Being Bayesian About Network Structure. A Bayesian Approach to Structure Discovery in Bayesian Networks (original) (raw)
References
Beinlich, I., Suermondt, G., Chavez, R., &; Cooper, G. (1989). The ALARM monitoring system: A case study with two probabilistic inference techniques for belief networks. In Proc. 2nd European Conf. on AI and Medicine, Berlin: Springer-Verlag. Google Scholar
Buntine, W. L. (1991). Theory refinement on Bayesian networks. In B. D. D'Ambrosio, P. Smets, &; P. P. Bonissone (Eds.), Proc. Seventh Annual Conference on Uncertainty Artificial Intelligence (UAI '91) (pp. 52-60). San Francisco: Morgan Kaufmann. Google Scholar
Buntine, W. L. (1996). A guide to the literature on learning probabilistic networks from data. IEEE Transactions on Knowledge and Data Engineering, 8, 195-210. Google Scholar
Casella, G., &; Robert, C. (1996). Rao-Blackwellisation of sampling schemes. Biometrika, 83:1, 81-94. Google Scholar
Cooper, G. F., &; Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9, 309-347. Google Scholar
Friedman, N., Goldszmidt, M., &; Wyner, A. (1999). Data analysis with Bayesian networks: A bootstrap approach. In Proc. Fifteenth Conference on Uncertainty in Artificial Intelligence (UAI '99) (pp. 206-215). San Francisco: Morgan Kaufmann. Google Scholar
Friedman, N., Linial, M., Nachman, I., &; Pe'er, D. (2000). Using Bayesian networks to analyze expression data. J. Computational Biology, 7, 601-620. Google Scholar
Gelfand, A., &; Smith, A. (1990). Sampling based approaches to calculating marginal densities. Journal American Statistical Association, 85, 398-409. Google Scholar
Gilks, W., Richardson, S., &; Spiegelhalter, D. (1996). Markov chain Monte Carlo methods in practice. CRC Press.
Giudici, P., &; Green, P. (1999). Decomposable graphical Gaussian model determination. Biometrika, 86:4, 785-801. Google Scholar
Giudici, P., Green, P., &; Tarantola, C. (2000). Efficient model determination for discrete graphical models. Discussion Paper 99-93, Department of Statistics, Athens University of Economics and Business.
Green, P. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82, 711-732. Google Scholar
Heckerman, D. (1998). A tutorial on learning with Bayesian networks. In M. I. Jordan (Ed.), Learning in graphical models. Dordrecht, The Netherlands: Kluwer. Google Scholar
Heckerman, D., &; Geiger, D. (1995). Learning Bayesian networks: A unification for discrete and Gaussian domains. In P. Besnard &; S. Hanks (Eds.), Proc. Eleventh Conference on Uncertainty in Artificial Intelligence (UAI'95) (pp. 274-284). San Francisco: Morgan Kaufmann. Google Scholar
Heckerman, D., Geiger, D., &; Chickering, D. M. (1995). Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 20, 197-243. Google Scholar
Heckerman, D., Meek, C., &; Cooper, G. (1997). A Bayesian approach to causal discovery. Technical Report MSR-TR-97-05, Microsoft Research.
Lander, E. (1999). Array of hope. Nature Genetics, 21:1, 3-4. Google Scholar
Larrañaga, P., Kuijpers, C., Murga, R., &; Yurramendi, Y. (1996). Learning Bayesian network structures by searching for the best ordering with genetic algorithms. IEEE Transactions on System, Man and Cybernetics 26:4, 487-493. Google Scholar
Liu, J., Wong, W., &; Kong, A. (1994). Coveriance structure of the Gibbs sampler with applications to the comparisons of estimators and augmentation schemes. Biometrika, 81:1, 27-40. Google Scholar
Madigan, D., Andersson, S., Perlman, M., &; Volinsky, C. (1996). Bayesian model averaging and model selection for Markov equivalence classes of acyclic graphs. Communications in Statistics: Theory and Methods, 25, 2493-2519. Google Scholar
Madigan, D., &; Raftery, E. (1994). Model selection and accounting for model uncertainty in graphical models using Occam's window. Journal Americal Statistical Association, 89, 1535-1546. Google Scholar
Madigan, D., &; York, J. (1995). Bayesian graphical models for discrete data. International Statistical Review, 63, 215-232. Google Scholar
Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., &; Teller, E. (1953). Equation of state calculation by fast computing machines. Journal of Chemical Physics, 21, 1087-1092. Google Scholar
Pearl, J. (1988). Probabilistic reasoning in intelligent systems. San Francisco, CA: Morgan Kaufmann. Google Scholar
Pereira, F., &; Singer, Y. (1999). An efficient extension to mixture techniques for prediction and decision trees. Machine Learning, 36:3, 183-199. Google Scholar
Spellman, P., Sherlock, G., Zhang, M., Iyer, V., Anders, K., Eisen, M., Brown, P., Botstein, D., &; Futcher (1998). Comprehensive identification of cell cycle-regulated genes of the yeast_Saccharomyces cerevisiae_ by microarray hybridization. Molecular Biology of the Cell, 9, 3273-3297. Google Scholar
Spirtes, P., Glymour, C., &; Scheines, R. (1993). Causation, prediction and search, Vol. 81 of Lecture Notes in Statistics. New York: Springer-Verlag. Google Scholar
Wallace, C., Korb, K., &; Dai, H. (1996). Causal discovery via MML. In Proc. 13th International Conference on Machine Learning (pp. 516-524).