Amit, Y. & Geman, D. (1997). Shape quantization and recognition with randomized trees. Neural Computation, 9, 1545–1588. Google Scholar
Amit, Y., Blanchard, G., & Wilder, K. (1999). Multiple randomized classifiers: MRCL Technical Report, Department of Statistics, University of Chicago.
Bauer, E. & Kohavi, R. (1999). An empirical comparison of voting classification algorithms. Machine Learning, 36(1/2), 105–139. Google Scholar
Breiman, L. (1996a). Bagging predictors. Machine Learning 26(2), 123–140. Google Scholar
Breiman, L. (1996b). Out-of-bag estimation, ftp.stat.berkeley.edu/pub/users/breiman/OOBestimation.ps
Breiman, L. (1998a). Arcing classifiers (discussion paper). Annals of Statistics, 26, 801–824. Google Scholar
Breiman. L. (1998b). Randomizing outputs to increase prediction accuracy. Technical Report 518, May 1, 1998, Statistics Department, UCB (in press, Machine Learning).
Breiman, L. 1999. Using adaptive bagging to debias regressions. Technical Report 547, Statistics Dept. UCB.
Breiman, L. 2000. Some infinity theory for predictor ensembles. Technical Report 579, Statistics Dept. UCB.
Dietterich, T. (1998). An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization, Machine Learning, 1–22.
Freund, Y. & Schapire, R. (1996). Experiments with a new boosting algorithm, Machine Learning: Proceedings of the Thirteenth International Conference, 148–156.
Grove, A. & Schuurmans, D. (1998). Boosting in the limit: Maximizing the margin of learned ensembles. In Proceedings of the Fifteenth National Conference on Artificial Intelligence (AAAI-98).
Ho, T. K. (1998). The random subspace method for constructing decision forests. IEEE Trans. on Pattern Analysis and Machine Intelligence, 20(8), 832–844. Google Scholar
Kleinberg, E. (2000). On the algorithmic implementation of stochastic discrimination. IEEE Trans. on Pattern Analysis and Machine Intelligence, 22(5), 473–490. Google Scholar
Schapire, R., Freund, Y., Bartlett, P., & Lee,W. (1998). Boosting the margin:Anewexplanation for the effectiveness of voting methods. Annals of Statistics, 26(5), 1651–1686. Google Scholar
Tibshirani, R. (1996). Bias, variance, and prediction error for classification rules. Technical Report, Statistics Department, University of Toronto.
Wolpert, D. H. & Macready, W. G. (1997). An efficient method to estimate Bagging's generalization error (in press, Machine Learning).