β-Catenin and Tcfs in Mammary Development and Cancer (original) (raw)

REFERENCES

  1. M. Ozawa, H. Baribault, and R. Kemler (1989). The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species. EMBO J. 8:1711–1717.
    PubMed Google Scholar
  2. G. Berx, A. M. Cleton-Jansen, F. Nollet, W. J. de Leeuw, M. van de Vijver, C. Cornelisse, et al. (1995). E-cadherin is a tumour/invasion suppressor gene mutated in human lobular breast cancers. EMBO J. 14:6107–6115.
    PubMed Google Scholar
  3. O. Boussadia, S. Kutsch, A. Hierholzer, V. Delmas, and R. Kemler (2002). E-cadherin is a survival factor for the lactating mouse mammary gland. Mech. Dev. 115:53–62.
    PubMed Google Scholar
  4. R. B. Hazan, G. R. Phillips, R. F. Qiao, L. Norton, and S. A. Aaronson (2000). Exogenous expression of N-cadherin in breast cancer cells induces cell migration, invasion and metastasis. J. Cell Biol. 148:779–790.
    PubMed Google Scholar
  5. K. Suyama, I. Shapiro, M. Guttman, and R. B. Hazan (2002). A signaling pathway leading to metastasis is controlled by Ncadherin and the FGF receptor. Cancer Cell 2:301–314.
    PubMed Google Scholar
  6. G. Radice, C. Ferreira-Cornwall, S. D. Robinson, H. Rayburn, L. A. Chodosh, M. Takeichi, et al. (1997). Precocious mammary gland development in P-cadherin-deficient mice. J. Cell Biol. 139:1025–1032.
    PubMed Google Scholar
  7. V. Delmas, P. Pla, H. Feracci, J. P. Thiery, R. Kemler, and L. Larue (1999). Expression of the cytoplasmic domain of Ecadherin induces precocious mammary epithelial alveolar formation and affects cell polarity and cell-matrix integrity. Dev. Biol. 216:491–506.
    PubMed Google Scholar
  8. Y. T. Chen, D. B. Stewart, and W. J. Nelson (1999). Coupling assembly of the E-cadherin/#x03B2-catenin complex to efficient endoplasmic reticulum exit and basal-lateral membrane targeting of E-cadherin in polarized MDCK cells. J. Cell Biol. 144:687–699.
    PubMed Google Scholar
  9. V. Vasioukhin, C. Bauer, M. Yin, and E. Fuchs (2000). Directed actin polymerization is the driving force for epithelial cell-cell adhesion. Cell 100:209–219.
    PubMed Google Scholar
  10. R. Eelkema and P. Cowin (2001). General themes in cell-cell junctions and adhesion. In M. Cereijido, and J. Anderson (eds.), Tight Junctions, Vol. 2, CRC Press, Boca Raton, pp. 121–145.
    Google Scholar
  11. S. Kuroda, M. Fukata, M. Nakagawa, K. Fujii, T. Nakamura, T. Ookubo, et al. (1998). Role of IQGAP1, a target of the small GTPases Cdc42 and Rac1, in regulation of E-cadherinmediated cell-cell adhesion. Science 281:832–835.
    PubMed Google Scholar
  12. H. Hoschuetzky, H. Aberle, and R. Kemler (1994). B-catenin mediates the interaction of the cadherin-catenin complex with epidermal growth factor receptor. J. Cell Biol. 127:1375–1381.
    PubMed Google Scholar
  13. Y. Kanai, A. Ochai, T. Shibata, T. Oyama, S. Ushijima, S. Akimoto, et al. (1995). c-erbB-2 gene product directly associates with β-catenin and plakoglobin. Biochem. Biophys. Res. Commun. 208:1067–1072.
    PubMed Google Scholar
  14. L. Adam, R. K. Vadlamudi, P. McCrea, and R. Kumar (2001). Tiam1 overexpression potentiates heregulin-induced lymphoid enhancer factor-1/#x03B2-catenin nuclear signaling in breast cancer cells by modulating the intercellular stability. J. Biol. Chem. 276:28443–28450.
    PubMed Google Scholar
  15. J. A. Schroeder, M. C. Adriance, E. J. McConnell, M. C. Thompson, B. Pockaj, and S. J. Gendler (2002). ErbB-#x03B2catenin complexes are associated with human infiltrating ductal breast and murine mammary tumor virus (MMTV)-Wnt-1 and MMTV-c-Neu transgenic carcinomas. J. Biol. Chem. 277:22692–22698.
    PubMed Google Scholar
  16. A. H. Huber, W. J. Nelson, W. I. Weis (1997). Three-dimensional structure of the armadillo repeat region of b-catenin. Cell 90:871–882.
    PubMed Google Scholar
  17. S. Roura, S. Miravet, J. Piedra, A. Garcia de Herreros, and M. Dunach (1999). Regulation of E-cadherin/catenin association by tyrosine phosphorylation. J. Biol. Chem. 274:36734–36740.
    PubMed Google Scholar
  18. H. Lickert, A. Bauer, R. Kemler, and J. Stappert (2000). Casein kinase II phosphorylation of E-cadherin increases Ecadherin/#x03B2-catenin interaction and strengthens cell-cell adhesion. J. Biol. Chem. 275:5090–5095.
    PubMed Google Scholar
  19. J. Sap Interactions between protein tyrosine phosphatases and cell adhesion molecules. In P. Cowinand and M. Klymkowsky (eds.), Cytoskeletal-Membrane Interactions and Signal Transduction, Landes, Austin, (1997).
    Google Scholar
  20. C. L. Sommers, E. L. Gelmann, R. Kemler, P. Cowin, and S. W. Byers (1994). Alterations in β-catenin phosphorylation and plakoglobin expression in human breast cancer cells. Cancer Res. 54:3544–3552.
    PubMed Google Scholar
  21. M. Yamamoto, A. Bharti, and D. Kufe (1997). Interaction of the DF3/MUC1breast carcinoma-associated antigen and β-catenin in cell adhesion. J. Biol. Chem. 12492–12494.
  22. K. L. Carraway, S. A. Price-Schiavi, M. Komatsu, S. Jepson, A. Perez, and C. A. Carraway (2001). Muc4/sialomucin complex in the mammary gland and breast cancer. J Mammary Gland Biol Neoplasia 6:323–337.
    PubMed Google Scholar
  23. K. L. Carraway, V. P. Ramsauer, B. Haq, and C. A. Carothers Carraway (2003). Cell signaling through membrane mucins. Bioessays 25:66–71.
    PubMed Google Scholar
  24. Y. Li, A. Bharti, D. Chen, J. Gong, and D. Kufe (1998). Interaction of GSK3β with the DF3/MUC1 carcinoma-associated antigen and β-catenin. MCB 7216–7224.
  25. Y. Li, H. Kuwahara, J. Ren, G. Wen, and D. Kufe (2001). The c-Src tyrosine kinase regulates signaling of the human DF3/MUC1 carcinoma-associated antigen with GSK3 #x03B2 and #x03B2-catenin. J. Biol. Chem. 276:6061–6064.
    PubMed Google Scholar
  26. S. Munemitsu, I. Albert, B. Rubinfeld, and P. Polakis (1996). Deletion of an amino-terminal sequence stabilizes β-catenin in vivo and promotes hyperphosphorylation of the adenomatous polyposis coli tumor suppressor protein. Mol. Cell. Biol. 16:4088–4094.
    PubMed Google Scholar
  27. C. J. Gottardi, and B. M. Gumbiner (2001). Adhesion signaling: How #x03B2-catenin interacts with its partners. Curr. Biol. 11:R792-R794.
    PubMed Google Scholar
  28. T. Ishitani, J. Ninomiya-Tsuji, S. Nagai, M. Nishita, M. Meneghini, N. Barker, et al. (1999). The Tak1-NLK-MAPKrelated pathway antagonizes signalling between β-catenin and transcription factor TCF. Nature 399:798–802.
    PubMed Google Scholar
  29. C. E. Rocheleau, J. Yasuda, T. H. Shin, R. Lin, H. Sawa, H. Okano, et al. (1999). WRM-1 activates the Lit-1 protein kinase to transduce anterior/posterior polarity signals in C. Elegans. Cell 97:717–726.
    Google Scholar
  30. D. Kang, S. Soriano, X. Xia, C. Eberhart, B. De Strooper, H. Zheng, et al. (2002). Presenilin couples the paired phosphorylation of #x03B2-catenin independent of Axin. Implications for #x03B2-catenin activation in tumorigenesis. Cell 110:751.
    PubMed Google Scholar
  31. C. Lamberti, K. M. Lin, Y. Yamamoto, U. Verma, I. M. Verma, S. Byers, et al. (2001). Regulation of #x03B2-catenin function by the IkappaB kinases. J. Biol. Chem. 276:42276–42286.
    PubMed Google Scholar
  32. W. Holnthoner, M. Pillinger, M. Groger, K. Wolff, A. W. Ashton, C. Albanese, et al. (2002). Fibroblast growth factor-2 induces Lef/Tcf-dependent transcription in human endothelial cells. J. Biol. Chem.
  33. S. I. Matsuzawa, and J. C. Reed (2001). Siah-1, SIP, and Ebi collaborate in a novel pathway for #x03B2-catenin degradation linked to p53 responses. Mol. Cell 7:915–926.
    PubMed Google Scholar
  34. S. Persad, A. A. Troussard, T. R. McPhee, D. J. Mulholland, S. Dedhar (2001). Tumor suppressor PTEN inhibits nuclear accumulation of #x03B2-catenin and T cell/lymphoid enhancer factor 1-mediated transcriptional activation. J. Cell Biol. 153:1161–1174.
    PubMed Google Scholar
  35. E. Sadot, B. Geiger, M. Oren, A. Ben-Ze'ev (2001). Downregulation of #x03B2-catenin by activated p53. Mol. Cell Biol. 21:6768–6781.
    PubMed Google Scholar
  36. J. Liu, J. Stevens, C. A. Rote, H. J. Yost, Y. Hu, K. L. Neufeld, et al. (2001). Siah-1 mediates a novel #x03B2-catenin degradation pathway linking p53 to the adenomatous polyposis coli protein. Mol. Cell 7:927–936.
    PubMed Google Scholar
  37. S. Fukumoto, C. M. Hsieh, K. Maemura, M. D. Layne, S. F. Yet, K. H. Lee, et al. (2001). Akt participation in the Wnt signaling pathway through Dishevelled. J. Biol. Chem. 276:17479–17483.
    PubMed Google Scholar
  38. F. Rijsewijk, M. Schuermann, E. Wagenaar, P. Parren, D. Weigel, and R. Nusse (1987). The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell 50:649–657.
    PubMed Google Scholar
  39. T. F. Lan and P. Leder (1997). Wnt10B directs hypermorphic development and transformation in mammary glands of male and female mice. Oncogene 15:2133–2144.
    PubMed Google Scholar
  40. A. Tsukamoto, R. Grosschedl, R. Guzman, T. Parslow, H. Varmus (1988). Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell 55:619–625.
    PubMed Google Scholar
  41. H. Roelink, E. Wagenaar, S. Lopes da Silva, and R. Nusse (1990). Wnt-3, a gene activated by proviral insertion in mouse mammary tumors, is homologous to int-1/Wnt-1 and is normally expressed in mouse embryos and adult brain. Proc. Natl. Acad. Sci. U. S. A. 87:4519–4523.
    PubMed Google Scholar
  42. S. J. Weber-Hall, D. J. Phippard, C. C. Niemeyer, and T. C. Dale (1994). Developmental and hormonal regulation of Wnt gene expression in the mouse mammary gland. Differentiation 57:205–214.
    PubMed Google Scholar
  43. T. A. Buhler, T. C. Dale, C. Kieback, R. C. Humphreys, and J. M. Rosen (1993). Localization and quantification of Wnt-2 gene expression in mouse mammary development. Dev. Biol. 155:87–96.
    PubMed Google Scholar
  44. M. J. Smalley and T. C. Dale (2001). Wnt signaling and mammary tumorigenesis. J. Mammary Gland Biol. Neoplasia 6:37–52.
    PubMed Google Scholar
  45. C. Brisken, S. Park, T. Vass, J. P. Lydon, B. W. O'Malley, and R. A. Weinberg (1998). A paracrine role for the epithelial progesterone receptor in mammary gland development. Proc. Natl. Acad. Sci. U. S. A. 95:5076–5081.
    PubMed Google Scholar
  46. C. Brisken, A. Heineman, T. Chavarra, B. Elenbaas, J. Tan, S. K. Dey, et al. (2000). Essential function of Wnt-4 in mammary gland development downstream of progesterone signaling. Genes Dev. 14:650–654.
    PubMed Google Scholar
  47. J. Huelsken and W. Birchmeier (2001). New aspects of Wnt signaling pathways in higher vertebrates. Curr Opin Genet Dev 11:547–553.
    PubMed Google Scholar
  48. V. Korinek, N. Barker, P. J. Morin, D. van Wichen, R. de Weger, K. Kinzler, et al. (1997). Constitutive transcriptional activation by a β-catenin-tcf complex in APC-/-colon carcinoma. Science 275:1784–1787.
    PubMed Google Scholar
  49. R. Cavallo, R. T. Cox, M. Moline, J. Roose, G. A. Ploevoy, H. Clevers, et al. (1998). Drosophila Tcf and Groucho interact to repress wingless signalling activity. Nature 395:604–608.
    PubMed Google Scholar
  50. L. Waltzer and M. Bienz (1998). Drosophila CBP represses the transcription factor TCF to antagonize Wingless signalling. Nature 395:521–525.
    PubMed Google Scholar
  51. S. K. Chan and G. Struhl (2002). Evidence that Armadillo transduces wingless by mediating nuclear export or cytosolic activation of Pangolin. Cell 111:265–280.
    PubMed Google Scholar
  52. C. van Genderen, R. M. Okamura, I. Farinas, R.-G. Quo, T. G. Parslow, L. Bruhn, et al. (1994). Development of several organs that require inductive epithelial-mesenchymal interactions is impaired in Lef-1 deficient mice. Genes Dev. 8:2691–2704.
    PubMed Google Scholar
  53. J. Foley, P. Dann, J. Hong, J. Cosgrove, B. Dreyer, D. Rimm, et al. (2001). Parathyroid hormone-related protein maintains mammaryepithelial fate and triggers nipple skin differentiation during embryonic breast development. Development 128:513–525.
    PubMed Google Scholar
  54. S. Millar (1997). The role of patterning genes in epidermal differentiation. In P. Cowin and M. Klymkowsky (eds.), Cytoskeletal-Membrane Interactions and Signal Transduction, Landes, Austin, pp. 87–103.
    Google Scholar
  55. A. Imbert, R. Eelkema, S. Jordan, H. Feiner, P. Cowin (2001). ΔN89β-catenin induces precocious development, differentiation, and neoplasia in mammary gland. J. Cell Biol. 153:555–568.
    PubMed Google Scholar
  56. R. C. Gallagher, T. Hay, V. Meniel, C. Naughton, T. J. Anderson, H. Shibata, et al. (2002). Inactivation of Apc perturbs mammary development, but only directly results in acanthoma in the context of Tcf-1 deficiency. Oncogene 21:6446–6457.
    PubMed Google Scholar
  57. T. R. Rowlands, I. Pechenkina, R. G. Pestell, and P. Cowin. Intersections between #x03B2-catenin and cyclin D1 in mammary gland development and tumorigenesis. Manuscript submitted for publication.
  58. J. S. Michaelson and P. Leder (2001). #x03B2-catenin is a down-stream effector of Wnt-mediated tumorigenesis in the mammary gland. Oncogene 20:5093–5099.
    PubMed Google Scholar
  59. W. Hsu, R. Shakya, and F. Costantini (2001). Impaired mammary gland and lymphoid development caused by inducible expression of Axin in transgenic mice. J. Cell Biol. 155:1055–1064.
    PubMed Google Scholar
  60. S. B. Tepera, P. D. McCrea, and J. M. Rosen (2003). A #x03B2catenin survival signal is required for normal lobular development in the mammary gland. J. Cell Sci. 116:1137–1149.
    PubMed Google Scholar
  61. W. T. Montross, H. Ji, and P. D. McCrea (2000). A #x03B2catenin/engrailed chimera selectively suppressesWntsignaling. J. Cell Sci. 113:1759–1770.
    PubMed Google Scholar
  62. V. Fantl, A. W. Edwards, J. H. Steel, B. K. Vonderhaar, and D. Dickson (1999). Impaired mammary gland development in Cyc-/-mice during pregnancy and lactation is epithelial cell autonomous. Development 212:1–11.
    Google Scholar
  63. P. Sicinski, J. L. Donaher, S. B. Parker, T. Li, A. Fazeli, H. Gardner, et al. (1995). Cyclin D1 provides a link between development and oncogenesis in the retina and breast. Cell 82:621–630.
    PubMed Google Scholar
  64. V. Fantl, G. Stamp, A. Andrews, I. Rosewell, C. Dickson (1995). Mice lacking cyclin D1 are small and show defects in eye and mammary gland development. Genes Dev. 9:2364–2372.
    PubMed Google Scholar
  65. K. Miyoshi, J. M. Shillingford, F. Le Provost, F. Gounari, R. Bronson, H. von Boehmer, et al. (2002). Activation of #x03B2catenin signaling in differentiated mammary secretory cells induces transdifferentiation into epidermis and squamous metaplasias. Proc. Natl. Acad. Sci. U. S. A. 99:219–224.
    PubMed Google Scholar
  66. K. Miyoshi, A. Rosner, M. Nozawa, C. Byrd, F. Morgan, E. Landesman-Bollag, et al. (2002). Activation of different Wnt/#x03B2-catenin signaling components in mammary epithelium induces transdifferentiation and the formation of pilar tumors. Oncogene 21:5548–5556.
    PubMed Google Scholar
  67. A. R. Moser, C. Luongo, K. A. Gould, M. K. McNeley, A. R. Shoemaker, and W. F. Dove (1995). ApcMin: A mouse model for intestinal and mammary tumorigenesis. Eur. J. Cancer 31A:1061–1064.
    PubMed Google Scholar
  68. U. Gat, R. Dasgupta, L. Degenstein, E. Fuchs (1998). De novo hair follicle morphogenesis and hair tumors in mice expressing a truncated β-catenin in skin. Cell 95:605–614.
    PubMed Google Scholar
  69. J. Huelsken, R. Vogel, B. Erdmann, G. Cotsarelis, and W. Birchmeier (2001). #x03B2-catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 105:533–545.
    PubMed Google Scholar
  70. R. DasGupta, H. Rhee, and E. Fuchs (2002). A developmental conundrum:Astabilized form of #x03B2-catenin lacking the transcriptional activation domain triggers features of hair cell fate in epidermal cells and epidermal cell fate in hair follicle cells. J. Cell Biol. 158:331–344.
    PubMed Google Scholar
  71. F. Ugolini, E. Charafe-Jauffret, V. J. Bardou, J. Geneix, J. Adelaide, F. Labat-Moleur, et al. (2001). WNT pathway and mammary carcinogenesis: Loss of expression of candidate tumor suppressor gene SFRP1 in most invasive carcinomas except of the medullary type. Oncogene 20:5810–5817.
    PubMed Google Scholar
  72. S. C. Wong, S. F. Lo, K. C. Lee, J. W. Yam, J. K. Chan, and W. L. Wendy Hsiao (2002). Expression of frizzled-related protein and Wnt-signalling molecules in invasive human breast tumours. J. Pathol. 196:145–153.
    PubMed Google Scholar
  73. E. L. Huguet, J. A. McMahon, A. P. McMahon, R. Bicknell, and A. L. Harris (1994). Differential expression of human Wnt genes 2, 3, 4, and 7B in human breast cell lines and normal and disease states of human breast tissue. Cancer Res. 54:2615–2621.
    PubMed Google Scholar
  74. T. C. Dale, S. J. Weber-Hall, K. Smith, E. L. Huguet, H. Jayatilake, B. A. Gusterson, et al. (1996). Compartment switching of Wnt-2 expression in human breast tumors. Cancer Res. 56:4320–4323.
    PubMed Google Scholar
  75. M. Jonsson, J. Dejmek, P. O. Bendahl, and T. Andersson (2002). Loss of Wnt-5a protein is associated with early relapse in invasive ductal breast carcinomas. Cancer Res. 62:409–416.
    PubMed Google Scholar
  76. S. Lejeune, E. L. Huguet, A. Hamby, R. Poulsom, and A. L. Harris (1995). Wnt5a cloning, expression, and up-regulation in human primary breast cancers. Clin. Cancer Res. 1:215–222.
    PubMed Google Scholar
  77. H. Kirikoshi, H. Sekihara, and M. Katoh (2001). Expression of WNT14 and WNT14B mRNAs in human cancer, up-regulation of WNT14 by IFNgamma and up-regulation of WNT14B by #x03B2-estradiol. Int. J. Oncol. 19:1221–1225.
    PubMed Google Scholar
  78. M. T. Webster, M. Rozycka, E. Sara, E. Davis, M. Smalley, N. Young, et al. (2000). Sequence variants of the axin gene in breast, colon, and other cancers: An analysis of mutations that interfere with GSK3 binding. Genes Chromosomes Cancer 28:443–453.
    PubMed Google Scholar
  79. K. Furuuchi, M. Tada, H. Yamada, A. Kataoka, N. Furuuchi, J. Hamada, et al. (2000). Somatic mutations of the APC gene in primary breast cancers. Am. J. Pathol. 156:1997–2005.
    PubMed Google Scholar
  80. S. C. Abraham, B. Nobukawa, F. M. Giardiello, S. R. Hamilton, T. T. Wu (2000). Fundic gland polyps in familial adenomatous polyposis: Neoplasms with frequent somatic adenomatous polyposis coli gene alterations. Am. J. Pathol. 157:747–754.
    PubMed Google Scholar
  81. A. K. Virmani, A. Rathi, U. G. Sathyanarayana, A. Padar, C. X. Huang, H. T. Cunnigham, et al. (2001). Aberrant methylation of the adenomatous polyposis coli (APC) gene promoter 1A in breast and lung carcinomas. Clin. Cancer Res. 7:1998–2004.
    PubMed Google Scholar
  82. E. J. Sawyer, A. M. Hanby, A. J. Rowan, C. E. Gillett, R. E. Thomas, R. Poulsom, et al. (2002). TheWnt pathway, epithelialstromal interactions, and malignant progression in phyllodes tumours. J. Pathol. 196:437–444.
    PubMed Google Scholar
  83. S. Y. Lin, W. Xia, J. C. Wang, K. Y. Kwong, B. Spohn, Y. Wen, et al. (2000). #x03B2-catenin, a novel prognostic marker for breast cancer: Its roles in cyclin D1 expression and cancer progression. Proc. Natl. Acad. Sci. U. S. A. 97:4262–4266.
    PubMed Google Scholar
  84. J. Roose and H. Clevers (1999). TCF transcription factors: Molecular switches in carcinogenesis. Biochim. Biophys. Acta 1424:M23-M37.
    PubMed Google Scholar
  85. J. Roose, G. Huls, M. van Beest, P. Moerer, K. van der Horn, R. Goldschmeding, et al. (1999). Synergy between tumor suppressor APC and the #x03B2-catenin-Tcf4 target Tcf1. Science 285:1923–1926.
    PubMed Google Scholar
  86. T. C. Wang, R. D. Cardiff, L. Zukerberg, E. Lees, A. Arnols, and E. V. Schmidt (1994). Mammary hyperplasia and carcinoma in MMTV-cyclin D1 transgenic mice. Nature 369:669–671.
    PubMed Google Scholar
  87. E. A. Musgrove, R. Hui, K. J. Sweeney, C. K. Watts, R. L. Sutherland (1996). Cyclins and breast cancer. J. Mammary Gland Biol. Neoplasia 1:153–162.
    PubMed Google Scholar
  88. C. Gillett, V. Fantl, R. Smith, C. Fisher, J. Bartek, C. Dickson, et al. (1994). Amplification and overexpression of cyclin D1 in breast cancer detected by immunohistochemical staining. Cancer Res. 54:1812–1817.
    PubMed Google Scholar
  89. E. Sinn, W. Muller, P. Pattengale, I. Tepler, R. Wallace, and P. Leder (1987). Coexpression of MMTV/v-Ha-ras and MMTV/cmyc genes in transgenic mice: Synergistic action of oncogenes in vivo. Cell 49:465–475.
    PubMed Google Scholar
  90. S. Aulmann, M. Bentz, H. P. Sinn (2002). C-myc oncogene amplification in ductal carcinoma in situ of the breast. Breast Cancer Res. Treat 74:25–31.
    PubMed Google Scholar
  91. M. Shtutman, J. Zhiurinsky, I. Simcha, C. Albanese, M. D'Amico, R. Pestell, et al. (1999). The cyclin D1 gene is a target of the #x03B2-catenin LEF1 pathway. Proc. Natl. Acad. Sci. U. S. A. 96:5522–5527.
    PubMed Google Scholar
  92. O. Tetsu and F. McCormick (1999). β-Catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398:422–426.
    PubMed Google Scholar
  93. T.-C. He, A. B. Sparks, C. Rago, H. Hermeking, L. Zawel, L. T. da Costa, et al. (1998). Identification of c-myc as a target of the APC pathway. Science 281:1509–1512.
    PubMed Google Scholar
  94. T. Ishitani, J. Ninomiya-Tsuji, and K. Matsumoto (2003). Regulation of lymphoid enhancer factor 1/T-cell factor by mitogenactivated protein kinase-related Nemo-like kinase-dependent phosphorylation in Wnt/#x03B2-catenin signaling. Mol Cell Biol 23:1379–1389.
    PubMed Google Scholar
  95. J. Deng, S. A. Miller, H. Y. Wang, W. Xia, Y. Wen, B. P. Zhou, et al. (2002). #x03B2-catenin interacts with and inhibits NF-kappa B in human colon and breast cancer. Cancer Cell 2:323–334.
    PubMed Google Scholar

Download references