Regulators of G1 cyclin–dependent kinases and cancers (original) (raw)

References

  1. Sherr CJ: D-type cyclins. Trends Biochem Sci 20: 187–190, 1995
    Google Scholar
  2. Ortega S, Malumbres M, Barbacid M: Cyclin D-dependent kinases, INK4 inhibitors and cancer. Biochim Biophys Acta 1602: 73–87, 2002
    Google Scholar
  3. Wolfel T, Hauer M, Schneider J, Serrano M, Wolfel C, Klehmann-Hieb E, De Plaen E, Hankeln T, Meyer zum Buschenfelde KH, Beach D: A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science 269: 1281–1284, 1995
    Google Scholar
  4. Steeg PS, Zhou Q: Cyclins and breast cancer. Breast CancerRes Treat 52: 17–28, 1998
    Google Scholar
  5. Hermeking H, Rago C, Schuhmacher M, Li Q, Barrett JF, Obaya AJ, O'Connell BC, Mateyak MK, Tam W, KohlhuberF, Dang CV, Sedivy JM, Eick D, Vogelstein B, Kinzler KW: Identification of CDK4 as a target of c-MYC. Proc Natl Acad Sci USA 97: 2229–2234, 2000
    Google Scholar
  6. Lutz W, Leon J, Eilers M: Contributions of Myc to tumorigenesis. Biochim Biophys Acta 1602: 61–71, 2002
    Google Scholar
  7. Bouchard C, Dittrich O, Kiermaier A, Dohmann K, Menkel A, Eilers M, Luscher B: Regulation of cyclin D2 gene expression by the Myc/Max/Mad network: Mycdependent TRRAP recruitment and histone acetylation at the cyclin D2 promoter. Genes Dev 15: 2042–2047, 2001
    Google Scholar
  8. Lee MH, Yang HY: Negative regulators of cyclindependent kinases and their roles in cancers. Cell Mol Life Sci 58: 1907–1922, 2001
    Google Scholar
  9. Sugimoto M, Nakamura T, Ohtani N, Hampson L, Hampson IN, Shimamoto A, Furuichi Y, Okumura K, Niwa S, Taya Y, Hara E: Regulation of CDK4 activity by a novel CDK4-binding protein, p34(SEI-1). Genes Dev 13: 3027–3033, 1999
    Google Scholar
  10. Thompson FH, Nelson MA, Trent JM, Guan XY, Liu Y, Yang JM, Emerson J, Adair L, Wymer J, Balfour C, Massey K, Weinstein R, Alberts DS, Taetle R: Amplification of 19q13.1-q13.2 sequences in ovarian cancer. Gband, FISH, and molecularstudies. Cancer Genet Cytogenet 87: 55–62, 1996
    Google Scholar
  11. Bienz M: The subcellular destinations of APC proteins. Nat Rev Mol Cell Biol 3: 328–338, 2002
    Google Scholar
  12. Barth AI, Nelson WJ: What can humans learn from flies about adenomatous polyposis coli? Bioessays 24: 771–774, 2002
    Google Scholar
  13. Tetsu O, McCormick F: Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398: 422–426, 1999
    Google Scholar
  14. Shtutman M, Zhurinsky J, Simcha I, Albanese C, D'Amico M, Pestell R, Ben-Ze'ev A: The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci USA 96: 5522–5527, 1999
    Google Scholar
  15. Cillo C, Cantile M, Faiella A, Boncinelli E: Homeobox genes in normal and malignant cells. J Cell Physiol 88: 161–169, 2001
    Google Scholar
  16. Hu G, Lee H, Price SM, Shen MM, Abate-Shen C: Msx homeobox genes inhibit differentiation through upregulation of cyclin D1. Development 128: 2373–2384, 2001
    Google Scholar
  17. Weijzen S, Rizzo P, Braid M, Vaishnav R, Jonkheer SM, Zlobin A, Osborne BA, Gottipati S, Aster JC, Hahn WC, Rudolf M, Siziopikou K, Kast WM, Miele L: Activation of Notch-1 signaling maintains the neoplastic phenotype in human Ras-transformed cells. Nat Med 8: 979–986, 2002
    Google Scholar
  18. Ronchini C, Capobianco AJ: Induction of cyclin D1 transcription and CDK2 activity by Notch(ic): implication for cell cycle disruption in transformation by Notch(ic). Mol Cell Biol 21: 5925–5934, 2001
    Google Scholar
  19. Lai EC: Keeping a good pathway down: Transcriptional repression of Notch pathway target genes by CSL proteins. EMBO Rep 3: 840–845, 2002
    Google Scholar
  20. Allan AL, Albanese C, Pestell RG, LaMarre J: Activating transcription factor 3 induces DNA synthesis and expression of cyclin D1 in hepatocytes. J Biol Chem 276: 27272–27280, 2001
    Google Scholar
  21. Beier F, Lee RJ, Taylor AC, Pestell RG, LuValle P: Identification of the cyclin D1 gene as a target of activating transcription factor 2 in chondrocytes. Proc Natl Acad Sci USA 96: 1433–1438, 1999
    Google Scholar
  22. Liu MM, Albanese C, Anderson CM, Hilty K, Webb P, Uht RM, Price RH, Jr., Pestell RG, Kushner PJ: Opposing action of estrogen receptors alpha and beta on cyclin D1 gene expression. J Biol Chem 277: 24353–24360, 2002
    Google Scholar
  23. Bakiri L, Lallemand D, Bossy-Wetzel E, Yaniv M: Cell cycle-dependent variations in c-Jun and JunB phosphorylation: A role in the control of cyclin D1 expression. Embo J 19: 2056–2068, 2000
    Google Scholar
  24. Albanese C, Johnson J, Watanabe G, Eklund N, Vu D, Arnold A, Pestell RG: Transforming p21ras mutants and c-Ets-2 activate the cyclin D1 promoter through distinguishable regions. J Biol Chem 270: 23589–23597, 1995
    Google Scholar
  25. Watanabe G, Howe A, Lee RJ, Albanese C, Shu IW, Karnezis AN, Zon L, Kyriakis J, Rundell K, Pestell RG: Induction of cyclin D1 by simian virus 40 small tumor antigen. Proc Natl Acad Sci USA 93: 12861–12866, 1996
    Google Scholar
  26. Filmus J, Robles AI, Shi W, Wong MJ, Colombo LL, Conti CJ: Induction of cyclin D1 overexpression by activated ras. Oncogene 9: 3627–3633, 1994
    Google Scholar
  27. Joyce D, Bouzahzah B, Fu M, Albanese C, D'Amico M, SteerJ, Klein JU, Lee RJ, Segall JE, Westwick JK, Der CJ, Pestell RG: Integration of Rac-dependent regulation of cyclin D1 transcription through a nuclear factorkappaB-dependent pathway. J Biol Chem 274: 25245–25249, 1999
    Google Scholar
  28. Lee RJ, Albanese C, Fu M, D'Amico M, Lin B, Watanabe G, Haines GK, 3rd, Siegel PM, Hung MC, Yarden Y, Horowitz JM, Muller WJ, Pestell RG: Cyclin D1 is required for transformation by activated Neu and is induced through an E2F-dependent signaling pathway. Mol Cell Biol 20: 672–683, 2000
    Google Scholar
  29. Watanabe G, Albanese C, Lee RJ, Reutens A, Vairo G, Henglein B, Pestell RG: Inhibition of cyclin D1 kinase activity is associated with E2F-mediated inhibition of cyclin D1 promoter activity through E2F and Sp1. Mol Cell Biol 18: 3212–3222, 1998
    Google Scholar
  30. Welsh CF, Roovers K, Villanueva J, Liu Y, Schwartz MA, Assoian RK: Timing of cyclin D1 expression within G1 phase is controled by Rho. Nat Cell Biol 3: 950–957, 2001
    Google Scholar
  31. Sherr CJ, Roberts JM: Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev 9: 1149–1163, 1995
    Google Scholar
  32. Wang H, Iakova P, Wilde M, Welm A, Goode T, Roesler WJ, Timchenko NA: C/EBPalpha arrests cell proliferation through direct inhibition of Cdk2 and Cdk4. Mol Cell 8: 817–828, 2001
    Google Scholar
  33. Wang H, Goode T, Iakova P, Albrecht JH, Timchenko NA: C/EBPalpha triggers proteasome-dependent degradation of cdk4 during growth arrest. Embo J 21: 930–941, 2002
    Google Scholar
  34. Xia C, Bao Z, Tabassam F, Ma W, Qiu M, Hua S, Liu M: GCIP, a novel human grap2 and cyclin D interacting protein, regulates E2F-mediated transcriptional activity. J Biol Chem 275: 20942–20948, 2000
    Google Scholar
  35. Pervin S, Singh R, Chaudhuri G: Nitric oxide-induced cytostasis and cell cycle arrest of a human breast cancer cell line (MDA-MB-231): Potential role of cyclin D1. Proc Natl Acad Sci USA 98: 3583–3588, 2001
    Google Scholar
  36. Miyakawa Y, Matsushime H: Rapid downregulation of cyclin D1 mRNA and protein levels by ultraviolet irradiation in murine macrophage cells. Biochem Biophys Res Commun 284: 71–76, 2001
    Google Scholar
  37. Barnouin K, Dubuisson ML, Child ES, Fernandez de Mattos S, Glassford J, Medema RH, Mann DJ, Lam EW: H2O2 induces a transient multi-phase cell cycle arrest in mouse fibroblasts through modulating cyclin D and p21Cip1 expression. J Biol Chem 277: 13761–13770, 2002
    Google Scholar
  38. Carlson B, Lahusen T, Singh S, Loaiza-Perez A, Worland PJ, Pestell R, Albanese C, Sausville EA, Senderowicz AM: Down-regulation of cyclin D1 by transcriptional repression in MCF-7 human breast carcinoma cells induced by flavopiridol. Cancer Res 59: 4634–4641, 1999
    Google Scholar
  39. Hulit J, Bash T, Fu M, Galbiati F, Albanese C, Sage DR, Schlegel A, Zhurinsky J, Shtutman M, Ben-Ze'ev A, Lisanti MP, Pestell RG: The cyclin D1 gene is transcriptionally repressed by caveolin-1. J Biol Chem 275: 21203–21209, 2000
    Google Scholar
  40. Li L, Yang G, Ebara S, Satoh T, Nasu Y, Timme TL, Ren C, Wang J, TahirSA, Thompson TC: Caveolin-1 mediates testosterone-stimulated survival/clonal growth and promotes metastatic activities in prostate cancer cells. Cancer Res 61: 4386–4392, 2001
    Google Scholar
  41. Yang G, Truong LD, Timme TL, Ren C, Wheeler TM, Park SH, Nasu Y, Bangma CH, Kattan MW, Scardino PT, Thompson TC: Elevated expression of caveolin is associated with prostate and breast cancer. Clin Cancer Res 4: 1873–1880, 1998
    Google Scholar
  42. Suzuoki M, Miyamoto M, Kato K, Hiraoka K, Oshikiri T, Nakakubo Y, Fukunaga A, Shichinohe T, Shinohara T, Itoh T, Kondo S, Katoh H: Impact of caveolin-1 expression on prognosis of pancreatic ductal adenocarcinoma. Br J Cancer 87: 1140–1144, 2002
    Google Scholar
  43. Ho CC, Huang PH, Huang HY, Chen YH, Yang PC, Hsu SM: Up-regulated caveolin-1 accentuates the metastasis capability of lung adenocarcinoma by inducing filopodia formation. Am J Pathol 161: 1647–1656, 2002
    Google Scholar
  44. Kato K, Hida Y, Miyamoto M, Hashida H, Shinohara T, Itoh T, Okushiba S, Kondo S, Katoh H: Overexpression of caveolin-1 in esophageal squamous cell carcinoma correlates with lymph node metastasis and pathologic stage. Cancer 94: 929–933, 2002
    Google Scholar
  45. Yang G, Truong LD, Wheeler TM, Thompson TC: Caveolin-1 expression in clinically confined human prostate cancer: A novel prognostic marker. Cancer Res 59: 5719–5723, 1999
    Google Scholar
  46. Diehl JA, Zindy F, Sherr CJ: Inhibition of cyclin D1 phosphorylation on threonine-286 prevents its rapid degradation via the ubiquitin-proteasome pathway. Genes Dev 11: 957–972, 1997
    Google Scholar
  47. Jackson PK, Eldridge AG: The SCF ubiquitin ligase: An extended look. Mol Cell 9: 923–925, 2002
    Google Scholar
  48. Yu ZK, Gervais JL, Zhang H: Human CUL-1 associates with the SKP1/SKP2 complex and regulates p21(CIP1/ WAF1) and cyclin D proteins. Proc Natl Acad Sci USA 95: 11324–11329, 1998
    Google Scholar
  49. Diehl JA, Cheng M, Roussel MF, Sherr CJ: Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellularlocalization. Genes Dev 2: 3499–3511, 1998
    Google Scholar
  50. Geng Y, Eaton EN, Picon M, Roberts JM, Lundberg AS, Gifford A, Sardet C, Weinberg RA: Regulation of cyclin E transcription by E2Fs and retinoblastoma protein. Oncogene 12: 1173–1180, 1996
    Google Scholar
  51. Masciullo V, Scambia G, Marone M, Giannitelli C, Ferrandina G, Bellacosa A, Benedetti Panici P, Mancuso S: Altered expression of cyclin D1 and CDK4 genes in ovarian carcinomas. Int J Cancer 74: 390–395, 1997
    Google Scholar
  52. Alle KM, Henshall SM, Field AS, Sutherland RL: Cyclin D1 protein is overexpressed in hyperplasia and intraductal carcinoma of the breast. Clin Cancer Res 4: 847–854, 1998
    Google Scholar
  53. Takano Y, Kato Y, van Diest PJ, Masuda M, Mitomi H, Okayasu I: Cyclin D2 overexpression and lack of p27 correlate positively and cyclin E inversely with a poor prognosis in gastric cancer cases. Am J Pathol 156: 585–594, 2000
    Google Scholar
  54. Leng X, Noble M, Adams PD, Qin J, Harper JW: Reversal of growth suppression by p107 via direct phosphorylation by cyclin D1/cyclin-dependent kinase 4. Mol Cell Biol 22: 2242–2254, 2002
    Google Scholar
  55. Dawson S, Apcher S, Mee M, Higashitsuji H, BakerR, Uhle S, Dubiel W, Fujita J, MayerRJ: Gankyrin is an ankyrin-repeat oncoprotein that interacts with CDK4 kinase and the S6 ATPase of the 26 S proteasome. J Biol Chem 277: 10893–10902, 2002
    Google Scholar
  56. Higashitsuji H, Itoh K, Nagao T, Dawson S, Nonoguchi K, Kido T, MayerRJ, Arii S, Fujita J: Reduced stability of retinoblastoma protein by gankyrin, an oncogenic ankyrin-repeat protein overexpressed in hepatomas. Nat Med 6: 96–99, 2000
    Google Scholar
  57. Fu XY, Wang HY, Tan L, Liu SQ, Cao HF, Wu MC: Overexpression of p28/gankyrin in human hepatocellular carcinoma and its clinical significance. World J Gastroenterol 8: 638–643, 2002
    Google Scholar
  58. Sotillo R, Dubus P, Martin J, de la Cueva E, Ortega S, Malumbres M, Barbacid M: Wide spectrum of tumors in knock-in mice carrying a Cdk4 protein insensitive to INK4 inhibitors. Embo J 20: 6637–6647, 2001
    Google Scholar
  59. Rane SG, Cosenza SC, Mettus RV, Reddy EP: Germ line transmission of the Cdk4(R24C) mutation facilitates tumorigenesis and escape from cellular senescence. Mol Cell Biol 22: 644–656, 2002
    Google Scholar
  60. Bernards R: CDK-independent activities of D type cyclins. Biochim Biophys Acta 1424: M17-M22, 1999
    Google Scholar
  61. Zwijsen RM, Buckle RS, Hijmans EM, Loomans CJ, Bernards R: Ligand-independent recruitment of steroid receptor coactivators to estrogen receptor by cyclin D1. Genes Dev 12: 3488–3498, 1998
    Google Scholar
  62. Zwijsen RM, Wientjens E, Klompmaker R, van der Sman J, Bernards R, Michalides RJ: CDK-independent activation of estrogen receptor by cyclin D1. Cell 88: 405–415, 1997
    Google Scholar
  63. Ratineau C, Petry MW, Mutoh H, Leiter AB: Cyclin D1 represses the basic helix-loop-helix transcription factor, BETA2/NeuroD. J Biol Chem 277: 8847–8853, 2002
    Google Scholar
  64. Hirai H, Sherr CJ: Interaction of D-type cyclins with a novel myb-like transcription factor, DMP1. Mol Cell Biol 16: 6457–6467, 1996
    Google Scholar
  65. Inoue K, Roussel MF, Sherr CJ: Induction of ARF tumor suppressor gene expression and cell cycle arrest by transcription factor DMP1. Proc Natl Acad Sci USA 96: 3993–3998, 1999
    Google Scholar
  66. Inoue K, Wen R, Rehg JE, Adachi M, Cleveland JL, Roussel MF, Sherr CJ: Disruption of the ARF transcriptional activatorDMP1 facilitates cell immortalization, Ras transformation, and tumorigenesis. Genes Dev 14: 1797–1809, 2000
    Google Scholar
  67. Inoue K, Zindy F, Randle DH, Rehg JE, Sherr CJ: Dmp1 is haplo-insufficient fortumorsuppr ession and modifies the frequencies of Arf and p53 mutations in Myc-induced lymphomas. Genes Dev 15: 2934–2939, 2001
    Google Scholar
  68. Estanyol JM, Jaumot M, Casanovas O, Rodriguez-Vilarrupla A, Agell N, Bachs O: The protein SET regulates the inhibitory effect of p21(Cip1) on cyclin Ecyclin-dependent kinase 2 activity. J Biol Chem 274: 33161–33165, 1999
    Google Scholar
  69. Bresnahan WA, Albrecht T, Thompson EA: The cyclin E promoter is activated by human cytomegalovirus 86-kDa immediate early protein. J Biol Chem 273: 22075–22082, 1998
    Google Scholar
  70. Vogt B, Zerfass-Thome K, Schulze A, Botz JW, Zwerschke W, Jansen-Durr P: Regulation of cyclin E gene expression by the human papillomavirus type 16 E7 oncoprotein. J Gen Virol 80: 2103–2113, 1999
    Google Scholar
  71. Hu W, Bellone CJ, Baldassare JJ: RhoA stimulates p27(Kip) degradation through its regulation of cyclin E/ CDK2 activity. J Biol Chem 274: 3396–3401, 1999
    Google Scholar
  72. Blomberg I, Hoffmann I: Ectopic expression of Cdc25A accelerates the G(1)/ S transition and leads to premature activation of cyclin E-and cyclin A-dependent kinases. Mol Cell Biol 19: 6183–6194, 1999
    Google Scholar
  73. DeGregori J, Kowalik T, Nevins JR: Cellular targets for activation by the E2F1 transcription factor include DNA synthesis-and G1/S-regulatory genes. Mol Cell Biol 15: 4215–4224, 1995
    Google Scholar
  74. Ohtani K, DeGregori J, Nevins JR: Regulation of the cyclin E gene by transcription factor E2F1. Proc Natl Acad Sci USA 92: 12146–12150, 1995
    Google Scholar
  75. Porter DC, Zhang N, Danes C, McGahren MJ, Harwell RM, Faruki S, Keyomarsi K: Tumor-specific proteolytic processing of cyclin E generates hyperactive lowermolecular-weight forms. Mol Cell Biol 21: 6254–6269, 2001
    Google Scholar
  76. Hermeking H, Lengauer C, Polyak K, He TC, Zhang L, Thiagalingam S, KinzlerKW, Vogelstein B: 14–3–3 sigma is a p53-regulated inhibitor of G2/M progression. Mol Cell 1: 3–11, 1997
    Google Scholar
  77. Laronga C, Yang HY, Neal C, Lee MH: Association of the cyclin-dependent kinases and 14–3–3 sigma negatively regulates cell cycle progression. J Biol Chem 275: 23106–23112, 2000
    Google Scholar
  78. Chan TA, Hermeking H, Lengauer C, Kinzler KW, Vogelstein B: 14–3–3Sigma is required to prevent mitotic catastrophe after DNA damage. Nature 401: 616–620, 1999
    Google Scholar
  79. Shintani S, Ohyama H, Zhang X, McBride J, Matsuo K, Tsuji T, Hu MG, Hu G, Kohno Y, Lerman M, Todd R, Wong DT: p12(DOC-1) is a novel cyclin-dependent kinase 2-associated protein. Mol Cell Biol 20: 6300–6307, 2000
    Google Scholar
  80. Matsuo K, Shintani S, Tsuji T, Nagata E, Lerman M, McBride J, Nakahara Y, Ohyama H, Todd R, Wong DT: p12(DOC-1), a growth suppressor, associates with DNA polymerase alpha/primase. Faseb J 14: 1318–1324, 2000
    Google Scholar
  81. Zukerberg LR, Patrick GN, Nikolic M, Humbert S, Wu CL, Lanier LM, GertlerFB, Vidal M, Van Etten RA, Tsai LH: Cables links Cdk5 and c-Abl and facilitates Cdk5 tyrosine phosphorylation, kinase upregulation, and neurite outgrowth. Neuron 26: 633–646, 2000
    Google Scholar
  82. Wu CL, Kirley SD, Xiao H, Chuang Y, Chung DC, Zukerberg LR: Cables enhances cdk2 tyrosine 15 phosphorylation by Wee1, inhibits cell growth, and is lost in many human colon and squamous cancers. Cancer Res 61: 7325–7332, 2001
    Google Scholar
  83. Yam CH, Ng RW, Siu WY, Lau AW, Poon RY: Regulation of cyclin A-Cdk2 by SCF component Skp1 and F-box protein Skp2. Mol Cell Biol 19: 635–645, 1999
    Google Scholar
  84. Mongay L, Plaza S, Vigorito E, Serra-Pages C, Vives J: Association of the cell cycle regulatory proteins p45(SKP2) and CksHs1. Functional effect on CDK2 complex formation and kinase activity. J Biol Chem 276: 25030–25036, 2001
    Google Scholar
  85. Ganoth D, Bornstein G, Ko TK, Larsen B, Tyers M, Pagano M, Hershko A: The cell-cycle regulatory protein Cks1 is required for SCF(Skp2)-mediated ubiquitinylation of p27. Nat Cell Biol 3: 321–324, 2001
    Google Scholar
  86. Carrano AC, Eytan E, Hershko A, Pagano M: SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitorp27. Nat Cell Biol 1: 193–199, 1999
    Google Scholar
  87. Harris TE, Albrecht JH, Nakanishi M, Darlington GJ: CCAAT/enhancer-binding protein-alpha cooperates with p21 to inhibit cyclin-dependent kinase-2 activity and induces growth arrest independent of DNA binding. J Biol Chem 276: 29200–29209, 2001
    Google Scholar
  88. Truong BT, Lee YJ, Lodie TA, Park DJ, Perrotti D, Watanabe N, KoefflerHP, Nakajima H, Tenen DG, Kogan SC: CCAAT/enhancer binding proteins repress the leukemic phenotype of acute myeloid leukemia. Blood 3: 3, 2002
    Google Scholar
  89. Ono T, Kitaura H, Ugai H, Murata T, Yokoyama KK, Iguchi-Ariga SM, Ariga H: TOK-1, a novel p21Cip1-binding protein that cooperatively enhances p21-dependent inhibitory activity toward CDK2 kinase. J Biol Chem 275: 31145–31154, 2000
    Google Scholar
  90. Hall C, Nelson DM, Ye X, Baker K, DeCaprio JA, SeeholzerS, Lipinski M, Adams PD: HIRA, the human homologue of yeast Hir1p and Hir2p, is a novel cyclincdk2 substrate whose expression blocks S-phase progression. Mol Cell Biol 21: 1854–1865, 2001
    Google Scholar
  91. Clurman BE, Sheaff RJ, Thress K, Groudine M, Roberts JM: Turnover of cyclin E by the ubiquitin-proteasome pathway is regulated by cdk2 binding and cyclin phosphorylation. Genes Dev 10: 1979–1990, 1996
    Google Scholar
  92. Yeh KH, Kondo T, Zheng J, Tsvetkov LM, Blair J, Zhang H: The F-box protein SKP2 binds to the phosphorylated threonine 380 in cyclin E and regulates ubiquitin-dependent degradation of cyclin E. Biochem Biophys Res Commun 281: 884–890, 2001
    Google Scholar
  93. Strohmaier H, Spruck CH, Kaiser P, Won KA, Sangfelt O, Reed SI: Human F-box protein hCdc4 targets cyclin E for proteolysis and is mutated in a breast cancer cell line. Nature 413: 316–322, 2001
    Google Scholar
  94. Moberg KH, Bell DW, Wahrer DC, Haber DA, Hariharan IK: Archipelago regulates Cyclin E levels in Drosophila and is mutated in human cancer cell lines. Nature 413: 311–316, 2001
    Google Scholar
  95. Koepp DM, Schaefer LK, Ye X, Keyomarsi K, Chu C, Harper JW, Elledge SJ: Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase. Science 294: 173–177, 2001
    Google Scholar
  96. Spruck CH, Strohmaier H, Sangfelt O, Muller HM, Hubalek M, Muller-Holzner E, Marth C, Widschwendter M, Reed SI: hCDC4 gene mutations in endometrial cancer. Cancer Res 62: 4535–4539, 2002
    Google Scholar
  97. Dealy MJ, Nguyen KV, Lo J, GstaigerM, Krek W, Elson D, Arbeit J, Kipreos ET, Johnson RS: Loss of Cul1 results in early embryonic lethality and dysregulation of cyclin E. Nat Genet 23: 245–248, 1999
    Google Scholar
  98. Singer JD, Gurian-West M, Clurman B, Roberts JM: Cullin-3 targets cyclin E for ubiquitination and controls S phase in mammalian cells. Genes Dev 13: 2375–2387, 1999
    Google Scholar
  99. Marone M, Scambia G, Giannitelli C, Ferrandina G, Masciullo V, Bellacosa A, Benedetti-Panici P, Mancuso S: Analysis of cyclin E and CDK2 in ovarian cancer: Gene amplification and RNA overexpression. Int J Cancer 75: 34–39, 1998
    Google Scholar
  100. Porter PL, Malone KE, Heagerty PJ, Alexander GM, Gatti LA, Firpo EJ, Daling JR, Roberts JM: Expression of cell-cycle regulators p27Kip1 and cyclin E, alone and in combination, correlate with survival in young breast cancerpatients. Nat Med 3: 222–225, 1997
    Google Scholar
  101. Mishina T, Dosaka-Akita H, Hommura F, Nishi M, Kojima T, Ogura S, Shimizu M, Katoh H, Kawakami Y: Cyclin E expression, a potential prognostic marker for non-small cell lung cancers. Clin Cancer Res 6: 11–16, 2000
    Google Scholar
  102. Fukuse T, Hirata T, Naiki H, Hitomi S, Wada H: Prognostic significance of cyclin E overexpression in resected non-small cell lung cancer. Cancer Res 60: 242–244, 2000
    Google Scholar
  103. Spruck CH, Won KA, Reed SI: Deregulated cyclin E induces chromosome instability. Nature 401: 297–300, 1999
    Google Scholar
  104. Hinchcliffe EH, Sluder G: Centrosome duplication: Three kinases come up a winner! Curr Biol 11: R698-R701, 2001
    Google Scholar
  105. Okuda M, Horn HF, Tarapore P, Tokuyama Y, Smulian AG, Chan PK, Knudsen ES, Hofmann IA, Snyder JD, Bove KE, Fukasawa K: Nucleophosmin/B23 is a target of CDK2/cyclin E in centrosome duplication. Cell 103: 127–140, 2000
    Google Scholar
  106. Hinchcliffe EH, Li C, Thompson EA, Maller JL, Sluder G: Requirement of Cdk2-cyclin E activity for repeated centrosome reproduction in Xenopus egg extracts. Science 283: 851–854, 1999
    Google Scholar
  107. Dhillon NK, Mudryj M: Ectopic expression of cyclin E in estrogen responsive cells abrogates antiestrogen mediated growth arrest. Oncogene 21: 4626–4634, 2002
    Google Scholar
  108. Davis ST, Benson BG, Bramson HN, Chapman DE, Dickerson SH, Dold KM, Eberwein DJ, Edelstein M, Frye SV, Gampe Jr RT, Griffin RJ, Harris PA, Hassell AM, Holmes WD, HunterRN, Knick VB, Lackey K, Lovejoy B, Luzzio MJ, Murray D, Parker P, Rocque WJ, Shewchuk L, Veal JM, WalkerDH, KuyperLF: Prevention of chemotherapy-induced alopecia in rats by CDK inhibitors. Science 291: 134–137, 2001
    Google Scholar
  109. Ma T, Van Tine BA, Wei Y, Garrett MD, Nelson D, Adams PD, Wang J, Qin J, Chow LT, Harper JW: Cell cycle-regulated phosphorylation of p220(NPAT) by cyclin E/Cdk2 in Cajal bodies promotes histone gene transcription. Genes Dev 14: 2298–2313, 2000
    Google Scholar
  110. Zhao J, Kennedy BK, Lawrence BD, Barbie DA, Matera AG, FletcherJA, Harlow E: NPAT links cyclin E-Cdk2 to the regulation of replication-dependent histone gene transcription. Genes Dev 14: 2283–2297, 2000
    Google Scholar
  111. Zhao J, Dynlacht B, Imai T, Hori T, Harlow E: Expression of NPAT, a novel substrate of cyclin ECDK2, promotes S-phase entry. Genes Dev 12: 456–461, 1998
    Google Scholar
  112. Fry DW, Bedford DC, Harvey PH, Fritsch A, Keller PR, Wu Z, Dobrusin E, Leopold WR, Fattaey A, Garrett MD: Cell cycle and biochemical effects of PD 0183812. A potent inhibitor of the cyclin D-dependent kinases CDK4 and CDK6. J Biol Chem 276: 16617–16623, 2001
    Google Scholar
  113. Soni R, O'Reilly T, Furet P, Muller L, Stephan C, Zumstein-Mecker S, Fretz H, Fabbro D, Chaudhuri B: Selective in vivo and in vitro effects of a small molecule inhibitor of cyclin-dependent kinase 4. J Natl Cancer Inst 93: 436–446, 2001
    Google Scholar
  114. Toogood PL: Cyclin-dependent kinase inhibitors for treating cancer. Med Res Rev 21: 487–498, 2001
    Google Scholar
  115. Almond JB, Cohen GM: The proteasome: A novel target forcancer chemotherapy. Leukemia 16: 433–443, 2002
    Google Scholar

Download references