Regulation of Mammary Gland Growth and Morphogenesis by the Mammary Fat Pad: A Species Comparison (original) (raw)
- G.R. Cunha and Y.K. Hom (1996). Role of mesenchymalepithelial interactions in mammary gland development. J. Mam. Gland Biol. Neoplasia **1:**21–35.
Google Scholar - M.C. Neville, D. Medina, J. Monks, and R.C. Hovey (1998). Editorial commentary: The mammary fat pad. J. Mam. Gland Biol. Neoplasia **3:**109–116.
Google Scholar - K. Kratochwil and P. Schwartz (1976). Tissue interaction in androgen response of embryonic mammary rudiment of mouse: Identification of target tissue for testosterone. Proc. Natl. Acad. Sci. U.S.A. **73:**4041–4044.
Google Scholar - T. Sakakura, Y. Sakagami, and Y. Nishizuka (1982). Dual origin of mesenchymal tissues participating in mouse mammary gland embryogenesis. Dev. Biol. **91:**202–207.
Google Scholar - K. Kimata, T. Sakakura, Y. Inaguma, M. Kato, and Y. Nishizuka (1985). Participation of two different mesenchymes in the developing mouse mammary gland: Synthesis of basement membrane components by fat pad precursor cells. J. Embryol. Exp. Morph. **89:**243–257.
Google Scholar - G. Ailhaud, P. Grimaldi, and R. Négrel (1992). Cellular and molecular aspects of adipose tissue development. Ann. Rev. Nutr. **12:**207–233.
Google Scholar - L.G. Sheffield (1988). Organization and growth of mammary epithelia in the mammary gland fat pad. J. Dairy Sci. **71:**2855–2874.
Google Scholar - G.K. Bandyopadhyay, L-Y. Lee, R.C. Guzman, and S. Nandi (1995). Effect of reproductive states on lipid mobilization and linoleic acid metabolism in mammary glands. Lipids **30:**155–162.
Google Scholar - M.J. Paape and Y.N. Sinha (1971). Nucleic acid and collagen content of mammary glands between 30 and 80 days of age in normal and ovariectomized rats and during pregnancy. J. Dairy Sci. **54:**1068–1074.
Google Scholar - R.C. Hovey (1997). The role of the mammary fat pad during mammogenesis. Ph.D. Thesis, Massey University, New Zealand.
Google Scholar - R.C. Hovey, T.B. McFadden, and D.D.S. Mackenzie (1996). A procedure for the preparation of a parenchyma-free mammary fat pad in sheep. J. Dairy Sci. 79(Suppl. 1):146.
Google Scholar - R. Anbazhagan, J. Bartek, P. Monaghan, and B.A. Gusterson (1991). Growth and development of the human infant breast. Am. J. Anat. **192:**407–417.
Google Scholar - R. Anbazhagan and B.A. Gusterson (1995). Ultrastructure and immunohistochem istry of the embryonic type of fat identified in the human breast. Anat. Rec. **241:**129–135.
Google Scholar - J. Russo and I.H. Russo (1987). Development of the human mammary gland. In M.C. Neville and C.W. Daniel (eds.), The Mammary Gland: Development, Regulation, and Function, Plenum Press, New York, pp. 67–93.
Google Scholar - S. Bartow (1998). Use of the autopsy to study ontogeny and expression of the estrogen receptor gene in human breast. J. Mam. Gland Biol. Neoplasia **3:**37–48.
Google Scholar - K.B. DeOme, L.J. Faulkin, Jr., H.A. Bern, and P.B. Blair (1959). Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Res. **19:**515–520.
Google Scholar - K. Hoshino (1978). Mammary transplantation and its histogenesis in mice. In A. Yokoyama, H. Mizuno, and H. Nagasawa (eds.), Physiology of Mammary Glands, Japan Scientific Societies Press, Tokyo, pp. 163–228.
Google Scholar - M. Rebuffé-Scrive, J. Eldh, L.-O. Hafström, and P. Björntorp (1986). Metabolism of mammary, abdominal, and femoral adipocytes in women before and after menopause. Metabolism **35:**792–797.
Google Scholar - B.E. Elliott, S.-P Tam, D. Dexter, and Z.Q. Chen (1992). Capacity of adipose tissue to promote growth and metastasis of a murine mammary carcinoma: Effect of estrogen and progesterone. Intl. J. Cancer **51:**416–424.
Google Scholar - K. Hoshino (1964). Regeneration and growth of quantitatively transplanted mammary glands of normal female mice. Anat. Rec. **150:**221–236.
Google Scholar - R.M. Akers (1990). Lactational physiology: A ruminant animal perspective. Protoplasma **159:**96–111.
Google Scholar - H.M. Jensen and S.R. Wellings (1976). Preneoplastic lesions of the human mammary gland transplanted into the nude athymic mouse. Cancer Res. **36:**2605–2610.
Google Scholar - L.G. Sheffield and C.W. Welsch (1988). Transplantation of human breast epithelia to mammary-gland-free fat-pads of athymic nude mice: Influence of mammotrophic hormones on growth of breast epithelia. Intl. J. Cancer **41:**713–719.
Google Scholar - J. Yang, T. Tsukamoto, N. Popnikolov, R.C. Guzman, X. Chen, J.H. Yang, and S. Nandi (1995). Adenoviral-med iated gene transfer into primary human and mouse mammary epithelial cells in vitro and in vivo. Cancer Lett. **98:**9–17.
Google Scholar - L.G. Sheffield and C.W. Welsch (1986). Transplantion of bovine mammary tissue to athymic nude mice: Growth subcutaneously and in mammary gland-free fat pads. J. Dairy Sci. **69:**1141–1147.
Google Scholar - S. Ellis and R.M. Akers (1995). Xenotransplantat ion of immortalized bovine mammary epithelial cells into the cleared fat pads of immunocompetent mice. J. Anim. Sci. 73(Suppl. 2):77–78.
Google Scholar - T. Sakakura, Y. Nishizuka, and C.J. Dawe (1976). Mesenchyme-dependent morphogenesis and epithelium-specific cytodifferentiation in mouse mammary gland. Science **194:**1439–1441.
Google Scholar - L. Rønnov-Jessen, O.W. Petersen, and M.J. Bissell (1996). Cellular changes involved in conversion of normal to malignant breast: Importance of the stromal reaction. Physiol. Rev. **76:**69–125.
Google Scholar - B.K. Vonderhaar (1988). Regulation of development of the normal mammary gland by hormones and growth factors. In M.E. Lippman, and R.B. Dickson (eds.), Breast Cancer: Cellular and Molecular Biology, Kluwer Academic Publishers, Boston/Dordrecht/London, pp. 251–266.
Google Scholar - C.W. Daniel and G.B. Silberstein (1987). Postnatal development of the rodent mammary gland. In M.C. Neville, and C.W. Daniel (eds.), The Mammary Gland: Development, Regulation, and Function, Plenum Press, New York, pp. 3–36.
Google Scholar - J.J. Berger and C.W. Daniel (1983). Stromal DNA synthesis is stimulated by young, but not serially aged mouse mammary epithelium. Mech. Aging Dev. **23:**259–264.
Google Scholar - G.B. Silberstein and C.W. Daniel (1982). Glycosaminogly cans in the basal lamina and extracellular matrix of the developing mouse mammary duct. Dev. Biol. **90:**215–222.
Google Scholar - H.A. Tucker (1987). Quantitative estimates of mammary growth during various physiological states: A review. J. Dairy Sci. **70:**1958–1966.
Google Scholar - R.D. Cardiff and S.R. Wellings (1999). The comparative pathology of human and mouse mammary glands. J. Mam. Gland Biol. Neoplasia 4 (in press).
- S. Ellis, F.G. Edwards, and R.M. Akers (1995). Morphological and histological analysis of the prepuberal ovine mammary gland. J. Dairy Sci. 78(Suppl. 1):202.
Google Scholar - T.L. Woodward, W.E. Beal, and R.M. Akers (1993). Cell interactions in initiation of mammary epithelial proliferation by oestradiol and progesterone in prepubertal heifers. J. Endocrinol. **136:**149–157.
Google Scholar - J.L. Fendrick, A.M. Raafat, and S.Z. Haslam (1998). Mammary gland growth and development from the postnatal period to postmenopause: Ovarian steroid receptor ontogeny and regulation in the mouse. J. Mam. Gland Biol. Neoplasia **3:**7–22.
Google Scholar - G. Shyamala and A. Ferenczy (1984). Mammary fat pad may be a potential site for initiation of estrogen action in normal mouse mammary glands. Endocrinology **115:**1078–1081.
Google Scholar - C.M. McGrath (1983). Augmentation of response of normal mammary epithelial cells to estradiol by mammary stroma. Cancer Res. **43:**1355–1360.
Google Scholar - G.R. Cunha, P. Young, Y.K. Hom, P.S. Cooke, J.A. Taylor, and D.B. Lubahn (1997). Elucidation of a role for stromal steroid hormone receptors in mammary gland growth and development using tissue recombination experiments. J. Mam. Gland Biol. Neoplasia **2:**393–402.
Google Scholar - E. Anderson, R.B. Clarke, and A. Howell (1998). Estrogen responsiveness and control of normal human breast proliferation. J. Mam. Gland Biol. Neoplasia **3:**23–36.
Google Scholar - C. Malet, A. Gompel, H. Yaneva, H. Cren, N. Fidji, I. Mowszowicz, F. Kuttenn, and P. Mauvis-Jarvis (1991). Estradiol and progesterone receptors in cultured normal human breast epithelial cells and fibroblasts: Immunocytochem ical studies. J. Clin. Endocrinol. Metabol. **73:**8–17.
Google Scholar - S. Ellis, T.B. McFadden, and R.M. Akers (1998). Prepuberal ovine mammary development is unaffected by ovariectomy. Dom. Anim. Endocrinol. **15:**217–226.
Google Scholar - A. Rotondi and F. Auricchio (1978). Oestrogen receptor of calf mammary gland. Biochem. J. **178:**581–587.
Google Scholar - R.C. Hovey, H.W. Davey, D.D.S. Mackenzie, and T.B. McFadden (1998). Multiple factors regulate the stromal expression of keratinocyte growth factor (KGF) in the ruminant mammary gland. (Submitted).
- R.C. Hovey, T.B. McFadden, H.W. Davey, and D.D.S. Mackenzie (1996). Expression of growth factors during development of the ruminant mammary gland. J. Dairy Sci. 79(Suppl. 1):146.
Google Scholar - T.L. Woodward, R.M. Akers, T.B. McFadden, H.T. Huynh, and J.D. Turner (1992) Estrogen mediated bovine mammary epithelial cell proliferation: Evidence of indirect action. J. Dairy Sci. 75(Suppl. 1):293.
Google Scholar - D. R. Glimm, V.E. Baracos, and J.J. Kennelly (1990). Molecular evidence for the presence of growth hormone receptors in the bovine mammary gland. J. Endocrinol. **126:**R5–R8.
Google Scholar - H. Jammes, P. Gaye, L. Belair, and J. Djiane (1991). Identification and characterization of growth hormone receptor mRNA in the mammary gland. Mol. Cell. Endocrinol. **75:**27–35.
Google Scholar - H.C. Mertani, T. Garcia-Caballero, A. Lambert, F. Gerard, C. Palayer, J.M. Boutin, B.K. Vonderhaar, M.J. Waters, P.E. Lobie, and G. Morel (1998). Cellular expression of growth hormone and prolactin receptors in human breast disorders. Intl. J. Cancer **79:**202–211.
Google Scholar - D.L. Kleinberg (1998). Role of IGF-I in normal mammary development. Breast Cancer Res. Treat. **47:**201–208.
Google Scholar - L.G. Sheffield and R.R. Anderson (1986). Control of mammary gland fibroblast growth by insulin, growth hormone and prolactin. Cell Biol. Intl. Rep. **10:**33–40.
Google Scholar - T.B. McFadden, T.E. Daniel, and R.M. Akers (1990). Effects of plane of nutrition, growth hormone and unsaturated fat on growth hormone, insulin and prolactin receptors in prepubertal lambs. J. Anim. Sci. **68:**3180–3189.
Google Scholar - R.C. Hovey, H.W. Davey, D.D.S. Mackenzie, and T.B. McFadden (1998). Ontogeny and epithelial-stromal interactions regulate local IGF expression during ovine mammogenesis. Mol. Cell. Endocrinol. **136:**139–144.
Google Scholar - M. Edery, K. Pang L. Larson, T. Colosi, and S. Nandi (1985). Epidermal growth factor receptor levels in mouse mammary glands in various physiological states. Endocrinology **117:**405–411.
Google Scholar - S.Z. Haslam, L.J. Counterman, and K.A. Nummy (1992). EGF receptor regulation in normal mouse mammary gland. J. Cell. Physiol. **152:**553–557.
Google Scholar - S.Z. Haslam, L.J. Counterman, and K.A. Nummy (1993). Effects of epidermal growth factor, estrogen, and progestin on DNA synthesis in mammary cells in vivo are determined by the developmental state of the gland. J. Cell. Physiol. **155:**72–78.
Google Scholar - J. Sebastian, R.G. Richards, M.P. Walker, J.F. Wiesen, Z. Werb, R. Derynck, Y.K. Hom, G.R. Cunha, and R.P. DiAugustine (1998). Activation and function of the epidermal growth factor receptor and erbB-2 during mammary gland morphogenesis. Cell Growth Diff. **9:**777–785.
Google Scholar - S.Z. Haslam and G. Shyamala (1979). Effect of oestradiol on progesterone receptors in normal mammary glands and its relationship with lactation. Biochem. J. **182:**127–131.
Google Scholar - G. Shyamala, M.H. Barcellos-Hoff, D. Toft, and X. Yang (1997). In situ localization of progesterone receptors in normal mouse mammary glands: Absence of receptors in the connective and adipose stroma and a heterogeneous distribution in the epithelium. J. Steroid Biochem. Mol. Biol. **63:**251–259.
Google Scholar - P.J. Shughrue, W.E. Stumpf, and M. Sar (1988). The distribution of progesterone receptor in the 20–day-old fetal mouse: An autoradiographic study with [125I]progestin. Endocrinology **123:**2382–2389.
Google Scholar - S. Wang, L.J. Counterman, and S.Z. Haslam (1990). Progesterone action in normal mouse mammary gland. Endocrinology **127:**2183–2189.
Google Scholar - R.C. Hovey, T.B. McFadden, and D.D.S. Mackenzie (1994). Response of mammary epithelial cells to ovarian steroids is modulated by the mammary fat pad during the estrous cycle. J. Dairy Sci. 77(Suppl. 1):68.
Google Scholar - A.A. Rasmussen and K.J. Cullen (1998). Paracrine/autocrine regulation of breast cancer by the insulin-like growth factors. Breast Cancer Res. Treat. **47:**219–233.
Google Scholar - A. Manni, B. Badger, L. Wei, A. Zaenglein, R. Grove, S. Khin, D. Heitjan, S. Shimasaki, and N. Ling (1994). Hormonal regulation of insulin-like growth factor-II and insulin-like growth factor binding protein expression by breast cancer cells in vivo: Evidence for stromal epithelial interactions. Cancer Res. **54:**2934–2942.
Google Scholar - R. Barraclough, D.G. Fernig, P.S. Rudland, and J.A. Smith (1990). Synthesis of basic fibroblast growth factor upon differentiation of rat mammary epithelial to myoepithelial-like cells in culture. J. Cell. Physiol. **144:**333–344.
Google Scholar - S. Chakravorti and L.G. Sheffield (1996). Acidic and basic fibroblast growth factor mRNA and protein in mouse mammary glands. Endocrine **4:**175–182.
Google Scholar - S. Coleman-Krnacik, and J.M. Rosen (1994). Differential temporal and spatial gene expression of fibroblast growth factor family members during mouse mammary gland development. Mol. Endocrinol. **8:**218–229.
Google Scholar - A. Plath, R. Einspanier, C. Gabler, F. Peters, F. Sinowatz, D. Gospodarowicz, and D. Schams (1998). Expression and localization of members of the fibroblast growth factor family in the bovine mammary gland. J. Dairy Sci. **81:**2604–2613.
Google Scholar - S. Chakravorti and L.G. Sheffield (1996). Hormonal regulation of acidic and basic fibroblast growth factor production and expression in mouse mammary gland. Endocrine **4:**183–188.
Google Scholar - P.S. Rudland, A.M. Platt-Higgins, M.C. Wilkinson, and D.G. Fernig (1993). Immunocytochem ical identification of basic fibroblast growth factor in the developing rat mammary gland: Variations in location are dependent on glandular structure and differentiation. J. Histochem. Cytochem. **41:**887–898.
Google Scholar - J.J. Gomm, J. Smith, G.K. Ryall, R. Baillie, L. Turnbull, and R.C. Coombes (1991). Localization of basic fibroblast growth factor and transforming growth factor-β1 in the human mammary gland. Cancer Res. **51:**4685–4692.
Google Scholar - R.D. Koos, P.K. Banks, S.E. Inkster, W. Yue, and A.M.H. Brodie (1993). Detection of aromatase and keratinocyte growth factor expression in breast tumors using reverse transcriptionpolymerase chain reaction. J. Steroid Biochem. Mol. Biol. **45:**217–225.
Google Scholar - S.E. Wilson, J. Weng, E.L. Chwang, L. Gollahan, A.M. Leitch, and J.W. Shay (1994). Hepatocyte growth factor (HGF), keratinocyte growth factor (KGF), and their receptors in human breast cells and tissues: Alternative receptors. Cell. Mol. Biol. Res. **40:**337–350.
Google Scholar - J.V. Soriano, M.S. Pepper, L. Orci, and R. Montesano (1998). Roles of hepatocyte growth factor/scatter factor and transforming growth factor-β1 in mammary gland ductal morphogenesis. J. Mam. Gland Biol. Neoplasia **3:**133–150.
Google Scholar - T.L. Woodward, R.M. Akers, T.B. McFadden, H.T. Huynh, and J.D. Turner (1992). Estrogen mediated bovine mammary epithelial cell proliferation: Evidence of indirect action. J. Dairy Sci. 75(Suppl. 1):293.
Google Scholar - C. Birchmeier and W. Birchmeier (1998). Cellular interactions mediated by tyrosine kinase receptors during development: Driving forces for growth, motility and differentiation. In R.B. Dickson, and D.S. Salomon (eds.), Hormones and Growth Factors in Development and Neoplasia, Wiley-Liss Inc., New York, pp. 131–143.
Google Scholar - L. Jin, A. Fuchs, S.J. Schnitt, Y. Yao, A. Joseph, K. Lamszus, M. Park, I.D. Goldberg, and E.M. Rosen (1997). Expression of scatter factor and c-met receptor in benign and malignant breast tissue. Cancer **79:**749–760.
Google Scholar - S.J. Weber-Hall, D.J. Phippard, C.C. Niemeyer, and T.C. Dale (1994). Developmental and hormonal regulation of Wnt gene expression in the mouse mammary gland. Differentiation **57:**205–214.
Google Scholar - Y. Hirai, A. Lochter, S. Galosy, S. Koshida, S. Niwa, and M.J. Bissell (1998). Epimorphin functions as a key morphoregulator for mammary epithelial cells. J. Cell Biol. **140:**159–169.
Google Scholar - K.S. Frazier and G.R. Grotendorst (1997). Expression of connective tissue growth factor mRNA in the fibrous stroma of mammary tumors. Intl. J. Biochem. Cell Biol. **29:**153–161.
Google Scholar - C.W. Daniel, S. Robinson, and G.B. Silberstein (1996). The role of TGF-β in patterning and growth of the mammary ductal tree. J. Mam. Gland Biol. Neoplasia **1:**331–341.
Google Scholar - M.H. Barcellos-Hoff (1996). Latency and activation in the control of TGF-β. J. Mam. Gland Biol. Neoplasia **1:**353–363.
Google Scholar - C.S. Nicoll (1997). Cleavage of prolactin by its target organs and the possible significance of this process. J. Mam. Gland Biol. Neoplasia **2:**81–90.
Google Scholar - L.A. Rudolph-Owen and L.M. Matrisian (1998). Matrix metalloproteinases in remodeling of the normal and neoplastic mammary gland. J. Mam. Gland Biol. Neoplasia **3:**177–190.
Google Scholar - S.H. Abou-El-Ala, K.W. Prasse, R. Carroll, A.E. Wade, S. Dharwadkar, and O.R. Bunce (1988). Eicosanoid synthesis in 7,12–dimethylbenz(a)anthracene-induced mammary carcinomas in Sprague-Dawley rats fed primrose oil, menhaden oil or corn oil diet. Lipids **23:**948–954.
Google Scholar - C.W. Welsch and D.H. O'Connor (1989). Influence of the type of dietary fat on developmental growth of the mammary gland in immature and mature female BALB/c mice. Cancer Res. **49:**5999–6007.
Google Scholar - T.B. McFadden, T.E. Daniel, and R.M. Akers (1990). Effects of plane of nutrition, growth hormone and unsaturated fat on mammary growth in prepubertal lambs. J. Anim. Sci. **68:**3171–3179.
Google Scholar - D.P. Rose (1997). Effects of dietary fatty acids on breast and prostate cancers: Evidence from in vitro experiments and animal studies. Am. J. Clin. Nutr. **66:**1513S-1522S.
Google Scholar - C.A. Carrington and H.L. Hosick (1985). Effects of dietary fat on the growth of normal, preneoplastic and neoplastic mammary epithelial cells in vivo and in vitro. J. Cell Sci. **75:**269–278.
Google Scholar - G.K. Bandyopadhyay, S.-I. Hwang, W. Imagawa, and S. Nandi (1993). Role of polyunsaturated fatty acids as signal transducers: Amplification of signals from growth factor receptors by fatty acids in mammary epithelial cells. Prostaglandins Leukotrienes and Essent. Fatty Acids **48:**71–78.
Google Scholar - R.C. Hovey, D.D.S. Mackenzie, and T.B. McFadden (1998). The proliferation of mouse mammary epithelial cells in response to specific mitogens is modulated by the mammary fat pad in vitro. In Vitro Cell. Dev. Biol. **34A:**385–392.
Google Scholar - K.L. Schmeichel, V.M. Weaver, and M.J. Bissell (1998). Structural cues from the tissue microenvironment are essential determinants of the human mammary epithelial cell phenotype. J. Mam. Gland Biol. Neoplasia **3:**201–214.
Google Scholar - T. Sakakura (1991). New aspects of stroma-parenchym a relations in mammary gland differentiation. Intl. Rev. Cytol. **125:**165–202.
Google Scholar - P.J. Keely, J.E. Wu, and S.A. Santoro (1995). The spatial and temporal expression of the α2β1 integrin and its ligands, collagen I, collagen IV, and laminin, suggest important roles in mouse mammary morphogenesis. Differentiation **59:**1–13.
Google Scholar - T.L. Woodward, J.W. Xie, and S.Z. Haslam (1998). The role of mammary stroma in modulating the proliferative response to ovarian hormones in the normal mammary gland. J. Mam. Gland Biol. Neoplasia **3:**117–132.
Google Scholar - I.H. Russo and J. Russo (1998) Role of hormones in mammary cancer initiation and progression. J. Mam. Gland. Biol. Neoplasia **3:**49–61.
Google Scholar - G. Chepko and G.H. Smith (1999). Mammary epithelial stem cells: Our current understanding. J. Mam. Gland Biol. Neoplasia **4:**35–52.
Google Scholar