Myelin Biogenesis: Vesicle Transport in Oligodendrocytes (original) (raw)
REFERENCES
Norton, W. T. and Cammer, W. 1984. Isolation and characterization of myelin. Pages 147-195, in Morell P. (ed.), Myelin, Plenum Press, New York. Google Scholar
Morell, P., Quarles, R., and Norton, W. T. 1994. Myelin formation, structure, and biochemistry. Pages 117-143, in Basic Neuroschemistry: Molecular, Cellular, and Medical Aspects, Raven Press, New York. Google Scholar
Lees, M. B. and Brostoff, S. W. 1984. Proteins of myelin. Pages 197-214, in Morell, P. (ed.), Myelin, Plenum Press, New York. Google Scholar
Milner, R. J., Lai, C., Nave, K. A., Lenoir, D., Ogata, J., and Sutcliffe, J. G. 1985. Nucleotide sequences of two mRNAs for rat brain myelin proteolipid protein. Cell 42:931-939. Google Scholar
Weimbs, T. and Stoffel, W. 1992. Proteolipid protein (PLP) of CNS myelin: positions of free, disulfide-bonded, and fatty acid thioester-linked cysteine residues and implications for the membrane topology of PLP. Biochemistry 31:12289-12296. Google Scholar
Braun, P. E. 1984. Molecular organization of myelin. Pages 97-141, in Morell, P. (ed.), Myelin, Plenum Press, New York. Google Scholar
Li, J., Hertzberg, E. L., and Nagy, J. I. 1997. Connexin32 in oligodendrocytes and association with myelinated fibers in mouse and rat brain. J. Comp. Neurol. 379:571-591. Google Scholar
Trapp, B. D. 1990. Myelin-associated glycoprotein. Location and potential functions. Ann. N. Y. Acad. Sci. 605:29-43. Google Scholar
Sternberger, N. H., Quarles, R. H., Itoyama, Y., and Webster, H. D. 1979. Myelin-associated glycoprotein demonstrated immunocytochemically in myelin and myelin-forming cells of developing rat. Proc. Natl. Acad. Sci. USA 76:1510-1514. Google Scholar
Benjamins, J. A. and Smith, M. E. 1984. Metabolism of myelin. Pages 225-258, in Morell, P. (ed.), Myelin, New York/London, Plenum Press. Google Scholar
Colman, D. R., Kreibich, G., Frey, A. B., and Sabatini, D. D. 1982. Synthesis and incorporation of myelin polypeptides into CNS myelin. J. Cell Biol. 95:598-608. Google Scholar
Colman, D. R., Kreibich, G., and Sabatini, D. D. 1983. Biosynthesis of myelin-specific proteins. Methods Enzymol. 96:378-385. Google Scholar
Barbarese, E., Koppel, D. E., Deutscher, M. P., Smith, C. L., Ainger, K., Morgan, F., and Carson, J. H. 1995. Protein translation components are colocalized in granules in oligodendrocytes. J. Cell Sci. 108:2781-2790. Google Scholar
Ainger, K., Avossa, D., Diana, A. S., Barry, C., Barbarese, E., and Carson, J. H. 1997. Transport and localization elements in myelin basic protein mRNA. J. Cell Biol. 138:1077-1087. Google Scholar
Gould, R. M., Freund, C. M., and Barbarese, E. 1999. Myelinassociated oligodendrocytic basic protein mRNAs reside at different subcellular locations. J. Neurochem. 73:1913-1924. Google Scholar
Gould, R., Freund, C., Palmer, F., Knapp, P. E., Huang, J., Morrison, H., and Feinstein, D. L. 1999. Messenger RNAs for kinesins and dynein are located in neural processes. Biol. Bull. 197:259-260. Google Scholar
Bizzozero, O. A., Pasquini, J. M., and Soto, E. F. 1982. Differential effect of colchicine upon the entry of proteins into myelin and myelin related membranes. Neurochem. Res. 7:1415-1425. Google Scholar
Townsend, L. E. and Benjamins, J. A. 1983. Effects of monensin on posttranslational processing of myelin proteins. J. Neurochem. 40:1333-1339. Google Scholar
Trapp, B. D., Andrews, S. B., Cootauco, C., and Quarles, R. 1989. The myelin-associated glycoprotein is enriched in multivesicular bodies and periaxonal membranes of actively myelinating oligodendrocytes. J. Cell Biol. 109:2417-2426. Google Scholar
Townsend, L. E., Benjamins, J. A., and Skoff, R. P. 1984. Effects of monensin and colchicine on myelin galactolipids. J. Neurochem. 43:139-145. Google Scholar
Farrer, R. G. and Benjamins, J. A. 1992. Entry of newly synthesized gangliosides into myelin. J. Neurochem. 58:1477-1484. Google Scholar
Sato, C., Larocca, J. N., Balsamo, N., Pasquini, J. M., and Soto, E. F. 1985. Neonatal malnutrition in the rat affects the delivery of sulfatides from microsomes and their entry into myelin. Neurochem. Res. 10:179-189. Google Scholar
Sato, C., Schriftman, M., and Larocca, J. N. 1986. Transport of sulfatides towards myelin. Effect of colchicine, monensin and calcium on their intracellular translocation. Neurochem. Int. 9:247-252. Google Scholar
Bo, L., Quarles, R. H., Fujita, N., Bartoszewicz, Z., Sato, S., and Trapp, B. D. 1995. Endocytic depletion of L-MAG from CNS myelin in quaking mice. J. Cell Biol. 131:1811-1820. Google Scholar
Rothman, J. E. and Wieland, F. T. 1996. Protein sorting by transport vesicles. Science 272:227-234. Google Scholar
Pelham, H. R. 1999. The Croonian Lecture 1999. Intracellular membrane traffic: getting proteins sorted. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 354:1471-1478. Google Scholar
McNew, J. A., Parlati, F., Fukuda, R., Johnston, R. J., Paz, K., Paumet, F., Sollner, T. H., and Rothman, J. E. 2000. Compartmental specificity of cellular membrane fusion encoded in SNARE proteins. Nature 407:153-159. Google Scholar
Nickel, W., Brugger, B., and Wieland, F. T. 1998. Protein and lipid sorting between the endoplasmic reticulum and the Golgi complex. Semin. Cell Dev. Biol. 9:493-501. Google Scholar
Herrmann, J. M., Malkus, P., and Schekman, R. 1999. Out of the ER-outfitters, escorts and guides. Trends Cell Biol. 9:5-7. Google Scholar
Hartl, F. U. 1996. Molecular chaperones in cellular protein folding. Nature 381:571-579. Google Scholar
Ellgaard, L. and Helenius, A. 2001. ER quality control: towards an understanding at the molecular level. Curr. Opin. Cell Biol. 13:431-437. Google Scholar
Nehls, S., Snapp, E. L., Cole, N. B., Zaal, K. J., Kenworthy, A. K., Roberts, T. H., Ellenberg, J., Presley, J. F., Siggia, E., and Lippincott-Schwartz, J. 2000. Dynamics and retention of misfolded proteins in native ER membranes. Nat. Cell Biol. 2:288-295. Google Scholar
Sommer, T. and Wolf, D. H. 1997. Endoplasmic reticulum degradation: reverse protein flow of no return. FASEB J. 11:1227-1233. Google Scholar
Brodsky, J. L. and McCracken, A. A. 1999. ER protein quality control and proteasome-mediated protein degradation. Semin. Cell Dev. Biol. 10:507-513. Google Scholar
Biederer, T., Volkwein, C., and Sommer, T. 1997. Role of Cue1p in ubiquitination and degradation at the ER surface. Science 278:1806-1809. Google Scholar
McCracken, A. A. and Brodsky, J. L. 1996. Assembly of ERassociated protein degradation in vitro: dependence on cytosol, calnexin, and ATP. J. Cell Biol. 132:291-298. Google Scholar
Hammond, C. and Helenius, A. 1994. Quality control in the secretory pathway: retention of a misfolded viral membrane glycoprotein involves cycling between the ER, intermediate compartment, and Golgi apparatus. J. Cell Biol. 126:41-52. Google Scholar
Vashist, S., Kim, W., Belden, W. J., Spear, E. D., Barlowe, C., and Ng, D. T. 2001. Distinct retrieval and retention mechanisms are required for the quality control of endoplasmic reticulum protein folding. J. Cell Biol. 155:355-368. Google Scholar
Ng, D. T., Spear, E. D., and Walter, P. 2000. The unfolded protein response regulates multiple aspects of secretory and membrane protein biogenesis and endoplasmic reticulum quality control. J. Cell Biol. 150:77-88. Google Scholar
Aquino, D. A., Peng, D., Lopez, C., and Farooq, M. 1998. The constitutive heat shock protein-70 is required for optimal expression of myelin basic protein during differentiation of oligodendrocytes. Neurochem. Res. 23:413-420. Google Scholar
Neri, C. L., Duchala, C. S., and Macklin, W. B. 1997. Expression of molecular chaperones and vesicle transport proteins in differentiating oligodendrocytes. J. Neurosci. Res. 50:769-780. Google Scholar
High, S., Lecomte, F. J., Russell, S. J., Abell, B. M., and Oliver, J. D. 2000. Glycoprotein folding in the endoplasmic reticulum: a tale of three chaperones? FEBS Lett. 476:38-41. Google Scholar
Thomson, C. E., Montague, P., Jung, M., Nave, K. A., and Griffiths, I. R. 1997. Phenotypic severity of murine Plp mutants reflects in vivo and in vitro variations in transport of PLP isoproteins. Glia 20:322-332. Google Scholar
Gow, A., Southwood, C. M., and Lazzarini, R. A. 1998. Disrupted proteolipid protein trafficking results in oligodendrocyte apoptosis in an animal model of Pelizaeus-Merzbacher disease. J. Cell Biol. 140:925-934. Google Scholar
Roussel, G., Neskovic, N. M., Trifilieff, E., Artault, J. C., and Nussbaum, J. L. 1987. Arrest of proteolipid transport through the Golgi apparatus in Jimpy brain. J. Neurocytol. 16:195-204. Google Scholar
Duncan, I. D. 1990. Dissection of the phenotype and genotype of the X-linked myelin mutants. Ann. N. Y. Acad. Sci. 605: 110-121. Google Scholar
Nave, K. A. 1994. Neurological mouse mutants and the genes of myelin. J. Neurosci. Res. 38:607-612. Google Scholar
Nave, K. A. 1995. Myelin genetics: new insight into old diseases. Brain Pathol. 5:231-232. Google Scholar
Lemke, G. 1993. The molecular genetics of myelination: an update. Glia 7:263-271. Google Scholar
Seitelberger, F. 1995. Neuropathology and genetics of Pelizaeus-Merzbacher disease. Brain Pathol. 5:267-273. Google Scholar
Schneider, A., Montague, P., Griffiths, I., Fanarraga, M., Kennedy, P., Brophy, P., and Nave, K. A. 1992. Uncoupling of hypomyelination and glial cell death by a mutation in the proteolipid protein gene. Nature 358:758-761. Google Scholar
Schneider, A. M., Griffiths, I. R., Readhead, C., and Nave, K. A. 1995. Dominant-negative action of the jimpy mutation in mice complemented with an autosomal transgene for myelin proteolipid protein. Proc. Natl. Acad. Sci. USA 92:4447-4451. Google Scholar
Werner, H., Jung, M., Klugmann, M., Sereda, M., Griffiths, I. R., and Nave, K. A. 1998. Mouse models of myelin diseases. Brain Pathol. 8:771-793. Google Scholar
Gow, A., Friedrich, V. L. J., and Lazzarini, R. A. 1994. Many naturally occurring mutations of myelin proteolipid protein impair its intracellular transport. J. Neurosci. Res. 37:574-583. Google Scholar
Gow, A. and Lazzarini, R. A. 1996. A cellular mechanism governing the severity of Pelizaeus-Merzbacher disease. Nat. Genet. 13:422-428. Google Scholar
Tosic, M., Gow, A., Dolivo, M., Domanska-Janik, K., Lazzarini, R. A., and Matthieu, J. M. 1996. Proteolipid/DM-20 proteins bearing the paralytic tremor mutation in peripheral nerves and transfected Cos-7 cells. Neurochem. Res. 21:423-430. Google Scholar
Tosic, M., Matthey, B., Gow, A., Lazzarini, R. A., and Matthieu, J. M. 1997. Intracellular transport of the DM-20 bearing shaking pup (shp) mutation and its possible phenotypic consequences. J. Neurosci. Res. 50:844-852. Google Scholar
Gow, A., Gragerov, A., Gard, A., Colman, D. R., and Lazzarini, R. A. 1997. Conservation of topology, but not conformation, of the proteolipid proteins of the myelin sheath. J. Neurosci. 17:181-189. Google Scholar
Rohn, W. M., Rouille, Y., Waguri, S., and Hoflack, B. 2000. Bi-directional trafficking between the trans-Golgi network and the endosomal/lysosomal system. J. Cell Sci. 113:2093-2101. Google Scholar
Barlowe, C., Orci, L., Yeung, T., Hosobuchi, M., Hamamoto, S., Salama, N., Rexach, M. F., Ravazzola, M., Amherdt, M., and Schekman, R. 1994. COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell 77:895-907. Google Scholar
Rothman, J. E. 1994. Mechanisms of intracellular protein transport. Nature 372:55-63. Google Scholar
Aridor, M., Weissman, J., Bannykh, S., Nuoffer, C., and Balch, W. E. 1998. Cargo selection by the COPII budding machinery during export from the ER. J. Cell Biol. 141:61-70. Google Scholar
Pagano, A., Letourneur, F., Garcia-Estefania, D., Carpentier, J. L., Orci, L., and Paccaud, J. P. 1999. Sec24 proteins and sorting at the endoplasmic reticulum. J. Biol. Chem. 274:7833-7840. Google Scholar
Schekman, R. and Orci, L. 1996. Coat proteins and vesicle budding. Science 271:1526-1533. Google Scholar
Bonifacino, J. S., Marks, M. S., Ohno, H., and Kirchhausen, T. 1996. Mechanisms of signal-mediated protein sorting in the endocytic and secretory pathways. Proc. Assoc. Am. Physicians 108:285-295. Google Scholar
Kirchhausen, T. 1999. Adaptors for clathrin-mediated traffic. Annu. Rev. Cell Dev. Biol. 15:705-732. Google Scholar
Barlowe, C., Orci, L., Yeung, T., Hosobuchi, M., Hamamoto, S., Salama, N., Rexach, M. F., Ravazzola, M., Amherdt, M., and Schekman, R. 1994. COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell 77:895-907. Google Scholar
Bannykh, S. I. and Balch, W. E. 1997. Membrane dynamics at the endoplasmic reticulum-Golgi interface. J. Cell Biol. 138:1-4. Google Scholar
Schekman, R. and Mellman, I. 1997. Does COPI go both ways? Cell 90:197-200. Google Scholar
Pelham, H. R. 2001. Traffic through the Golgi apparatus. J. Cell Biol. 155:1099-1102. Google Scholar
Mironov, A. A., Weidman, P., and Luini, A. 1997. Variations on the intracellular transport theme: maturing cisternae and trafficking tubules. J. Cell Biol. 138:481-484. Google Scholar
Nickel, W., Brugger, B., and Wieland, F. T. 1998. Protein and lipid sorting between the endoplasmic reticulum and the Golgi complex. Semin. Cell Dev. Biol. 9:493-501. Google Scholar
Waters, M. G., Griff, I. C., and Rothman, J. E. 1991. Proteins involved in vesicular transport and membrane fusion. Curr. Opin. Cell Biol. 3:615-620. Google Scholar
Donaldson, J. G., Finazzi, D., and Klausner, R. D. 1992. Brefeldin A inhibits Golgi membrane-catalysed exchange of guanine nucleotide onto ARF protein. Nature 360:350-352. Google Scholar
Palmer, D. J., Helms, J. B., Beckers, C. J., Orci, L., and Rothman, J. E. 1993. Binding of coatomer to Golgi membranes requires ADP-ribosylation factor. J. Biol. Chem. 268:12083-12089. Google Scholar
Helms, J. B. and Rothman, J. E. 1992. Inhibition by brefeldin A of a Golgi membrane enzyme that catalyses exchange of guanine nucleotide bound to ARF. Nature 360:352-354. Google Scholar
Morinaga, N., Tsai, S. C., Moss, J., and Vaughan, M. 1996. Isolation of a brefeldin A-inhibited guanine nucleotide-exchange protein for ADP ribosylation factor (ARF) 1 and ARF3 that contains a Sec7-like domain. Proc. Natl. Acad. Sci. USA 93:12856-12860. Google Scholar
Tisdale, E. J. and Jackson, M. R. 1998. Rab2 protein enhances coatomer recruitment to pre-Golgi intermediates. J. Biol. Chem. 273:17269-17277. Google Scholar
Tisdale, E. J. 2000. Rab2 requires PKC iota/lambda to recruit beta-COP for vesicle formation. Traffic 1:702-712. Google Scholar
Hicke, L., Yoshihisa, T., and Schekman, R. 1992. Sec23p and a novel 105-kDa protein function as a multimeric complex to promote vesicle budding and protein transport from the endoplasmic reticulum. Mol. Biol. Cell 3:667-676. Google Scholar
Barlowe, C. and Schekman, R. 1993. SEC12 encodes a guanine-nucleotide-exchange factor essential for transport vesicle budding from the ER. Nature 365:347-349. Google Scholar
Yoshihisa, T., Barlowe, C., and Schekman, R. 1993. Requirement for a GTPase-activating protein in vesicle budding from the endoplasmic reticulum. Science 259:1466-1468. Google Scholar
Moyer, B. D., Allan, B. B., and Balch, W. E. 2001. Rab1 interaction with a GM130 effector complex regulates COPII vesicle cis-Golgi tethering. Traffic 2:268-276. Google Scholar
Allan, B. B., Moyer, B. D., and Balch, W. E. 2000. Rab1 recruitment of p115 into a cis-SNARE complex: programming budding COPII vesicles for fusion. Science 289:444-448. Google Scholar
Balch, W. E., McCaffery, J. M., Plutner, H., and Farquhar, M. G. 1994. Vesicular stomatitis virus glycoprotein is sorted and concentrated during export from the endoplasmic reticulum. Cell 76:841-852. Google Scholar
Rowe, T., Aridor, M., McCaffery, J. M., Plutner, H., Nuoffer, C., and Balch, W. E. 1996. COPII vesicles derived from mammalian endoplasmic reticulum microsomes recruit COPI. J. Cell Biol. 135:895-911. Google Scholar
Nickel, W., Sohn, K., Bunning, C., and Wieland, F. T. 1997. p23, a major COPI-vesicle membrane protein, constitutively cycles through the early secretory pathway. Proc. Natl. Acad. Sci. USA 94:11393-11398. Google Scholar
Itin, C., Schindler, R., and Hauri, H. P. 1995. Targeting of protein ERGIC-53 to the ER/ERGIC/cis-Golgi recycling pathway. J. Cell Biol. 131:57-67. Google Scholar
Bannykh, S., Aridor, M., Plutner, H., Rowe, T., and Balch, W. E. 1995. Regulated export of cargo from the endoplasmic reticulum of mammalian cells. Cold Spring Harb. Symp. Quant. Biol. 60:127-137. Google Scholar
Buccione, R., Bannykh, S., Santone, I., Baldassarre, M., Fac-chiano, F., Bozzi, Y., Di Tullio, G., Mironov, A., Luini, A., and De Matteis, M. A. 1996. Regulation of constitutive exocytic transport by membrane receptors. A biochemical and morphometric study. J. Biol. Chem. 271:3523-3533. Google Scholar
Fabbri, M., Bannykh, S., and Balch, W. E. 1994. Export of protein from the endoplasmic reticulum is regulated by a diacylglycerol/ phorbol ester binding protein. J. Biol. Chem. 269:26848-26857. Google Scholar
Buccione, R., Di Tullio, G., Caretta, M., Marinetti, M. R., Bizzarri, C., Francavilla, S., Luini, A., and De Matteis, M. A. 1994. Analysis of protein kinase C requirement for exocytosis in permeabilized rat basophilic leukaemia RBL-2H3 cells: a GTP-binding protein(s) as a potential target for protein kinase C. Biochem. J. 298:149-156. Google Scholar
De Matteis, M. A., Santini, G., Kahn, R. A., Di Tullio, G., and Luini, A. 1993. Receptor and protein kinase C-mediated regulation of ARF binding to the Golgi complex. Nature 364:818-821. Google Scholar
Jamora, C., Yamanouye, N., Van Lint, J., Laudenslager, J., Vandenheede, J. R., Faulkner, D. J., and Malhotra, V. 1999. Gbetagamma-mediated regulation of Golgi organization is through the direct activation of protein kinase D. Cell 98: 59-68. Google Scholar
Hartman, B. K., Agrawal, H. C., Agrawal, D., and Kalmbach, S. 1982. Development and maturation of central nervous system myelin: comparison of immunohistochemical localization of proteolipid protein and basic protein in myelin and oligodendrocytes. Proc. Natl. Acad. Sci. USA 79:4217-4220. Google Scholar
Benjamins, J. A. and Nedelkoska, L. 1994. Maintenance of membrane sheets by cultured oligodendrocytes requires continuous microtubule turnover and Golgi transport. Neurochem. Res. 19:631-639. Google Scholar
Burcelin, R., Rodriguez-Gabin, A. G., Charron, M. J., Almazan, G., and Larocca, J. N. 1997. Molecular analysis of the monomeric GTP-binding proteins of oligodendrocytes. Brain Res. Mol. Brain Res. 50:9-15. Google Scholar
Huber, L. A., Madison, D. L., Simons, K., and Pfeiffer, S. E. 1994. Myelin membrane biogenesis by oligodendrocytes. Developmental regulation of low molecular weight GTP-binding proteins. FEBS Lett. 347:273-278. Google Scholar
Larocca, J. N., Ledeen, R. W., Dvorkin, B., and Makman, M. H. 1987. Muscarinic receptor binding and muscarinic receptor-mediated inhibition of adenylate cyclase in rat brain myelin. J. Neurosci. 7:3869-3876. Google Scholar
Kahn, D. W. and Morell, P. 1988. Phosphatidic acid and phosphoinositide turnover in myelin and its stimulation by acetylcholine. J. Neurochem. 50:1542-1550. Google Scholar
Larocca, J. N., Golly, F., and Ledeen, R. W. 1991. Detection of G proteins in purified bovine brain myelin. J. Neurochem. 57:30-38. Google Scholar
Berti-Mattera, L. N., Douglas, J. G., Mattera, R., and Goraya, T. Y. 1992. Identification of G protein subtypes in peripheral nerve and cultured Schwann cells. J. Neurochem. 59:1729-1735. Google Scholar
Golly, F., Larocca, J. N., and Ledeen, R. W. 1990. Phosphoinositide breakdown in isolated myelin is stimulated by GTP analogues and calcium. J. Neurosci. Res. 27:342-348. Google Scholar
Boulias, C. and Moscarello, M. A. 1989. Guanine nucleotides stimulate hydrolysis of phosphatidyl inositol bisphosphate in human myelin membranes. Biochem. Biophys. Res. Commun. 162:282-287. Google Scholar
Csukai, M., Chen, C. H., De Matteis, M. A., and Mochly-Rosen, D. 1997. The coatomer protein beta9-COP, a selective binding protein (RACK) for protein kinase C epsilon. J. Biol. Chem. 272:29200-29206. Google Scholar
Ikonen, E. and Simons, K. 1998. Protein and lipid sorting from the trans-Golgi network to the plasma membrane in polarized cells. Semin. Cell Dev. Biol. 9:503-509. Google Scholar
Mellman, I. and Simons, K. 1992. The Golgi complex: in vitro veritas? Cell 68:829-840. Google Scholar
Orci, L., Ravazzola, M., Amherdt, M., Perrelet, A., Powell, S. K., Quinn, D. L., and Moore, H. P. 1987. The trans-most cisternae of the Golgi complex: a compartment for sorting of secretory and plasma membrane proteins. Cell 51:1039-1051. Google Scholar
Rodriguez-Boulan, E. and Nelson, W. J. 1989. Morphogenesis of the polarized epithelial cell phenotype. Science 245:718-725. Google Scholar
Simons, K. 1993. Biogenesis of epithelial cell surface polarity. Harvey Lect. 89:125-146. Google Scholar
Le Gall, A. H., Powell, S. K., Yeaman, C. A., and Rodriguez-Boulan, E. 1997. The neural cell adhesion molecule expresses a tyrosine-independent basolateral sorting signal. J. Biol. Chem. 272:4559-4567. Google Scholar
Maisner, A., Zimmer, G., Liszewski, M. K., Lublin, D. M., Atkinson, J. P., and Herrler, G. 1997. Membrane cofactor protein (CD46) is a basolateral protein that is not endocytosed. Importance of the tetrapeptide FTSL at the carboxyl terminus. J. Biol. Chem. 272:20793-20799. Google Scholar
Distel, B., Bauer, U., Le Borgne, R., and Hoflack, B. 1998. Basolateral sorting of the cation-dependent mannose 6-phosphate receptor in Madin-Darby canine kidney cells. Identification of a basolateral determinant unrelated to clathrin-coated pit localization signals. J. Biol. Chem. 273:186-193. Google Scholar
Rietveld, A. and Simons, K. 1998. The differential miscibility of lipids as the basis for the formation of functional membrane rafts. Biochim. Biophys. Acta 1376:467-479. Google Scholar
Brown, D. A. and London, E. 2000. Structure and function of sphingolipid-and cholesterol-rich membrane rafts. J. Biol. Chem. 275:17221-17224. Google Scholar
Magyar, J. P., Ebensperger, C., Schaeren-Wiemers, N., and Suter, U. 1997. Myelin and lymphocyte protein (MAL/MVP17/ VIP17) and plasmolipin are members of an extended gene family. Gene 189:269-275. Google Scholar
Lafont, F., Verkade, P., Galli, T., Wimmer, C., Louvard, D., and Simons, K. 1999. Raft association of SNAP receptors acting in apical trafficking in Madin-Darby canine kidney cells. Proc. Natl. Acad. Sci. USA 96:3734-3738. Google Scholar
Dell'Angelica, E. C., Klumperman, J., Stoorvogel, W., and Bonifacino, J. S. 1998. Association of the AP-3 adaptor complex with clathrin. Science 280:431-434. Google Scholar
Schmid, S. L. 1997. Clathrin-coated vesicle formation and protein sorting: an integrated process. Annu. Rev. Biochem. 66:511-548. Google Scholar
Le Borgne, R. and Hoflack, B. 1998. Protein transport from the secretory to the endocytic pathway in mammalian cells. Biochim. Biophys. Acta 1404:195-209. Google Scholar
Dell'Angelica, E. C., Shotelersuk, V., Aguilar, R. C., Gahl, W. A., and Bonifacino, J. S. 1999. Altered trafficking of lysosomal proteins in Hermansky-Pudlak syndrome due to mutations in the beta 3A subunit of the AP-3 adaptor. Mol. Cell 3:11-21. Google Scholar
Leitinger, B., Hille-Rehfeld, A., and Spiess, M. 1995. Biosynthetic transport of the asialoglycoprotein receptor H1 to the cell surface occurs via endosomes. Proc. Natl. Acad. Sci. USA 92:10109-10113. Google Scholar
Futter, C. E., Connolly, C. N., Cutler, D. F., and Hopkins, C. R. 1995. Newly synthesized transferrin receptors can be detected in the endosome before they appear on the cell surface. J. Biol. Chem. 270:10999-11003. Google Scholar
Stamnes, M. A. and Rothman, J. E. 1993. The binding of AP-1 clathrin adaptor particles to Golgi membranes requires ADPribosylation factor, a small GTP-binding protein. Cell 73:999-1005. Google Scholar
Ooi, C. E., Dell'Angelica, E. C., and Bonifacino, J. S. 1998. ADP-Ribosylation factor 1 (ARF1) regulates recruitment of the AP-3 adaptor complex to membranes. J. Cell Biol. 142:391-402. Google Scholar
Mauxion, F., Le Borgne, R., Munier-Lehmann, H., and Hoflack, B. 1996. A casein kinase II phosphorylation site in the cytoplasmic domain of the cation-dependent mannose 6-phosphate receptor determines the high affinity interaction of the AP-1 Golgi assembly proteins with membranes. J. Biol. Chem. 271:2171-2178. Google Scholar
Zhu, Y., Doray, B., Poussu, A., Lehto, V. P., and Kornfeld, S. 2001. Binding of GGA2 to the lysosomal enzyme sorting motif of the mannose 6-phosphate receptor. Science 292:1716-1718. Google Scholar
Dell'Angelica, E. C., Puertollano, R., Mullins, C., Aguilar, R. C., Vargas, J. D., Hartnell, L. M., and Bonifacino, J. S. 2000. GGAs: a family of ADP ribosylation factor-binding proteins related to adaptors and associated with the Golgi complex. J. Cell Biol. 149:81-94. Google Scholar
Puertollano, R., Aguilar, R. C., Gorshkova, I., Crouch, R. J., and Bonifacino, J. S. 2001. Sorting of mannose 6-phosphate receptors mediated by the GGAs. Science 292:1712-1716. Google Scholar
Black, M. W. and Pelham, H. R. 2001. Membrane traffic: how do GGAs fit in with the adaptors? Curr. Biol. 11:R460-R462. Google Scholar
de Vries, H., Schrage, C., and Hoekstra, D. 1998. An apical-type trafficking pathway is present in cultured oligodendrocytes but the sphingolipid-enriched myelin membrane is the target of a basolateral-type pathway. Mol. Biol. Cell 9:599-609. Google Scholar
Simons, M., Kramer, E. M., Thiele, C., Stoffel, W., and Trotter, J. 2000. Assembly of myelin by association of proteolipid protein with cholesterol-and galactosylceramide-rich membrane domains. J. Cell Biol. 151:143-154. Google Scholar
Pasquini, J. M., Guama, M. M., Besio-Moreno, M. A., Iturregui, M. T., Oteiza, P. I., and Soto, E. F. 1989. Inhibition of the synthesis of glycosphingolipids affects the translocation of proteolipid protein to the myelin membrane. J. Neurosci. Res. 22:289-296. Google Scholar
Brown, M. C., Besio, M. M., Bongarzone, E. R., Cohen, P. D., Soto, E. F., and Pasquini, J. M. 1993. Vesicular transport of myelin proteolipid and cerebroside sulfates to the myelin membrane. J. Neurosci. Res. 35:402-408. Google Scholar
Kim, T., Fiedler, K., Madison, D. L., Krueger, W. H., and Pfeiffer, S. E. 1995. Cloning and characterization of MVP17: a developmentally regulated myelin protein in oligodendrocytes. J. Neurosci. Res. 42:413-422. Google Scholar
Frank, M., Schaeren-Wiemers, N., Schneider, R., and Schwab, M. E. 1999. Developmental expression pattern of the myelin proteolipid MAL indicates different functions of MAL for immature Schwann cells and in a late step of CNS myelinogenesis. J. Neurochem. 73:587-597. Google Scholar
Kim, T., Fiedler, K., Madison, D. L., Krueger, W. H., and Pfeiffer, S. E. 1995. Cloning and characterization of MVP17: a developmentally regulated myelin protein in oligodendrocytes. J. Neurosci. Res. 42:413-422. Google Scholar
van der Haar, M. E., Visser, H. W., de Vries, H., and Hoekstra, D. 1998. Transport of proteolipid protein to the plasma membrane does not depend on glycosphingolipid cotransport in oligodendrocyte cultures. J. Neurosci. Res. 51:371-381. Google Scholar
Coetzee, T., Suzuki, K., Nave, K. A., and Popko, B. 1999. Myelination in the absence of galactolipids and proteolipid proteins. Mol. Cell Neurosci. 14:41-51. Google Scholar
Kramer, E. M., Koch, T., Niehaus, A., and Trotter, J. 1997. Oligodendrocytes direct glycosyl phosphatidylinositol-anchored proteins to the myelin sheath in glycosphingolipid-rich complexes. J. Biol. Chem. 272:8937-8945. Google Scholar
Hudson, L. D., Friedrich, V. L. J., Behar, T., Dubois-Dalcq, M., and Lazzarini, R. A. 1989. The initial events in myelin synthesis: orientation of proteolipid protein in the plasma membrane of cultured oligodendrocytes. J. Cell Biol. 109:717-727. Google Scholar
Minuk, J. and Braun, P. E. 1996. Differential intracellular sorting of the myelin-associated glycoprotein isoforms. J. Neurosci. Res. 44:411-420. Google Scholar
Rodriguez-Gabin, A. G., Cammer, M., Almazan, G., Charron, M., and Larocca, J. N. 2001. Role of rRAB22b, an oligodendrocyte protein, in regulation of transport of vesicles from trans Golgi to endocytic compartments. J. Neurosci. Res. 66: 1149-1160. Google Scholar
Bloom, G. S. and Goldstein, L. S. 1998. Cruising along microtubule microtubule highways: how membranes move through the secretory pathway. J. Cell Biol. 140:1277-1280. Google Scholar
Kamal, A. and Goldstein, L. S. 2002. Principles of cargo attachment to cytoplasmic motor proteins. Curr. Opin. Cell Biol. 14:63-68. Google Scholar
Lippincott-Schwartz, J. 1998. Cytoskeletal proteins and Golgi dynamics. Curr. Opin. Cell Biol. 10:52-59. Google Scholar
Hirokawa, N. 1998. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279:519-526. Google Scholar
Kreitzer, G., Marmorstein, A., Okamoto, P., Vallee, R., and Rodriguez-Boulan, E. 2000. Kinesin and dynamin are required for post-Golgi transport of a plasma-membrane protein. Nat. Cell Biol. 2:125-127. Google Scholar
Bomsel, M., Parton, R., Kuznetsov, S. A., Schroer, T. A., and Gruenberg, J. 1990. Microtubule-and motor-dependent fusion in vitro between apical and basolateral endocytic vesicles from MDCK cells. Cell 62:719-731. Google Scholar
Aniento, F., Emans, N., Griffiths, G., and Gruenberg, J. 1993. Cytoplasmic dynein-dependent vesicular transport from early to late endosomes. J. Cell Biol. 123:1373-1387. Google Scholar
Sheetz, M. P. 1999. Motor and cargo interactions. Eur. J. Biochem. 262:19-25. Google Scholar
Reese, E. L. and Haimo, L. T. 2000. Dynein, dynactin, and kinesin II's interaction with microtubules is regulated during bidirectional organelle transport. J. Cell Biol. 151:155-166. Google Scholar
Saxton, W. M., Stemple, D. L., Leslie, R. J., Salmon, E. D., Zavortink, M., and McIntosh, J. R. 1984. Tubulin dynamics in cultured mammalian cells. J. Cell Biol. 99:2175-2186. Google Scholar
Gundersen, G. G. and Bulinski, J. C. 1986. Microtubule arrays in differentiated cells contain elevated levels of a post-translationally modified form of tubulin. Eur. J. Cell Biol. 42:288-294. Google Scholar
Gundersen, G. G. and Bulinski, J. C. 1988. Selective stabilization of microtubules oriented toward the direction of cell migration. Proc. Natl. Acad. Sci. USA 85:5946-5950. Google Scholar
Baas, P. W., Slaughter, T., Brown, A., and Black, M. M. 1991. Microtubule dynamics in axons and dendrites. J. Neurosci. Res. 30:134-153. Google Scholar
Matus, A. 1994. Stiff microtubules and neuronal morphology. Trends Neurosci. 17:19-22. Google Scholar
Richter-Landsberg, C. 2000. The oligodendroglia cytoskeleton in health and disease. J. Neurosci. Res. 59:11-18. Google Scholar
Cook, T. A., Nagasaki, T., and Gundersen, G. G. 1998. Rho guanosine triphosphatase mediates the selective stabilization of microtubules induced by lysophosphatidic acid. J. Cell Biol. 141:175-185. Google Scholar
Kaibuchi, K., Kuroda, S., and Amano, M. 1999. Regulation of the cytoskeleton and cell adhesion by the Rho family GTPases in mammalian cells. Annu. Rev. Biochem. 68:459-486. Google Scholar
Craig, S. W. and Johnson, R. P. 1996. Assembly of focal adhesions: progress, paradigms, and portents. Curr. Opin. Cell Biol. 8:74-85. Google Scholar
Laudanna, C., Campbell, J. J., and Butcher, E. C. 1996. Role of Rho in chemoattractant-activated leukocyte adhesion through integrins. Science 271:981-983. Google Scholar
Nobes, C. D. and Hall, A. 1995. Rho, rac and cdc42 GTPases: regulators of actin structures, cell adhesion and motility. Biochem. Soc. Trans. 23:456-459. Google Scholar
Ridley, A. J. 2001. Rho family proteins: coordinating cell responses. Trends Cell Biol. 11:471-477. Google Scholar
Ridley, A. J., Paterson, H. F., Johnston, C. L., Diekmann, D., and Hall, A. 1992. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70:401-410. Google Scholar
Ridley, A. J. 2001. Rho proteins: linking signaling with membrane trafficking. Traffic 2:303-310. Google Scholar
Lamaze, C., Chuang, T. H., Terlecky, L. J., Bokoch, G. M., and Schmid, S. L. 1996. Regulation of receptor-mediated endocytosis by Rho and Rac. Nature 382:177-179. Google Scholar
Jou, T. S., Leung, S. M., Fung, L. M., Ruiz, W. G., Nelson, W. J., and Apodaca, G. 2000. Selective alterations in biosynthetic and endocytic protein traffic in Madin-Darby canine kidney epithelial cells expressing mutants of the small GTPase Rac1. Mol. Biol. Cell 11:287-304. Google Scholar
Ellis, S. and Mellor, H. 2000. Regulation of endocytic traffic by rho family GTPases. Trends Cell Biol. 10:85-88. Google Scholar
Kroschewski, R., Hall, A., and Mellman, I. 1999. Cdc42 controls secretory and endocytic transport to the basolateral plasma membrane of MDCK cells. Nat. Cell Biol. 1:8-13. Google Scholar
Peranen, J., Auvinen, P., Virta, H., Wepf, R., and Simons, K. 1996. Rab8 promotes polarized membrane transport through reorganization of actin and microtubules in fibroblasts. J. Cell Biol. 135:153-167. Google Scholar
Nielsen, E., Severin, F., Backer, J. M., Hyman, A. A., and Zerial, M. 1999. Rab5 regulates motility of early endosomes on microtubules. Nat. Cell Biol. 1:376-382. Google Scholar
Spaargaren, M. and Bos, J. L. 1999. Rab5 induces Rac-independent lamellipodia formation and cell migration. Mol. Biol. Cell 10:3239-3250. Google Scholar
Armstrong, R. C., Harvath, L., and Dubois-Dalcq, M. E. 1990. Type 1 astrocytes and oligodendrocyte-type 2 astrocyte glial progenitors migrate toward distinct molecules. J. Neurosci. Res. 27:400-407. Google Scholar
Warrington, A. E., Barbarese, E., and Pfeiffer, S. E. 1993. Differential myelinogenic capacity of specific developmental stages of the oligodendrocyte lineage upon transplantation into hypomyelinating hosts. J. Neurosci. Res. 34:1-13. Google Scholar
Ono, K., Yasui, Y., Rutishauser, U., and Miller, R. H. 1997. Focal ventricular origin and migration of oligodendrocyte precursors into the chick optic nerve. Neuron 19:283-292. Google Scholar
Wilson, R. and Brophy, P. J. 1989. Role for the oligodendrocyte cytoskeleton in myelination. J. Neurosci. Res. 22:439-448. Google Scholar
Lunn, K. F., Baas, P. W., and Duncan, I. D. 1997. Microtubule organization and stability in the oligodendrocyte. J. Neurosci. 17:4921-4932. Google Scholar
Wood, P. M. and Williams, A. K. 1984. Oligodendrocyte proliferation and CNS myelination in cultures containing dissociated embryonic neuroglia and dorsal root ganglion neurons. Brain Res. 314:225-241. Google Scholar
Dyer, C. A. and Benjamins, J. A. 1989. Organization of oligodendroglial membrane sheets. I: Association of myelin basic protein and 29,39-cyclic nucleotide 39-phosphohydrolase with cytoskeleton. J. Neurosci. Res. 24:201-211. Google Scholar
Kachar, B., Behar, T., and Dubois-Dalcq, M. 1986. Cell shape and motility of oligodendrocytes cultured without neurons. Cell Tissue Res. 244:27-38. Google Scholar
Vouyiouklis, D. A. and Brophy, P. J. 1993. Microtubuleassociated protein MAP1B expression precedes the morphological differentiation of oligodendrocytes. J. Neurosci. Res. 35:257-267. Google Scholar
Vouyiouklis, D. A. and Brophy, P. J. 1995. Microtubuleassociated proteins in developing oligodendrocytes: transient expression of a MAP2c isoform in oligodendrocyte precursors. J. Neurosci. Res. 42:803-817. Google Scholar
Muller, R., Heinrich, M., Heck, S., Blohm, D., and Richter-Landsberg, C. 1997. Expression of microtubule-associated proteins MAP2 and tau in cultured rat brain oligodendrocytes. Cell Tissue Res. 288:239-249. Google Scholar
LoPresti, P., Szuchet, S., Papasozomenos, S. C., Zinkowski, R. P., and Binder, L. I. 1995. Functional implications for the microtubule-associated protein tau: localization in oligodendrocytes. Proc. Natl. Acad. Sci. USA 92:10369-10373. Google Scholar
Gould, R. M., Freund, C. M., Palmer, F., and Feinstein, D. L. 2000. Messenger RNAs located in myelin sheath assembly sites. J. Neurochem. 75:1834-1844. Google Scholar
Carson, J. H., Worboys, K., Ainger, K., and Barbarese, E. 1997. Translocation of myelin basic protein mRNA in oligodendrocytes requires microtubules and kinesin. Cell Motil. Cytoskeleton 38:318-328. Google Scholar
Rodriguez-Gabin, A. G., Farooq, M., Norton, W. T., and Larocca, J. N. 1997. Study of the interaction of the myelin monomeric GTP-binding proteins with other brain proteins. J. Neurochem. 68:1011-1020. Google Scholar
Novick, P. and Zerial, M. 1997. The diversity of Rab proteins in vesicle transport. Curr. Opin. Cell Biol. 9:496-504. Google Scholar
Waters, M. G. and Pfeffer, S. R. 1999. Membrane tethering in intracellular transport. Curr. Opin. Cell Biol. 11:453-459. Google Scholar
Chavrier, P. and Goud, B. 1999. The role of ARF and Rab GTPases in membrane transport. Curr. Opin. Cell Biol. 11: 466-475. Google Scholar
Broadie, K. S. 1995. Genetic dissection of the molecular mechanisms of transmitter vesicle release during synaptic transmission. J. Physiol. Paris 89:59-70. Google Scholar
Stenmark, H. and Olkkonen, V. M. 2002. The Rab GTPase family. Genome Biol. 2.
Peranen, J., Auvinen, P., Virta, H., Wepf, R., and Simons, K. 1996. Rab8 promotes polarized membrane transport through reorganization of actin and microtubules in fibroblasts. J. Cell Biol. 135:153-167. Google Scholar
Burton, J. and De Camilli, P. 1994. A novel mammalian guanine nucleotide exchange factor (GEF) specific for rab proteins. Adv. Second Messenger Phosphoprotein Res. 29:109-119. Google Scholar
Cherfils, J. and Chardin, P. 1999. GEFs: structural basis for their activation of small GTP-binding proteins. Trends Biochem. Sci. 24:306-311. Google Scholar
Horiuchi, H., Lippe, R., McBride, H. M., Rubino, M., Woodman, P., Stenmark, H., Rybin, V., Wilm, M., Ashman, K., Mann, M., and Zerial, M. 1997. A novel Rab5 GDP/GTP exchange factor complexed to Rabaptin-5 links nucleotide exchange to effector recruitment and function. Cell 90:1149-1159. Google Scholar
Wu, S. K., Zeng, K., Wilson, I. A., and Balch, W. E. 1996. Structural insights into the function of the Rab GDI superfamily. Trends Biochem. Sci. 21:472-476. Google Scholar
Wu, S. K., Luan, P., Matteson, J., Zeng, K., Nishimura, N., and Balch, W. E. 1998. Molecular role for the Rab binding platform of guanine nucleotide dissociation inhibitor in endoplasmic reticulum to Golgi transport. J. Biol. Chem. 273:26931-26938. Google Scholar
Jones, S., Litt, R. J., Richardson, C. J., and Segev, N. 1995. Requirement of nucleotide exchange factor for Ypt1 GTPase mediated protein transport. J. Cell Biol. 130:1051-1061. Google Scholar
Christoforidis, S., Miaczynska, M., Ashman, K., Wilm, M., Zhao, L., Yip, S. C., Waterfield, M. D., Backer, J. M., and Zerial, M. 1999. Phosphatidylinositol-3-OH kinases are Rab5 effectors. Nat. Cell Biol. 1:249-252. Google Scholar
McBride, H. M., Rybin, V., Murphy, C., Giner, A., Teasdale, R., and Zerial, M. 1999. Oligomeric complexes link Rab5 effectors with NSF and drive membrane fusion via interactions between EEA1 and syntaxin 13. Cell 98:377-386. Google Scholar
Ren, M., Zeng, J., De Lemos-Chiarandini, C., Rosenfeld, M., Adesnik, M., and Sabatini, D. D. 1996. In its active form, the GTP-binding protein rab8 interacts with a stress-activated protein kinase. Proc. Natl. Acad. Sci. USA 93:5151-5155. Google Scholar
Pfeffer, S. R. 1999. Transport-vesicle targeting: tethers before SNAREs. Nat. Cell Biol. 1:E17-E22. Google Scholar
Madison, D. L., Kruger, W. H., Kim, T., and Pfeiffer, S. E. 1996. Differential expression of rab3 isoforms in oligodendrocytes and astrocytes. J. Neurosci. Res. 45:258-268. Google Scholar
Bouverat, B. P., Krueger, W. H., Coetzee, T., Bansal, R., and Pfeiffer, S. E. 2000. Expression of rab GTP-binding proteins during oligodendrocyte differentiation in culture. J. Neurosci. Res. 59:446-453. Google Scholar
Pind, S. N., Nuoffer, C., McCaffery, J. M., Plutner, H., Davidson, H. W., Farquhar, M. G., and Balch, W. E. 1994. Rab1 and Ca21 are required for the fusion of carrier vesicles mediating endoplasmic reticulum to Golgi transport. J. Cell Biol. 125:239-252. Google Scholar
Tisdale, E. J. and Balch, W. E. 1996. Rab2 is essential for the maturation of pre-Golgi intermediates. J. Biol. Chem. 271: 29372-29379. Google Scholar
Huber, L. A., de Hoop, M. J., Dupree, P., Zerial, M., Simons, K., and Dotti, C. 1993. Protein transport to the dendritic plasma membrane of cultured neurons is regulated by rab8p. J. Cell Biol. 123:47-55. Google Scholar
Huber, L. A., Dupree, P., and Dotti, C. G. 1995. A deficiency of the small GTPase rab8 inhibits membrane traffic in developing neurons. Mol. Cell Biol. 15:918-924. Google Scholar
Iida, H., Wang, L., Nishii, K., Ookuma, A., and Shibata, Y. 1996. Identification of rab12 as a secretory granule-associated small GTP-binding protein in atrial myocytes. Circ. Res. 78:343-347. Google Scholar
Chen, W., Feng, Y., Chen, D., and Wandinger-Ness, A. 1998. Rab11 is required for trans-golgi network-to-plasma membrane transport and a preferential target for GDP dissociation inhibitor. Mol. Biol. Cell 9:3241-3257. Google Scholar
Bouverat, B. P., Krueger, W. H., Coetzee, T., Bansal, R., and Pfeiffer, S. E. 2000. Expression of rab GTP-binding proteins during oligodendrocyte differentiation in culture. J. Neurosci. Res. 59:446-453. Google Scholar
Rodriguez-Gabin, A. G., Cammer, M., Almazan, G., Charron, M., and Larocca, J. N. 2001. Role of rRAB22b, an oligodendrocyte protein, in regulation of transport of vesicles from trans Golgi to endocytic compartments. J. Neurosci. Res. 66: 1149-1160. Google Scholar
Bucci, C., Parton, R. G., Mather, I. H., Stunnenberg, H., Simons, K., Hoflack, B., and Zerial, M. 1992. The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway. Cell 70:715-728. Google Scholar
Bucci, C., Thomsen, P., Nicoziani, P., McCarthy, J., and van Deurs, B. 2000. Rab7: a key to lysosome biogenesis. Mol. Biol. Cell 11:467-480. Google Scholar
Brown, M. C., Larocca, J. N., Soto, C., Soto, E. F., and Pasquini, J. M. 1990. Effect of neonatal undernutrition upon cerebroside sulfate degradation in the developing rat brain. Mol. Chem. Neuropathol. 12:191-202. Google Scholar
Shapiro, A. D., Riederer, M. A., and Pfeffer, S. R. 1993. Biochemical analysis of rab9, a ras-like GTPase involved in protein transport from late endosomes to the trans Golgi network. J. Biol. Chem. 268:6925-6931. Google Scholar
Gould, R. M., Freund, C. M., and Barbarese, E. 1999. Myelin-associated oligodendrocytic basic protein mRNAs reside at different subcellular locations. J. Neurochem. 73:1913-1924. Google Scholar
Nakamura, S., Kawamoto, Y., Nakano, S., and Akiguchi, I.2000. Expression of the endocytosis regulatory proteins Rab5 and Rabaptin-5 in glial cytoplasmic inclusions from brains with multiple system atrophy. Clin. Neuropathol. 19:51-56. Google Scholar
Lippe, R., Miaczynska, M., Rybin, V., Runge, A., and Zerial, M. 2001. Functional synergy between Rab5 effector Rabaptin-5 and exchange factor Rabex-5 when physically associated in a complex. Mol. Biol. Cell 12:2219-2228. Google Scholar
Rothman, J. E. 1996. The protein machinery of vesicle budding and fusion. Prot. Sci. 5:185-194. Google Scholar
Chen, Y. A., Scales, S. J., Patel, S. M., Doung, Y. C., and Scheller, R. H. 1999. SNARE complex formation is triggered by Ca21 and drives membrane fusion. Cell 97:165-174. Google Scholar
Chen, Y. A. and Scheller, R. H. 2001. SNARE-mediated membrane fusion. Nat. Rev. Mol. Cell Biol. 2:98-106. Google Scholar
Fasshauer, D., Sutton, R. B., Brunger, A. T., and Jahn, R. 1998. Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q-and R-SNAREs. Proc. Natl. Acad. Sci. USA 95:15781-15786. Google Scholar
Scales, S. J., Chen, Y. A., Yoo, B. Y., Patel, S. M., Doung, Y. C., and Scheller, R. H. 2000. SNAREs contribute to the specificity of membrane fusion. Neuron 26:457-464. Google Scholar
Scales, S. J., Bock, J. B., and Scheller, R. H. 2000. The specifics of membrane fusion. Nature 407:144-146. Google Scholar
McNew, J. A., Parlati, F., Fukuda, R., Johnston, R. J., Paz, K., Paumet, F., Sollner, T. H., and Rothman, J. E. 2000. Compartmental specificity of cellular membrane fusion encoded in SNARE proteins. Nature 407:153-159. Google Scholar
Hepp, R., Perraut, M., Chasserot-Golaz, S., Galli, T., Aunis, D., Langley, K., and Grant, N. J. 1999. Cultured glial cells express the SNAP-25 analogue SNAP-23. Glia 27:181-187. Google Scholar
Madison, D. L., Krueger, W. H., Cheng, D., Trapp, B. D., and Pfeiffer, S. E. 1999. SNARE complex proteins, including the cognate pair VAMP-2 and syntaxin-4, are expressed in cultured oligodendrocytes. J. Neurochem. 72:988-998. Google Scholar
Kramer, E. M., Schardt, A., and Nave, K. A. 2001. Membrane traffic in myelinating oligodendrocytes. Microsc. Res. Tech. 52:656-671. Google Scholar
Low, S. H., Roche, P. A., Anderson, H. A., van Ijzendoorn, S. C., Zhang, M., Mostov, K. E., and Weimbs, T. 1998. Targeting of SNAP-23 and SNAP-25 in polarized epithelial cells. J. Biol. Chem. 273:3422-3430. Google Scholar
Low, S. H., Chapin, S. J., Wimmer, C., Whiteheart, S. W., Komuves, L. G., Mostov, K. E., and Weimbs, T. 1998. The SNARE machinery is involved in apical plasma membrane trafficking in MDCK cells. J. Cell Biol. 141:1503-1513. Google Scholar
Coco, S., Raposo, G., Martinez, S., Fontaine, J. J., Takamori, S., Zahraoui, A., Jahn, R., Matteoli, M., Louvard, D., and Galli, T. 1999. Subcellular localization of tetanus neurotoxininsensitive vesicle-associated membrane protein (VAMP)/ VAMP7 in neuronal cells: evidence for a novel membrane compartment. J. Neurosci. 19:9803-9812. Google Scholar
Fischer, v. M., Mignery, G. A., Baumert, M., Perin, M. S., Hanson, T. J., Burger, P. M., Jahn, R., and Sudhof, T. C. 1990. rab3 is a small GTP-binding protein exclusively localized to synaptic vesicles. Proc. Natl. Acad. Sci. USA 87:1988-1992. Google Scholar
Chilcote, T. J., Galli, T., Mundigl, O., Edelmann, L., McPherson, P. S., Takei, K., and De Camilli, P. 1995. Cellubrevin and synaptobrevins: similar subcellular localization and biochemical properties in PC12 cells. J. Cell Biol. 129:219-231. Google Scholar
McMahon, H. T., Ushkaryov, Y. A., Edelmann, L., Link, E., Binz, T., Niemann, H., Jahn, R., and Sudhof, T. C. 1993. Cellubrevin is a ubiquitous tetanus-toxin substrate homologous to a putative synaptic vesicle fusion protein. Nature 364:346-349. Google Scholar
Low, S. H., Chapin, S. J., Weimbs, T., Komuves, L. G., Bennett, M. K., and Mostov, K. E. 1996. Differential localization of syntaxin isoforms in polarized Madin-Darby canine kidney cells. Mol. Biol. Cell 7:2007-2018. Google Scholar