
  12. Pavletich NP: Mechanisms of cyclin-dependent kinase regulation: structures of Cdks, their cyclin activators, and Cip and INK4 inhibitors. J Mol Biol 287: 821–8, 1999
    Google Scholar
  13. Koh J, Enders GH, Dynlacht BD, Harlow E:Tumour-derived p16 alleles encoding proteins defective in cell-cycle inhibition. Nature 375: 506–10, 1995
    Google Scholar
  14. Noh SJ, Li Y, Xiong Y, Guan KL: Identification of functional elements of p18INK4C essential for binding and inhibition of cyclin-dependent kinase (CDK) 4 and CDK6. Cancer Res 59: 558–64, 1999
    Google Scholar
  15. McConnell BB, Gregory FJ, Stott FJ, Hara E, Peters G: Induced expression of p16(INK4a) inhibits both CDK4-and CDK2-associated kinase activity by reassortment of cyclin-CDK-inhibitor complexes. Mol Cell Biol 19: 1981–9, 1999
    Google Scholar
  16. Parry D, Bates S, Mann DJ, Peters G: Lack of cyclin D-Cdk complexes in Rb-negative cells correlates with high levels of p16INK4/MTS1 tumour suppressor gene product. Embo J 14: 503–11, 1995
    Google Scholar
  17. Parry D, Mahony D,Wills K, Lees E: CyclinD-CDKsubunit arrangement is dependent on the availability of competing INK4 and p21 class inhibitors. Mol Cell Biol 19: 1775–83, 1999
    Google Scholar
  18. Russo AA, Tong L, Lee JO, Jeffrey PD, Pavletich NP: Structural basis for inhibition of the cyclin-dependent kinase Cdk6 by the tumour suppressor p16INK4a. Nature 395: 237–43, 1998
    Google Scholar
  19. Brotherton DH, Dhanara V, Wick S, Brizuela L, Domaille PJ, Volyanik E, Xu X, Parisini E, Smith BO, Archer SJ: Crystal structure of the complex of the cyclin D-dependent kinase Cdk6 bound to the cell-cycle inhibitor p19INK4d. Nature 395: 244–50, 1998
    Google Scholar
  20. Lukas J, Parry D, Aagaard L, Mann DJ, Bartkova J, Strauss M, Peters G, Bartek J: Retinoblastoma-protein-dependent cell-cycle inhibition by the tumour suppressor p16. Nature 375: 503–6, 1995
    Google Scholar
  21. Ueki K, Ono Y, Henson JW, Efird JT, von Deimling A, Louis DN: CDKN2/p16 or RB alterations occur in the ma ority of glioblastomas and are inversely correlated. Cancer Res 56: 150–3, 1996
    Google Scholar
  22. Li Y, Nichols MA, Shay JW, Xiong Y: Transcriptional repression of the D-type cyclin-dependent kinase inhibitor p16 by the retinoblastoma susceptibility gene product pRb. Cancer Res 54: 6078–82, 1994
    Google Scholar
  23. Shapiro GI, Edwards CD, Ewen ME, Rollins BJ: p16INK4A participates in a G1 arrest checkpoint in response to DNA damage. Mol Cell Biol 18: 378–87, 1998
    Google Scholar
  24. Liggett WH Jr, Sewell DA, Rocco J, Ahrendt SA, Koch W, Sidransky D: p16 and p16 beta are potent growth suppressors of head and neck squamous carcinoma cells in vitro. Cancer Res 56: 4119–23, 1996
    Google Scholar
  25. Arap W, Knudsen E, Sewell DA, Sidransky D, Wang JY, Huang HJ, Cavenee WK: Functional analysis of wild-type and malignant glioma derived CDKN2Abeta alleles: evidence for an RB-independent growth suppressive pathway. Oncogene 15: 2013–20, 1997
    Google Scholar
  26. Weber JD, Taylor LJ, Roussel MF, Sherr CJ, Bar-Sagi D: Nucleolar Arf sequesters Mdm2 and activates p53. Nat Cell Biol 1: 20–6, 1999
    Google Scholar
  27. Tao W, Levine AJ: P19(ARF) stabilizes p53 by blocking nucleo-cytoplasmic shuttling of Mdm2. Proc Natl Acad Sci USA 96: 6937–41, 1999
    Google Scholar
  28. Robertson KD, Jones PA: The human ARF cell cycle regulatory gene promoter is a CpG island which can be silenced by DNA methylation and down-regulated by wild-type p53. Mol Cell Biol 18: 6457–73, 1998
    Google Scholar
  29. Stott FJ, Bates S, James MC, McConnell BB, Starborg M, Brookes S, Palmero I, Ryan K, Hara E, Vousden KH: The alternative product from the human CDKN2A locus, p14(ARF), participates in a regulatory feedback loop with p53 and MDM2. Embo J 17: 5001–14, 1998
    Google Scholar
  30. Quelle DE, Zindy F, Ashmun RA, Sherr CJ: Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 83: 993–1000, 1995
    Google Scholar
  31. Kamijo T, Weber JD, Zambetti G, Zindy F, Roussel MF, Sherr CJ: Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc Natl Acad Sci USA 95: 8292–7, 1998
    Google Scholar
  32. Zindy F, Eischen CM, Randle DH, Kamijo T, Cleveland JL, Sherr CJ, Roussel MF: Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev 12: 2424–33, 1998
    Google Scholar
  33. de Stanchina E, McCurrach ME, Zindy F, Shieh SY, Ferbeyre G, Samuelson AV, Prives C, Roussel MF, Sherr CJ, Lowe SW: E1A signaling to p53 involves the p19(ARF) tumor suppressor. Genes Dev 12: 2434–42, 1998
    Google Scholar
  34. Serrano M, Lee H, Chin L, Cordon-Cardo C, Beach D, DePinho RA: Role of the INK4a locus in tumor suppression and cell mortality. Cell 85: 27–37, 1996
    Google Scholar
  35. Hara E, Smith R, Parry D, Tahara H, Stone S, Peters G: Regulation of p16CDKN2 expression and its implications for cell immortalization and senescence. Mol Cell Biol 16: 859–67, 1996
    Google Scholar
  36. Alcorta DA, Xiong Y, Phelps D, Hannon G, Beach D, Barrett JC: Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. Proc Natl Acad Sci USA 93: 13742–7, 1996
    Google Scholar
  37. Zindy F, Quelle DE, Roussel MF, Sherr CJ: Expression of the p16INK4a tumor suppressor versus other INK4 family members during mouse development and aging. Oncogene 15: 203–11, 1997
    Google Scholar
  38. Kamijo T, Zindy F, Roussel MF, Quelle DE, Downing JR, Ashmun RA, Grosveld G, Sherr CJ: Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 91: 649–59, 1997
    Google Scholar
  39. Uhrbom L, Nister M, Westermark B: Induction of senescence in human malignant glioma cells by p16INK4A. Oncogene 15: 505–14, 1997
    Google Scholar
  40. Stein GH, Drullinger LF, Soulard A, Dulic V: Differential roles for cyclin-dependent kinase inhibitors p21 and p16 in the mechanisms of senescence and differentiation in human fibroblasts. Mol Cell Biol 19: 2109–17, 1999
    Google Scholar
  41. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW: Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88: 593–602, 1997
    Google Scholar
  42. Kamijo T, van de Kamp E, Chong MJ, Zindy F, Diehl JA, Sherr CJ, McKinnon PJ: Loss of the ARF tumor suppressor reverses premature replicative arrest but not radiation hypersensitivity arising from disabled atm function. Cancer Res 59: 2464–9, 1999
    Google Scholar
  43. Carnero A, Hudson JD, Price CM, Beach DH: p16INK4A and p19ARF act in overlapping pathways in cellular immortalization. Nat Cell Biol 2: 148–55, 2000
    Google Scholar
  44. Schreiber M, Muller WJ, Singh G, Graham FL: Comparison of the effectiveness of adenovirus vectors expressing cyclin kinase inhibitors p16INK4A, p18INK4C, p19INK4D, p21(WAF1/CIP1) and p27KIP1 in inducing cell cycle arrest, apoptosis and inhibition of tumorigenicity. Oncogene 18: 1663–76, 1999
    Google Scholar
  45. Kim M, Katayose Y, Rojanala L, Shah S, Sgagias M, Jang L, Jung YJ, Lee SH, Hwang SG, Cowan KH: Induction of apoptosis in p16INK4A mutant cell lines by adenovirus-mediated overexpression of p16INK4A protein. Cell Death Differ 7: 706–711, 2000
    Google Scholar
  46. Eischen CM, Weber JD, Roussel MF, Sherr CJ, Cleveland JL: Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes Dev 13: 2658–69, 1999
    Google Scholar
  47. Schmitt CA, McCurrach ME, de Stanchina E, Wallace-Brodeur RR, Lowe SW: INK4a/ARF mutations accelerate lymphomagenesis and promote chemoresistance by disabling p53. Genes Dev 13: 2670–7, 1999
    Google Scholar
  48. Chintala SK, Fueyo J, Gomez-Manzano C, Venkaiah B, Berkvig R, Yung WK, Sawaya R, Kyritsis AP, Rao JS: Adenovirus-mediated p16/CDKN2 gene transfer suppresses glioma invasion in vitro. Oncogene 15: 2049–57, 1997
    Google Scholar
  49. Fahraeus R, Lane DP: The p16(INK4a) tumour suppressor protein inhibits alphavbeta3 integrin-mediated cell spreading on vitronectin by blocking PKC-dependent localization of alphavbeta3 to focal contacts. Embo J 18: 2106–18, 1999
    Google Scholar
  50. Marshall JF and Hart IR: The role of alpha v-integrins in tumour progression and metastasis. Semin Cancer Biol 7: 129–38, 1996
    Google Scholar
  51. van Lookeren Campagne M, Gill R: Tumor-suppressor p53 is expressed in proliferating and newly formed neurons of the embryonic and postnatal rat brain: comparison with expression of the cell cycle regulators p21Waf1/Cip1, p27Kip1, p57Kip2, p16Ink4a, cyclin G1, and the proto-oncogene Bax. J Comp Neurol 397: 181–98, 1998
    Google Scholar
  52. Watanabe G, Pena P, Shambaugh GE 3rd, Haines GK 3rd, Pestell RG: Regulation of cyclin dependent kinase inhibitor proteins during neonatal cerebella development. Brain Res Dev Brain Res 108: 77–87, 1998
    Google Scholar
  53. Nielsen GP, Stemmer-Rachamimov AO, Shaw J, Roy JE, Koh J, Louis DN: Immunohistochemical survey of p16INK4A expression in normal human adult and infant tissues. Lab Invest 79: 1137–43, 1999
    Google Scholar
  54. Quelle DE, Cheng M, Ashmun RA, Sherr CJ: Cancerassociated mutations at the INK4a locus cancel cell cycle arrest by p16INK4a but not by the alternative reading frame protein p19ARF. Proc Natl Acad Sci USA 94: 669–73, 1997
    Google Scholar
  55. Holland EC, Hively WP, DePinho RA, Varmus HE: Aconstitutively active epidermal growth factor receptor cooperates with disruption of G1 cell-cycle arrest pathways to induce glioma-like lesions in mice. Genes Dev 12: 3675–85, 1998
    Google Scholar
  56. Ruas M, Peters G: The p16INK4a/CDKN2A tumor suppressor and its relatives. Biochim Biophys Acta 1378: F115–77, 1998
    Google Scholar
  57. Byeon IJ, Li J, Ericson K, Selby TL, Tevelev A, Kim HJ, O'Maille P, Tsai MD: Tumor suppressor p16INK4A: determination of solution structure and analyses of its interaction with cyclin-dependent kinase. Mol Cell 1: 421–31, 1998
    Google Scholar
  58. Fitz Gerald MG, Harkin DP, Silva-Arrieta S, MacDonald DJ, Lucchina LC, Unsal H, O'Neill E, Koh J, Finkelstein DM, Isselbacher KJ: Prevalence of germ-line mutations in p16, p19ARF, and CDK4 in familial melanoma: analysis of a clinic-based population. Proc Natl Acad Sci USA 93: 8541–5, 1996
    Google Scholar
  59. Merlo A, Herman JG, Mao L, Lee DJ, Gabrielson E, Burger PC, Baylin SB, Sidransky D: 5′ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat Med 1: 686–92, 1995
    Google Scholar
  60. Esteller M, Tortola S, Toyota M, Capella G, Peinado MA, Baylin SB, Herman JG: Hypermethylation-associated inactivation of p14(ARF) is independent of p16(INK4a) methylation and p53 mutational status. Cancer Res 60: 129–33, 2000
    Google Scholar
  61. Melendez B, Malumbres M, de Castro IP, Santos J, Pellicer A, Fernandez-Piqueras J: Characterization of the murine p19(ARF) promoter CpG island and its methylation pattern in primary lymphomas. Carcinogenesis 21: 817–21, 2000
    Google Scholar
  62. Jen J, Harper JW, Bigner SH, Bigner DD, Papadopoulos N, Markowitz S, Willson JK, Kinzler KW, Vogelstein B: Deletion of p16 and p15 genes in brain tumors. Cancer Res 54: 6353–8, 1994
    Google Scholar
  63. Schmidt EE, Ichimura K, Reifenberger G, Collins VP: CDKN2 (p16/MTS1) gene deletion or CDK4 amplification occurs in the ma ority of glioblastomas. Cancer Res 54: 6321–4, 1994
    Google Scholar
  64. He J, Olson JJ, James CD: Lack of p16INK4 or retinoblastoma protein (pRb), or amplification-associated overexpression of cdk4 is observed in distinct subsets of malignant glial tumors and cell lines. Cancer Res 55: 4833–6, 1995
    Google Scholar
  65. Ichimura K, Schmidt EE, Goike HM, Collins VP: Human glioblastomas with no alterations of the CDKN2A (p16INK4A, MTS1) and CDK4 genes have frequent mutations of the retinoblastoma gene. Oncogene 13: 1065–72, 1996
    Google Scholar
  66. Ichimura K, Bolin MB, Goike HM, Schmidt EE, Moshref A, Collins VP: Deregulation of the p14ARF/MDM2/p53 pathway is a prerequisite for human astrocytic gliomas with G1-S transition control gene abnormalities. Cancer Res 60: 417–24, 2000
    Google Scholar
  67. Fulci G, Labuhn M, Maier D, Lachat Y, Hausmann O, Hegi ME, Janzer RC, Merlo A, Van Meir EG: p53 gene mutation and ink4a-arf deletion appear to be two mutually exclusive events in human glioblastoma. Oncogene 19: 3816–22, 2000
    Google Scholar
  68. Dirks PB, Patel K, Hubbard SL, Ackerley C, Hamel PA, Rutka JT: Retinoic acid and the cyclin dependent kinase inhibitors synergistically alter proliferation and morphology of U343 astrocytoma cells. Oncogene 15: 2037–48, 1997
    Google Scholar
  69. Fueyo J, Gomez-Manzano C, Yung WK, Clayman GL, Liu TJ, Bruner J, Levin VA, Kyritsis AP: Adenovirusmediated p16/CDKN2 gene transfer induces growth arrest and modifies the transformed phenotype of glioma cells. Oncogene 12: 103–10, 1996
    Google Scholar
  70. Costanzi-Strauss E, Strauss BE, Naviaux RK, Haas M: Restoration of growth arrest by p16INK4, p21WAF1, pRB, and p53 is dependent on the integrity of the endogenous cell-cycle control pathways in human glioblastoma cell lines. Exp Cell Res 238: 51–62, 1998
    Google Scholar

Download references