Metabolomics – the link between genotypes and phenotypes (original) (raw)
References
Adams, R.F. 1974. Determination of amino acid profiles in biological samples by gas chromatography. J. Chromatogr. 95: 189–212. Google Scholar
Adams, M.A., Chen, Z.L., Landman, P. and Colmer, D. 1999. Simultaneous determination by capillary gas chromatography of organic acids, sugars, and sugar alcohols in plant tissue extracts as their trimethylsilyl derivatives. Anal. Biochem. 266: 77–84. Google Scholar
Albert, R., Jeong, H. and Barabási, A.-L. 2000. Error and attack tolerance of complex networks. Nature 406: 378–381. Google Scholar
Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796–815. Google Scholar
Arkin, A., Shen, P. and Ross, J. 1997. A test case of correlation metric construction of a reaction pathway from measurements. Science 277: 1275–1279. Google Scholar
ap Rees, T. and Hill, S.A. 1994. Metabolic control analysis of plant metabolism. Plant Cell Envir. 17: 587–599. Google Scholar
Beaudry, F., Le Blanc, J.C.Y., Coutu, M., Ramier, I., Moreau, J.P. and Brown N.K. 1999. Metabolite profiling study of propranolol in rat using LC/MS/MS analysis. Biomed. Chromatogr. 13: 363–369. Google Scholar
Becker, M.Y. and Rojas, I. 2001. A graph layout algorithm for drawing metabolic pathways. Bioinformatics 17: 461–467. Google Scholar
Benthin, B., Danz, H. and Hamburger, M. 1999. Pressurized liquid extraction of medicinal plants. J. Chromatogr. A 837: 211–219. Google Scholar
Bersini, H. and Calenbuhr, V. 1997. Frustrated chaos in biological networks. J. Theor. Biol. 188: 187–200. Google Scholar
Beuerle, T. and Schwab, W. 1999. Metabolic profile of linoleic acid stored in apples: formation of 13(R)-hydroxy-9(Z),11(E)-octadecadienoic acid. Lipids 34: 375–380. Google Scholar
Bittner, M., Meltzer, P. and Trent, J. 1999. Data analysis and integration: of steps and arrows. Nature Genet. 22: 213–215. Google Scholar
Blanch, G.P., Caja, M.M., del Castillo, M.L.R., Santa-Mariá, G. and Herraiz, M. 1999. Fractionation of plant extracts by supercritical fluid extraction and direct introduction in capillary gas chromatography using a programmable temperature vaporizer. J. Chromatogr. Sci. 37: 407–410. Google Scholar
Bouchereau, A., Guénot, P. and Larher, F. 2000. Analysis of amines in plant materials. J. Chromatogr. B 747: 49–67. Google Scholar
Brazma, A. and Vilo, J. 2000. Gene expression data analysis. FEBS Lett. 480: 17–24. Google Scholar
Bücher, T. and Rüssmann, W. 1963. Gleichgewicht und Ungleichgewicht im System der Glykolyse. Angew. Chem. 75: 881–948. Google Scholar
Butte, A.J. and Kohane, I.S. 2000. Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. Pac. Symp. Biocomput. 5: 427–439. Google Scholar
Castioni, P., Christen, P. and Veuthey J.L. 1995. Supercritical fluid extraction of compounds from plant origin. Analusis 23: 95–106. Google Scholar
Christensen, B. and Nielsen, J. 1999. Metabolic network analysis: a powerful tool in metabolic engineering. In: T. Scheper (Ed.) Advances in Biochemical Engineering and Biotechnology, Springer-Verlag, Berlin, pp. 210–231. Google Scholar
Christensen, B. and Nielsen, J. 2000. Metabolic network analysis of Penicillium chysogenum using 13C-labelled glucose. Biotechnol. Bioeng. 68: 652–659. Google Scholar
Cornish-Bowden, A. and Cárdenas, M.L. 2000. From genome to cellular phenotype: a role for metabolic flux analysis? Nature Biotechnol. 18: 267–268. Google Scholar
Cornish-Bowden, A. and Eisenthal, R. 2000. Computer simulations as a tool for studying metabolism and drug design. In: A.J. Cornish-Bowden and M.L. Cárdenas (Eds.) Technological and Medical Implications of Metabolic Control Analysis, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 165–172. Google Scholar
Cornish-Bowden, A. and Hofmeyr, J.-H.S. 1994. Determination of control coefficients in intact metabolic systems. Biochem. J. 298: 367–375. Google Scholar
Dauner, M. and Sauer, U. 2000. GC-MS analysis of amino acids rapidly provides rich information for isotopomer balancing. Biotechnol. Progr. 16: 642–649. Google Scholar
de Jongh, D.C., Radford, T., Hribar, J.D., Hanessian, S., Bieber, M., Dawson, G. and Sweeley, C.C. 1969. Analysis of trimethylsilyl derivatives of carbohydrates by gas chromatography and mass spectrometry. J. Am. Chem. Soc. 91: 1728–1740. Google Scholar
Dieuaide-Noubhani, M., Raffard, G., Canioni, P., Pradett, A. and Raymond, P. 1995. Quantification of compartmented metabolic fluxes in maize root tips using isotope distribution from 13C-or 14C-labeled glucose. J. Biol. Chem. 22: 13147–13159. Google Scholar
Edwards, J.S. and Palsson, B.O. 2000. The Escherichia coli MG 1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proc. Natl. Acad. Sci. USA 97: 5528–5533. Google Scholar
Edwards, J.S., Ibarra, R.U. and Palsson, B.O. 2001. In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nature Biotechnol. 19: 125–130. Google Scholar
Eisen, M.B., Spellmann, P.T., Brown, P.O. and Botstein, D. 1998. Cluster analysis & display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95: 14863–14868. Google Scholar
Farré, E.M., Tiessen, A., Roessner, U., Geigenberger, P., Trethewey, R.N. and Willmitzer, L. 2001. Analysis of the compartmentation of glycolytic intermediates, nucleotides, sugars, organic acids, amino acids and sugar alcohols in potato tubers using a non-aqueous fractionation method. Plant Physiol., in press.
Fell, D.A. 1997. Understanding the control of metabolism. Snell (ed.) Portland Press, London. Portland Press Frontiers in metabolism 2: 301 pp. Google Scholar
Fell, D.A., Wagner, A. 2000. The small world of metabolism. Nature Biotechnol. 18: 1121–1122. Google Scholar
Fiehn, O., Kloska, K. and Altmann, T. 2001. Integrated studies on plant biology using multiparallel techniques. Curr. Opin. Biotechnol. 12: 82–86. Google Scholar
Fiehn, O., Kopka, J., Trethewey, R.N. and Willmitzer, L. 2000a. Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometry. Anal. Chem. 72: 3573–3580. Google Scholar
Fiehn, O., Kopka, J., Dörmann, P., Altmann, T., Trethewey, R.N. and Willmitzer, L. 2000b. Metabolite profiling for plant functional genomics. Nature Biotechnol. 18: 1157–1161. Google Scholar
Fraser, P.D., Pinto, M.E.S., Holloway, D.E. and Bramley, P.M. 2000. Application of high-performance liquid chromatography with photodiode array detection to the metabolic profiling of plant isoprenoids. Plant J. 24: 551–558. Google Scholar
Gámiz-Gracia, L. and de Castro, M.D.L. 2000. Continuous subcritical water extraction of medicinal plant essential oil: comparison with conventional techniques. Talanta 51: 1179–1185. Google Scholar
Gavaghan, C.L., Holmes, E., Lenz, E., Wilson, I.D., Nicholson, J.K.. 2000. An NMR-based metabonomic approach to investigate the biochemical consequences of genetic strain differences: application to the C57BL10J and Alpk:ApfCD mouse. FEBS Lett. 484: 169–174. Google Scholar
Gerhardt, R. and Heldt, H.W. 1984. Measurement of subcellular metabolite levels in leaves by fractionation of freeze-stopped material in nonaqueous media. Plant Physiol. 75: 542–547. Google Scholar
Giddings, G., Allison, G., Brooks, D. and Carter, A 2000. Transgenic plants as factories for biopharmaceuticals. Nature Biotechnol. 18: 1151–1155. Google Scholar
Giersch, C. 1995. Determining elasticities from multiple measurements of flux rates and metabolite concentrations: application of the multiple modulation method to a reconstituted pathway. Eur. J. Biochem. 227: 194–201. Google Scholar
Giersch, C. 2000. Mathematical modelling of metabolism. Curr. Opin. Plant Biol. 2: 249–253. Google Scholar
Gilbert, R.J., Goodacre, R., Woodward, A.M. and Kell, D.B. 1997. Genetic programming: a novel method for the quantitative analysis of pyrolysis mass spectral data. Anal. Chem. 69: 4381–4389. Google Scholar
Gilbert, R.J., Rowland, J.J. and Kell, D.B. 2000. Genomic computing: explanatory modelling for functional genomics. In: D. Whitley, D. Goldberg and E. CantÚ-Paz (Eds.) Proceedings of the Genetic and Evolutionary Computation Conference, Morgan Kaufman, San Francisco, pp. 551–557. Google Scholar
Gombert, A.K. and Nielsen, J. 1999. Mathematical modelling of metabolism. Curr. Opin. Biotechnol. 11: 180–186. Google Scholar
Gonzalez, B., Francois, J. and Renaud, M. 1997. A rapid and reliable method for metabolite extraction in yeast using boiling buffered ethanol. Yeast 13: 1347–1356. Google Scholar
Goodacre, R., Shann, B., Gilbert, R.J., Timmings, E.M., McGovern, A.C., Alsberg, B.K., Kell, D.B. and Logan NA. 2000. Detection of the dipicolinic acid biomarker in Bacillus spores using Curiepoint pyrolysis mass spectrometry and Fourier transform infrared spectroscopy. Anal. Chem. 72: 119–127. Google Scholar
Goryanin, I., Hodgman, T.C. and Selkov, E. 1999. Mathematical simulation and analysis of cellular metabolism and regulation. Bioinformatics 15: 749–758. Google Scholar
Groen, A.K., van Roermund, C.W.T., Vervoorn, R.C. and Tager, J.M. 1986. Control of gluconeogenesis in rat liver cells: flux control coefficients of the enzymes in the gluconeogenic pathway in the absence and presence of glucagon. Biochem. J. 237: 379–389. Google Scholar
Gu, M., Kerwin, J.L., Watts, J.D. and Aebersold, R. 1997. Ceramide profiling of complex lipid mixtures by electrospray ionisation mass spectrometry. Anal. Biochem. 24: 347–356. Google Scholar
Halket, J.M., Przyborowska, A., Stein, S.E., Mallard, W.G., Down, S. and Chalmers, R.A. 1999. Deconvolution gas chromatography mass spectrometry of urinary organic acids. Potential for pattern recognition and automated identification of metabolic disorders. Rapid Commun. Mass Spectrom. 13: 279–284. Google Scholar
Heinrich, R. and Rapoport, T.A. 1974. A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. Eur. J. Biochem. 42: 89–95. Google Scholar
Hofmeyr, J.-H.S. 1995. Metabolic regulation: a control analytic perspective. J. Bioenerget. Biomembr. 27: 479–490. Google Scholar
Hofmeyr, J.-H.S. and Cornish-Bowden, A. 1995. Strategies for manipulating metabolic fluxes in biotechnology. Bioorg. Chem. 23: 439–449. Google Scholar
Hofmeyr, J.-H.S., Cornish-Bowden, A. and Rohwer, J.M. 1993. Taking enzyme kinetics out of control; putting control into regulation. Eur. J. Biochem. 212: 833–837. Google Scholar
Jarvis, A.P. and Morgan, E.D. 1997. Isolation of plant products by supercritical fluid extraction. Phytochem. Anal. 8: 217–222. Google Scholar
Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N. and Barabási, A.-L. 2000. The large-scale organization of metabolic networks. Nature 407: 651–654. Google Scholar
Jellum, E., Kvittingen, E.A. and Stokke, O. 1988. Mass spectrometry in diagnosis of metabolic disorders. Biomed. Environ. Mass Spectrom. 16: 57–62. Google Scholar
Johansen, H.N., Glitso, V. and Knudsen, K.E.B. 1996. Influence of extraction solvent and temperature on the quantitative determination of oligosaccharides from plant materials by high performance liquid chromatography. J. Agric. Food Chem. 44: 1470–1474. Google Scholar
Johnson, H.E., Gilbert, R.J., Winson, M.K., Goodacre, R., Smith, A.R., Rowland, J.J., Hall, M.A. and Kell, D.B. 2000. Explanatory analysis of the metabolome using genetic programming of simple, interpretable rules. Genet. Program Evolv. Mach. 1: 243–258. Google Scholar
Kacser, H. and Burns, J.A.. 1973. The control of flux. Symp. Soc. Exp. Biol. 27: 65–105. Reprinted in 1995 in Biochem. Soc. Trans. 23: 341-366. Google Scholar
Katona, Z.F., Sass, P. and Molnár-Perl, I. 1999. Simultaneous determination of sugars, sugar alcohols, acids and amino acids in apricots by gas chromatography-mass spectrometry. J. Chromatogr. A 847: 91–102. Google Scholar
Kell, D.B. and Mendes, P. 2000. Snapshots of systems. In: A.J. Cornish-Bowden and M.L. Cárdenas (Eds.) Technological and Medical Implications of Metabolic Control Analysis, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 3–25. Google Scholar
Kholodenko, B.N., Schuster, S., Rohwer, J.M., Cascante, M. and Westerhoff, H.V. 1995. Composite control of cell function: metabolic pathways behaving as single control units. FEBS Lett. 368: 1–4. Google Scholar
Kim, K.-R., Park, H.-G., Paik, M.-J., Ryu, H.-S., Oh, K.S., Myung, S.-W. and Liebich, H.M. 1998. Gas chromatographic profiling of urinary organic acids from uterine myoma patients and cervical cancer patients. J. Chromatogr. B 712: 11–22. Google Scholar
Kimura, H., Yamamoto, T. and Seiji, Y. 1999. Automated metabolic profiling and interpretation of GC/MS data for organic academia screening: a personal computer-based system. Tohuku J. Exp. Med. 188: 317–344. Google Scholar
Klapa, M.I., Park, S.M., Sinskey, A.J. and Stephanopoulos, G. 1999. Metabolite and isotopomer balancing in the analysis of metabolic cycles. I. Theory. Biotechnol. Bioeng. 62: 375–391. Google Scholar
Kose, F., Weckwerth, W., Linke, T. and Fiehn, O. 2001. Visualising plant metabolomic correlation networks using clique-metabolite matrices. Bioinformatics, in press.
Krauss, S. and Quant, P.A. 1996. Regulation and control in complex, dynamic metabolic systems: experimental application of the top-down approaches of metabolic control analysis to fatty acid oxidation and ketogenesis. J. Theor. Biol. 182: 381–388. Google Scholar
Lim, H.K., Stellingwerf, S., Sisenwine, S. and Chan, K.W. 1999. Rapid drug metabolite profiling using fast liquid chromatography, automated multiple-stage mass spectrometry and receptor-binding. J. Chromatogr. A 831: 227–241. Google Scholar
Lukashin, A.V. and Fuchs, R. 2001. Analysis of temporal gene expression profiles: clustering by simulated annealing and determining the optimal number of clusters. Bioinformatics 17: 405–414. Google Scholar
Mendes, P. and Kell, D.B. 1998. Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation. Bioinformatics 14: 869–883. Google Scholar
Möllney, M., Wiechert, W., Kownatzki, D. and de Graaf, A.A. 1999. Bidirectional reaction steps in metabolic networks. IV. Optimal design of isotopomer labelling experiments. Biotechnol. Bioeng. 66: 86–103. Google Scholar
Namiesnik, J. and Gorecki, T. 2000. Sample preparation for chromatographic analysis of plant material. J. Plan. Chromatogr. 13: 404–413. Google Scholar
Ning, C., Kuhara, T., Inoue, Y., Zhang, C.H., Matsumoto, M., Shinka, T., Furumoto, T., Yokota, K. and Matsumoto. I. 1996. Gas chromatographic mass spectrometric metabolic profiling of patients with fatal infantile mitochondrial myopathy with de Toni-Fanconi-Debre syndrome. Acta Paed. Japon. 38: 661–666. Google Scholar
Ogata, H., Goto, S., Sato, K., Fujibuchi, W., Bono, H. and Kanehisa, M. 1999. KEGG: Kyoto encyclopedia of genes and genomes. Nucl. Acids Res. 27: 29–34. Google Scholar
Oliver, S.G., Winson, M.K., Kell, D.B. and Baganz, R. 1998. Systematic functional analysis of the yeast genome. Trends Biotechnol. 16: 373–378. Google Scholar
Ong, E.-S., Woo, S.-O. and Yong, Y.-L. 2000. Pressurized liquid extraction of berberine and aristolochic acids in medicinal plants. J. Chromatogr. A 313: 57–64. Google Scholar
Orth, H.C.J., Rentel, C. and Schmidt, P.C. 1999. Isolation, purity analysis and stability of hyperforin as a standard material from Hypericum perforatum L. J. Pharm. Pharmcol. 51: 193–200. Google Scholar
Park, S.M., Klapa, M.I., Sinskey, A.J. and Stephanopoulos, G. 1999. Metabolite and isotopomer balancing in the analysis of metabolic cycles. II. Applications. Biotechnol. Bioeng. 62: 392–401. Google Scholar
Peng, S. and Jayallemand, C. 1991. Use of antioxidants in extraction of tannins from walnut plants. J. Chem. Ecol. 17: 887–895. Google Scholar
Pfeiffer, T., Sánchez-Valdenebro, I., Nuno, J.C., Montero, F. and Schuster, S. 1999. Metatool: for studying metabolic networks. Bioinformatics 15: 251–257. Google Scholar
Poolman, M.G., Fell, D.A. and Thomas, S. 2000. Modelling photosynthesis and its control. J. Exp. Bot. 51: 319–328. Google Scholar
Poolman, M..G., Ölcer, H., Lloyd, J.C., Raines, C.A. and Fell, D.A. 2001. Computer modelling and experimental evidence for two steady-states in the photosynthetic Calvin cycle. Eur. J. Biochem. 368: 2810–2816. Google Scholar
Que, A.M., Palm, A., Baker, A.G. and Novotny, M.V. 2000. Steroid profiles determined by capillary electrochromatography, laser-induced fluorescence detection and electrospray-mass spectrometry. J. Chromatogr. A 887: 379–391. Google Scholar
Raamsdonk, L.M., Teusink, B., Broadhurst, D., Zhang, N., Hayes, A., Walsh, M.C., Berden, J.A., Brindle, K.M., Kell, D.B., Rowland, J.J., Westerhoff, H.V., van Dam, K. and Oliver, S.G. 2001. A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nature Biotechnol. 19: 45–50. Google Scholar
Raith, K., Zellmer, S., Lasch, J. and Neubert, R.H.H. 2000. Profiling of human stratum corneum ceramides by liquid chromatographyelectrospray mass spectrometry. Anal. Chim. Acta 418: 167–173. Google Scholar
Roberts, J.K.M. 2000. NMR adventures in the metabolic labyrinth within plants. Trends Plant Sci. 5: 30–34. Google Scholar
Robertson, D.G., Reily, M.D., Sigler, R.E., Wells, D.F., Paterson, D.A. and Braden, T.K. 2000. Metabonomics: evaluation of nuclear magnetic resonance (NMR) and pattern recognition technology for rapid in vivo screening of liver and kidney toxicants. Toxicol. Sci. 57: 326–337. Google Scholar
Roessner, U., Luedemann, A., Brust, D., Fiehn, O., Linke, T., Willmitzer, L. and Fernie, A.R. 2001. Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13: 11–29. Google Scholar
Roessner, U., Wagner, C., Kopka, J., Trethewey, R.N. and Willmitzer, L. 2000. Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant J. 23: 131–142. Google Scholar
Sargenti, S.R. and Vichnewski, W. 2000. Sonication and liquid chromatography as a rapid technique for extraction and fractionation of plant material. Phytochem. Anal. 11: 69–73. Google Scholar
Sauter, H., Lauer, M. and Fritsch, H. 1991. Metabolic profiling of plants: a new diagnostic technique. ACS Symp. Ser. 443: 288–299. Google Scholar
Schmidt, K., Carlsen, M., Nielsen, J. and Villadsen, J. 1997. Modelling isotopomer distributions in biochemical networks using isotopomer mapping matrices. Biotechnol. Bioeng. 55: 831–840. Google Scholar
Schuster, S. 1999. Studies on the stoichiometric structure of enzymatic reaction systems. Theory Biosci. 118: 125–139. Google Scholar
Schuster, S., Dandekar, T. and Fell, D.A. 1999. Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering. Trends Biotechnol. 17: 53–60. Google Scholar
Schuster, S., Fell, D.A. and Dandekar, T. 2000. A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nature Biotechnol. 18: 326–332. Google Scholar
Shetty, H.U., Holloway, H.W. and Rapoport, S.I. 1995. Capillary gas chromatography combined with ion trap detection for quantitative profiling of polyols in cerebrospinal fluid and plasma. Anal. Biochem. 224: 279–285. Google Scholar
Smedsgaard, J. and Frisvad, J.C. 1996. Using direct electrospray mass spectrometry in taxonomy and secondary metabolite pro-filing of crude fungal extracts. J. Microbiol. Meth. 25: 5–17. Google Scholar
Srere, P.A. 1985. The metabolon. Trends Biochem. Sci. 10: 109–110. Google Scholar
Starmans, D.A.J. and Nijhuis, H.H. 1996. Extraction of secondary metabolites from plant material: a review. Trends Food Sci. Technol. 7: 191–197. Google Scholar
Stein, S.E. 1999. An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data. J. Am. Soc. Mass Spectrom. 10: 770–781. Google Scholar
Streeter J.G. and Strimbu C.E. 1998. Simultaneous extraction and derivatization of carbohydrates from green plant tissues for analysis by gas-liquid chromatography. Anal. Biochem. 259: 253–257. Google Scholar
Szyperski, T. 1998. 13C-NMR, MS and metabolic flux balancing in biotechnology research. Quant. Rev. Biophys. 31: 41–106. Google Scholar
Tanaka, K., Hine, D.G., West-Dull, A. and Lynn, T.B. 1980a. Gaschromatographic method of analysis of urinary organic acids. I. Retention indices of 155 metabolically important compounds. Clin. Chem. 26: 1839–1846. Google Scholar
Tanaka, K., West-Dull, A., Hine, D.G., Lynn, T.B. and Lowe, T. 1980b. Gas-chromatographic method of analysis of urinary organic acids. II. Description of the procedure, and its application to diagnosis of patients with organic acidurias. Clin. Chem. 26: 1847–1853. Google Scholar
Taylor, J., Goodacre, R., Wade, W.G., Rowland, J.J. and Kell, D.B. 1998. The deconvolution of pyrolysis mass spectra using genetic programming: application to the identification of some Eubacterium species. FEMS Microbiol. Lett. 160: 237–246. Google Scholar
Teusink, B., Baganz, F., Westerhoff, H.V. and Oliver, S.G. 1998. Metabolic control analysis as a tool in the elucidation of the function of novel genes. Meth. Microbiol. 26: 297–336. Google Scholar
Thomas, S., Mooney, P.J.F., Burrell, M.M. and Fell, D.A. 1997. Metabolic control analysis of glycolysis in tuber tissue of potato (Solanum tuberosum): explanation for the low control coefficient of phosphofructokinase over respiratory flux. Biochem J. 332: 119–127. Google Scholar
Trethewey, R.N., Geigenberger, P., Riedel, K., Hajurezaei, M.R., Sonnewald, U., Stitt, M., Riesmeier, J.W. and Willmitzer, L. 1998. Combined expression of glucokinase and invertase in potato tubers leads to a dramatic reduction in starch accumulation and a stimulation of glycolysis. Plant J. 15: 109–118. Google Scholar
Trethewey, R.N., Krotzky, A.J. and Willmitzer, L. 1999. Metabolic profiling: a Rosetta stone for genomics? Curr. Opin. Plant Biol. 2: 83–85. Google Scholar
Tweeddale, H., Notley-McRobb, L. and Ferenci, T. 1998. Effect of slow growth on metabolism of Escherichia coli, as revealed by global metabolite pool ('metabolome') analysis. J. Bact. 180: 5109–5116. Google Scholar
Velot, C., Mixon, M.B., Teige, M. and Srere, P.A. 1997. Model of a quinary structure between Krebs TCA cycle enzymes: a model for the metabolon. Biochemistry 36: 14271–14276. Google Scholar
Vingron, M. and Hoheisel, J. 1999. Computational aspects of expression data. J. Mol. Med. 77: 3–7. Google Scholar
Warne, M.A., Lenz, E.M., Osborn, D., Weeks, J.M. and Nicholson, J.K. 2000. An NMR-based metabonomic investigation of the toxic effects of 3-trifluoromethyl-aniline on the earthworm Eisenia veneta. Biomarkers 5: 56–72. Google Scholar
Wiechert, W. and de Graaf, A.A. 1997a. Bidirectional reaction steps in metabolic networks. I. Modeling and simulation of carbon isotope labelling experiments. Biotechnol. Bioeng. 55: 112–117. Google Scholar
Wiechert, W., Siefke, C., de Graaf, A.A. and Marx, A. 1997b. Bidirectional reaction steps in metabolic networks. II. Flux estimation and statistical analysis. Biotechnol. Bioeng. 55: 118–135. Google Scholar
Wiechert, W., Möllney, M., Isermann, N., Wurzel, M. and de Graaf, A.A. 1999. Bidirectional reaction steps in metabolic networks. III. Explicit solution and analysis of isotopomer systems. Biotechnol. Bioeng. 66: 69–85. Google Scholar
Wolfender, J.L., Rodriguez, S. and Hostettmann, K. 1998. Liquid chromatography coupled to mass spectrometry and nuclear magnetic resonance for the screening of plant constituents. J. Chromatogr. A 794: 299–316. Google Scholar
World Health Organization. 2000. Safety aspects of genetically modified foods of plant origins. In: Report of a joint FAO/WHO expert consultation on foods derived from biotechnology, held in Geneva, Switzerland, 29 May-2 June 2000. World Health Organization, Geneva, pp. 1–35. Google Scholar