β-Catenin and Tcfs in Mammary Development and Cancer (original) (raw)
REFERENCES
M. Ozawa, H. Baribault, and R. Kemler (1989). The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species. EMBO J.8:1711–1717. PubMed Google Scholar
G. Berx, A. M. Cleton-Jansen, F. Nollet, W. J. de Leeuw, M. van de Vijver, C. Cornelisse, et al. (1995). E-cadherin is a tumour/invasion suppressor gene mutated in human lobular breast cancers. EMBO J.14:6107–6115. PubMed Google Scholar
O. Boussadia, S. Kutsch, A. Hierholzer, V. Delmas, and R. Kemler (2002). E-cadherin is a survival factor for the lactating mouse mammary gland. Mech. Dev.115:53–62. PubMed Google Scholar
R. B. Hazan, G. R. Phillips, R. F. Qiao, L. Norton, and S. A. Aaronson (2000). Exogenous expression of N-cadherin in breast cancer cells induces cell migration, invasion and metastasis. J. Cell Biol.148:779–790. PubMed Google Scholar
K. Suyama, I. Shapiro, M. Guttman, and R. B. Hazan (2002). A signaling pathway leading to metastasis is controlled by Ncadherin and the FGF receptor. Cancer Cell2:301–314. PubMed Google Scholar
G. Radice, C. Ferreira-Cornwall, S. D. Robinson, H. Rayburn, L. A. Chodosh, M. Takeichi, et al. (1997). Precocious mammary gland development in P-cadherin-deficient mice. J. Cell Biol.139:1025–1032. PubMed Google Scholar
V. Delmas, P. Pla, H. Feracci, J. P. Thiery, R. Kemler, and L. Larue (1999). Expression of the cytoplasmic domain of Ecadherin induces precocious mammary epithelial alveolar formation and affects cell polarity and cell-matrix integrity. Dev. Biol.216:491–506. PubMed Google Scholar
Y. T. Chen, D. B. Stewart, and W. J. Nelson (1999). Coupling assembly of the E-cadherin/#x03B2-catenin complex to efficient endoplasmic reticulum exit and basal-lateral membrane targeting of E-cadherin in polarized MDCK cells. J. Cell Biol.144:687–699. PubMed Google Scholar
V. Vasioukhin, C. Bauer, M. Yin, and E. Fuchs (2000). Directed actin polymerization is the driving force for epithelial cell-cell adhesion. Cell100:209–219. PubMed Google Scholar
R. Eelkema and P. Cowin (2001). General themes in cell-cell junctions and adhesion. In M. Cereijido, and J. Anderson (eds.), Tight Junctions, Vol. 2, CRC Press, Boca Raton, pp. 121–145. Google Scholar
S. Kuroda, M. Fukata, M. Nakagawa, K. Fujii, T. Nakamura, T. Ookubo, et al. (1998). Role of IQGAP1, a target of the small GTPases Cdc42 and Rac1, in regulation of E-cadherinmediated cell-cell adhesion. Science281:832–835. PubMed Google Scholar
H. Hoschuetzky, H. Aberle, and R. Kemler (1994). B-catenin mediates the interaction of the cadherin-catenin complex with epidermal growth factor receptor. J. Cell Biol.127:1375–1381. PubMed Google Scholar
Y. Kanai, A. Ochai, T. Shibata, T. Oyama, S. Ushijima, S. Akimoto, et al. (1995). c-erbB-2 gene product directly associates with β-catenin and plakoglobin. Biochem. Biophys. Res. Commun.208:1067–1072. PubMed Google Scholar
L. Adam, R. K. Vadlamudi, P. McCrea, and R. Kumar (2001). Tiam1 overexpression potentiates heregulin-induced lymphoid enhancer factor-1/#x03B2-catenin nuclear signaling in breast cancer cells by modulating the intercellular stability. J. Biol. Chem.276:28443–28450. PubMed Google Scholar
J. A. Schroeder, M. C. Adriance, E. J. McConnell, M. C. Thompson, B. Pockaj, and S. J. Gendler (2002). ErbB-#x03B2catenin complexes are associated with human infiltrating ductal breast and murine mammary tumor virus (MMTV)-Wnt-1 and MMTV-c-Neu transgenic carcinomas. J. Biol. Chem.277:22692–22698. PubMed Google Scholar
A. H. Huber, W. J. Nelson, W. I. Weis (1997). Three-dimensional structure of the armadillo repeat region of b-catenin. Cell90:871–882. PubMed Google Scholar
S. Roura, S. Miravet, J. Piedra, A. Garcia de Herreros, and M. Dunach (1999). Regulation of E-cadherin/catenin association by tyrosine phosphorylation. J. Biol. Chem.274:36734–36740. PubMed Google Scholar
H. Lickert, A. Bauer, R. Kemler, and J. Stappert (2000). Casein kinase II phosphorylation of E-cadherin increases Ecadherin/#x03B2-catenin interaction and strengthens cell-cell adhesion. J. Biol. Chem.275:5090–5095. PubMed Google Scholar
J. Sap Interactions between protein tyrosine phosphatases and cell adhesion molecules. In P. Cowinand and M. Klymkowsky (eds.), Cytoskeletal-Membrane Interactions and Signal Transduction, Landes, Austin, (1997). Google Scholar
C. L. Sommers, E. L. Gelmann, R. Kemler, P. Cowin, and S. W. Byers (1994). Alterations in β-catenin phosphorylation and plakoglobin expression in human breast cancer cells. Cancer Res.54:3544–3552. PubMed Google Scholar
M. Yamamoto, A. Bharti, and D. Kufe (1997). Interaction of the DF3/MUC1breast carcinoma-associated antigen and β-catenin in cell adhesion. J. Biol. Chem. 12492–12494.
K. L. Carraway, S. A. Price-Schiavi, M. Komatsu, S. Jepson, A. Perez, and C. A. Carraway (2001). Muc4/sialomucin complex in the mammary gland and breast cancer. J Mammary Gland Biol Neoplasia6:323–337. PubMed Google Scholar
K. L. Carraway, V. P. Ramsauer, B. Haq, and C. A. Carothers Carraway (2003). Cell signaling through membrane mucins. Bioessays25:66–71. PubMed Google Scholar
Y. Li, A. Bharti, D. Chen, J. Gong, and D. Kufe (1998). Interaction of GSK3β with the DF3/MUC1 carcinoma-associated antigen and β-catenin. MCB 7216–7224.
Y. Li, H. Kuwahara, J. Ren, G. Wen, and D. Kufe (2001). The c-Src tyrosine kinase regulates signaling of the human DF3/MUC1 carcinoma-associated antigen with GSK3 #x03B2 and #x03B2-catenin. J. Biol. Chem.276:6061–6064. PubMed Google Scholar
S. Munemitsu, I. Albert, B. Rubinfeld, and P. Polakis (1996). Deletion of an amino-terminal sequence stabilizes β-catenin in vivo and promotes hyperphosphorylation of the adenomatous polyposis coli tumor suppressor protein. Mol. Cell. Biol.16:4088–4094. PubMed Google Scholar
C. J. Gottardi, and B. M. Gumbiner (2001). Adhesion signaling: How #x03B2-catenin interacts with its partners. Curr. Biol.11:R792-R794. PubMed Google Scholar
T. Ishitani, J. Ninomiya-Tsuji, S. Nagai, M. Nishita, M. Meneghini, N. Barker, et al. (1999). The Tak1-NLK-MAPKrelated pathway antagonizes signalling between β-catenin and transcription factor TCF. Nature399:798–802. PubMed Google Scholar
C. E. Rocheleau, J. Yasuda, T. H. Shin, R. Lin, H. Sawa, H. Okano, et al. (1999). WRM-1 activates the Lit-1 protein kinase to transduce anterior/posterior polarity signals in C. Elegans. Cell97:717–726. Google Scholar
D. Kang, S. Soriano, X. Xia, C. Eberhart, B. De Strooper, H. Zheng, et al. (2002). Presenilin couples the paired phosphorylation of #x03B2-catenin independent of Axin. Implications for #x03B2-catenin activation in tumorigenesis. Cell110:751. PubMed Google Scholar
C. Lamberti, K. M. Lin, Y. Yamamoto, U. Verma, I. M. Verma, S. Byers, et al. (2001). Regulation of #x03B2-catenin function by the IkappaB kinases. J. Biol. Chem.276:42276–42286. PubMed Google Scholar
W. Holnthoner, M. Pillinger, M. Groger, K. Wolff, A. W. Ashton, C. Albanese, et al. (2002). Fibroblast growth factor-2 induces Lef/Tcf-dependent transcription in human endothelial cells. J. Biol. Chem.
S. I. Matsuzawa, and J. C. Reed (2001). Siah-1, SIP, and Ebi collaborate in a novel pathway for #x03B2-catenin degradation linked to p53 responses. Mol. Cell7:915–926. PubMed Google Scholar
S. Persad, A. A. Troussard, T. R. McPhee, D. J. Mulholland, S. Dedhar (2001). Tumor suppressor PTEN inhibits nuclear accumulation of #x03B2-catenin and T cell/lymphoid enhancer factor 1-mediated transcriptional activation. J. Cell Biol.153:1161–1174. PubMed Google Scholar
E. Sadot, B. Geiger, M. Oren, A. Ben-Ze'ev (2001). Downregulation of #x03B2-catenin by activated p53. Mol. Cell Biol.21:6768–6781. PubMed Google Scholar
J. Liu, J. Stevens, C. A. Rote, H. J. Yost, Y. Hu, K. L. Neufeld, et al. (2001). Siah-1 mediates a novel #x03B2-catenin degradation pathway linking p53 to the adenomatous polyposis coli protein. Mol. Cell7:927–936. PubMed Google Scholar
S. Fukumoto, C. M. Hsieh, K. Maemura, M. D. Layne, S. F. Yet, K. H. Lee, et al. (2001). Akt participation in the Wnt signaling pathway through Dishevelled. J. Biol. Chem.276:17479–17483. PubMed Google Scholar
F. Rijsewijk, M. Schuermann, E. Wagenaar, P. Parren, D. Weigel, and R. Nusse (1987). The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell50:649–657. PubMed Google Scholar
T. F. Lan and P. Leder (1997). Wnt10B directs hypermorphic development and transformation in mammary glands of male and female mice. Oncogene15:2133–2144. PubMed Google Scholar
A. Tsukamoto, R. Grosschedl, R. Guzman, T. Parslow, H. Varmus (1988). Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell55:619–625. PubMed Google Scholar
H. Roelink, E. Wagenaar, S. Lopes da Silva, and R. Nusse (1990). Wnt-3, a gene activated by proviral insertion in mouse mammary tumors, is homologous to int-1/Wnt-1 and is normally expressed in mouse embryos and adult brain. Proc. Natl. Acad. Sci. U. S. A.87:4519–4523. PubMed Google Scholar
S. J. Weber-Hall, D. J. Phippard, C. C. Niemeyer, and T. C. Dale (1994). Developmental and hormonal regulation of Wnt gene expression in the mouse mammary gland. Differentiation57:205–214. PubMed Google Scholar
T. A. Buhler, T. C. Dale, C. Kieback, R. C. Humphreys, and J. M. Rosen (1993). Localization and quantification of Wnt-2 gene expression in mouse mammary development. Dev. Biol.155:87–96. PubMed Google Scholar
M. J. Smalley and T. C. Dale (2001). Wnt signaling and mammary tumorigenesis. J. Mammary Gland Biol. Neoplasia6:37–52. PubMed Google Scholar
C. Brisken, S. Park, T. Vass, J. P. Lydon, B. W. O'Malley, and R. A. Weinberg (1998). A paracrine role for the epithelial progesterone receptor in mammary gland development. Proc. Natl. Acad. Sci. U. S. A.95:5076–5081. PubMed Google Scholar
C. Brisken, A. Heineman, T. Chavarra, B. Elenbaas, J. Tan, S. K. Dey, et al. (2000). Essential function of Wnt-4 in mammary gland development downstream of progesterone signaling. Genes Dev.14:650–654. PubMed Google Scholar
J. Huelsken and W. Birchmeier (2001). New aspects of Wnt signaling pathways in higher vertebrates. Curr Opin Genet Dev11:547–553. PubMed Google Scholar
V. Korinek, N. Barker, P. J. Morin, D. van Wichen, R. de Weger, K. Kinzler, et al. (1997). Constitutive transcriptional activation by a β-catenin-tcf complex in APC-/-colon carcinoma. Science275:1784–1787. PubMed Google Scholar
R. Cavallo, R. T. Cox, M. Moline, J. Roose, G. A. Ploevoy, H. Clevers, et al. (1998). Drosophila Tcf and Groucho interact to repress wingless signalling activity. Nature395:604–608. PubMed Google Scholar
L. Waltzer and M. Bienz (1998). Drosophila CBP represses the transcription factor TCF to antagonize Wingless signalling. Nature395:521–525. PubMed Google Scholar
S. K. Chan and G. Struhl (2002). Evidence that Armadillo transduces wingless by mediating nuclear export or cytosolic activation of Pangolin. Cell111:265–280. PubMed Google Scholar
C. van Genderen, R. M. Okamura, I. Farinas, R.-G. Quo, T. G. Parslow, L. Bruhn, et al. (1994). Development of several organs that require inductive epithelial-mesenchymal interactions is impaired in Lef-1 deficient mice. Genes Dev.8:2691–2704. PubMed Google Scholar
J. Foley, P. Dann, J. Hong, J. Cosgrove, B. Dreyer, D. Rimm, et al. (2001). Parathyroid hormone-related protein maintains mammaryepithelial fate and triggers nipple skin differentiation during embryonic breast development. Development128:513–525. PubMed Google Scholar
S. Millar (1997). The role of patterning genes in epidermal differentiation. In P. Cowin and M. Klymkowsky (eds.), Cytoskeletal-Membrane Interactions and Signal Transduction, Landes, Austin, pp. 87–103. Google Scholar
A. Imbert, R. Eelkema, S. Jordan, H. Feiner, P. Cowin (2001). ΔN89β-catenin induces precocious development, differentiation, and neoplasia in mammary gland. J. Cell Biol.153:555–568. PubMed Google Scholar
R. C. Gallagher, T. Hay, V. Meniel, C. Naughton, T. J. Anderson, H. Shibata, et al. (2002). Inactivation of Apc perturbs mammary development, but only directly results in acanthoma in the context of Tcf-1 deficiency. Oncogene21:6446–6457. PubMed Google Scholar
T. R. Rowlands, I. Pechenkina, R. G. Pestell, and P. Cowin. Intersections between #x03B2-catenin and cyclin D1 in mammary gland development and tumorigenesis. Manuscript submitted for publication.
J. S. Michaelson and P. Leder (2001). #x03B2-catenin is a down-stream effector of Wnt-mediated tumorigenesis in the mammary gland. Oncogene20:5093–5099. PubMed Google Scholar
W. Hsu, R. Shakya, and F. Costantini (2001). Impaired mammary gland and lymphoid development caused by inducible expression of Axin in transgenic mice. J. Cell Biol.155:1055–1064. PubMed Google Scholar
S. B. Tepera, P. D. McCrea, and J. M. Rosen (2003). A #x03B2catenin survival signal is required for normal lobular development in the mammary gland. J. Cell Sci.116:1137–1149. PubMed Google Scholar
W. T. Montross, H. Ji, and P. D. McCrea (2000). A #x03B2catenin/engrailed chimera selectively suppressesWntsignaling. J. Cell Sci.113:1759–1770. PubMed Google Scholar
V. Fantl, A. W. Edwards, J. H. Steel, B. K. Vonderhaar, and D. Dickson (1999). Impaired mammary gland development in Cyc-/-mice during pregnancy and lactation is epithelial cell autonomous. Development212:1–11. Google Scholar
P. Sicinski, J. L. Donaher, S. B. Parker, T. Li, A. Fazeli, H. Gardner, et al. (1995). Cyclin D1 provides a link between development and oncogenesis in the retina and breast. Cell82:621–630. PubMed Google Scholar
V. Fantl, G. Stamp, A. Andrews, I. Rosewell, C. Dickson (1995). Mice lacking cyclin D1 are small and show defects in eye and mammary gland development. Genes Dev.9:2364–2372. PubMed Google Scholar
K. Miyoshi, J. M. Shillingford, F. Le Provost, F. Gounari, R. Bronson, H. von Boehmer, et al. (2002). Activation of #x03B2catenin signaling in differentiated mammary secretory cells induces transdifferentiation into epidermis and squamous metaplasias. Proc. Natl. Acad. Sci. U. S. A.99:219–224. PubMed Google Scholar
K. Miyoshi, A. Rosner, M. Nozawa, C. Byrd, F. Morgan, E. Landesman-Bollag, et al. (2002). Activation of different Wnt/#x03B2-catenin signaling components in mammary epithelium induces transdifferentiation and the formation of pilar tumors. Oncogene21:5548–5556. PubMed Google Scholar
A. R. Moser, C. Luongo, K. A. Gould, M. K. McNeley, A. R. Shoemaker, and W. F. Dove (1995). ApcMin: A mouse model for intestinal and mammary tumorigenesis. Eur. J. Cancer31A:1061–1064. PubMed Google Scholar
U. Gat, R. Dasgupta, L. Degenstein, E. Fuchs (1998). De novo hair follicle morphogenesis and hair tumors in mice expressing a truncated β-catenin in skin. Cell95:605–614. PubMed Google Scholar
J. Huelsken, R. Vogel, B. Erdmann, G. Cotsarelis, and W. Birchmeier (2001). #x03B2-catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell105:533–545. PubMed Google Scholar
R. DasGupta, H. Rhee, and E. Fuchs (2002). A developmental conundrum:Astabilized form of #x03B2-catenin lacking the transcriptional activation domain triggers features of hair cell fate in epidermal cells and epidermal cell fate in hair follicle cells. J. Cell Biol.158:331–344. PubMed Google Scholar
F. Ugolini, E. Charafe-Jauffret, V. J. Bardou, J. Geneix, J. Adelaide, F. Labat-Moleur, et al. (2001). WNT pathway and mammary carcinogenesis: Loss of expression of candidate tumor suppressor gene SFRP1 in most invasive carcinomas except of the medullary type. Oncogene20:5810–5817. PubMed Google Scholar
S. C. Wong, S. F. Lo, K. C. Lee, J. W. Yam, J. K. Chan, and W. L. Wendy Hsiao (2002). Expression of frizzled-related protein and Wnt-signalling molecules in invasive human breast tumours. J. Pathol.196:145–153. PubMed Google Scholar
E. L. Huguet, J. A. McMahon, A. P. McMahon, R. Bicknell, and A. L. Harris (1994). Differential expression of human Wnt genes 2, 3, 4, and 7B in human breast cell lines and normal and disease states of human breast tissue. Cancer Res.54:2615–2621. PubMed Google Scholar
T. C. Dale, S. J. Weber-Hall, K. Smith, E. L. Huguet, H. Jayatilake, B. A. Gusterson, et al. (1996). Compartment switching of Wnt-2 expression in human breast tumors. Cancer Res.56:4320–4323. PubMed Google Scholar
M. Jonsson, J. Dejmek, P. O. Bendahl, and T. Andersson (2002). Loss of Wnt-5a protein is associated with early relapse in invasive ductal breast carcinomas. Cancer Res.62:409–416. PubMed Google Scholar
S. Lejeune, E. L. Huguet, A. Hamby, R. Poulsom, and A. L. Harris (1995). Wnt5a cloning, expression, and up-regulation in human primary breast cancers. Clin. Cancer Res.1:215–222. PubMed Google Scholar
H. Kirikoshi, H. Sekihara, and M. Katoh (2001). Expression of WNT14 and WNT14B mRNAs in human cancer, up-regulation of WNT14 by IFNgamma and up-regulation of WNT14B by #x03B2-estradiol. Int. J. Oncol.19:1221–1225. PubMed Google Scholar
M. T. Webster, M. Rozycka, E. Sara, E. Davis, M. Smalley, N. Young, et al. (2000). Sequence variants of the axin gene in breast, colon, and other cancers: An analysis of mutations that interfere with GSK3 binding. Genes Chromosomes Cancer28:443–453. PubMed Google Scholar
K. Furuuchi, M. Tada, H. Yamada, A. Kataoka, N. Furuuchi, J. Hamada, et al. (2000). Somatic mutations of the APC gene in primary breast cancers. Am. J. Pathol.156:1997–2005. PubMed Google Scholar
S. C. Abraham, B. Nobukawa, F. M. Giardiello, S. R. Hamilton, T. T. Wu (2000). Fundic gland polyps in familial adenomatous polyposis: Neoplasms with frequent somatic adenomatous polyposis coli gene alterations. Am. J. Pathol.157:747–754. PubMed Google Scholar
A. K. Virmani, A. Rathi, U. G. Sathyanarayana, A. Padar, C. X. Huang, H. T. Cunnigham, et al. (2001). Aberrant methylation of the adenomatous polyposis coli (APC) gene promoter 1A in breast and lung carcinomas. Clin. Cancer Res.7:1998–2004. PubMed Google Scholar
E. J. Sawyer, A. M. Hanby, A. J. Rowan, C. E. Gillett, R. E. Thomas, R. Poulsom, et al. (2002). TheWnt pathway, epithelialstromal interactions, and malignant progression in phyllodes tumours. J. Pathol.196:437–444. PubMed Google Scholar
S. Y. Lin, W. Xia, J. C. Wang, K. Y. Kwong, B. Spohn, Y. Wen, et al. (2000). #x03B2-catenin, a novel prognostic marker for breast cancer: Its roles in cyclin D1 expression and cancer progression. Proc. Natl. Acad. Sci. U. S. A.97:4262–4266. PubMed Google Scholar
J. Roose and H. Clevers (1999). TCF transcription factors: Molecular switches in carcinogenesis. Biochim. Biophys. Acta1424:M23-M37. PubMed Google Scholar
J. Roose, G. Huls, M. van Beest, P. Moerer, K. van der Horn, R. Goldschmeding, et al. (1999). Synergy between tumor suppressor APC and the #x03B2-catenin-Tcf4 target Tcf1. Science285:1923–1926. PubMed Google Scholar
T. C. Wang, R. D. Cardiff, L. Zukerberg, E. Lees, A. Arnols, and E. V. Schmidt (1994). Mammary hyperplasia and carcinoma in MMTV-cyclin D1 transgenic mice. Nature369:669–671. PubMed Google Scholar
E. A. Musgrove, R. Hui, K. J. Sweeney, C. K. Watts, R. L. Sutherland (1996). Cyclins and breast cancer. J. Mammary Gland Biol. Neoplasia1:153–162. PubMed Google Scholar
C. Gillett, V. Fantl, R. Smith, C. Fisher, J. Bartek, C. Dickson, et al. (1994). Amplification and overexpression of cyclin D1 in breast cancer detected by immunohistochemical staining. Cancer Res.54:1812–1817. PubMed Google Scholar
E. Sinn, W. Muller, P. Pattengale, I. Tepler, R. Wallace, and P. Leder (1987). Coexpression of MMTV/v-Ha-ras and MMTV/cmyc genes in transgenic mice: Synergistic action of oncogenes in vivo. Cell49:465–475. PubMed Google Scholar
S. Aulmann, M. Bentz, H. P. Sinn (2002). C-myc oncogene amplification in ductal carcinoma in situ of the breast. Breast Cancer Res. Treat74:25–31. PubMed Google Scholar
M. Shtutman, J. Zhiurinsky, I. Simcha, C. Albanese, M. D'Amico, R. Pestell, et al. (1999). The cyclin D1 gene is a target of the #x03B2-catenin LEF1 pathway. Proc. Natl. Acad. Sci. U. S. A.96:5522–5527. PubMed Google Scholar
O. Tetsu and F. McCormick (1999). β-Catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature398:422–426. PubMed Google Scholar
T.-C. He, A. B. Sparks, C. Rago, H. Hermeking, L. Zawel, L. T. da Costa, et al. (1998). Identification of c-myc as a target of the APC pathway. Science281:1509–1512. PubMed Google Scholar
T. Ishitani, J. Ninomiya-Tsuji, and K. Matsumoto (2003). Regulation of lymphoid enhancer factor 1/T-cell factor by mitogenactivated protein kinase-related Nemo-like kinase-dependent phosphorylation in Wnt/#x03B2-catenin signaling. Mol Cell Biol23:1379–1389. PubMed Google Scholar
J. Deng, S. A. Miller, H. Y. Wang, W. Xia, Y. Wen, B. P. Zhou, et al. (2002). #x03B2-catenin interacts with and inhibits NF-kappa B in human colon and breast cancer. Cancer Cell2:323–334. PubMed Google Scholar