Transforming Growth Factor-β1 Upregulates the Tight Junction and P-glycoprotein of Brain Microvascular Endothelial Cells (original) (raw)
REFERENCES
Antonelli-Orlidge, A., Saunders, K. B., Smith, S. R., and D'Amore, P. A. (1989). An activated form of transforming growth factor β is produced by cocultures of endothelial cells and pericytes. Proc. Natl. Acad. Sci. U.S.A.88:4544-4548. Google Scholar
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem.72:248-254. Google Scholar
Dehouck, M.-P., Jolliet-Riant, P., Brée, F., Fruchart, J.-C., Cecchelli, R., and Tillement, J.-P. (1992). Drug transfer across the blood-brain barrier: Correlation between in vitro and in vivo models. J. Neurochem.58:1790-1797. Google Scholar
Deli, M. A., Descamps, L., Dehouck, M.-P., Cecchelli, R., Joó, F., ábrahám, C. S., and Torpier, G. (1995). Exposure of tumor necrosis factor-α to luminal membrane of bovine brain capillary endothelial cells cocultured with astrocytes induces a delayed increase of permeability and cytoplasmic stress fiber formation of actin. J. Neurosci. Res.41:717-726. Google Scholar
Dente, C. J., Steffes, C. P., Speyer, C., and Tyburski, J. G. (2001). Pericytes augment the capillary barrier in in vitro cocultures. J. Surg. Res.97:85-91. Google Scholar
Flanders, K. C., Ren, R. F., and Lippa, C. P. (1998). Transforming growth factor-βs in neurodegenerative disease. Prog. Neurobiol.54:71-85. Google Scholar
Fontaine, M., Elmquist, W. F., and Miller, D. W. (1996). Use of rhodamine 123 to examine the functional activity of P-glycoprotein in primary cultured brain microvessel endothelial cell monolayers. Life Sci.59:1521-1531. Google Scholar
Halstead, J., Kemp, K., and Ignotz, R. A. (1995). Evidence for involvement of phosphatidylcholine-phospholipase C and protein kinase C in transforming growth factor-β signaling. J. Biol. Chem.270:13600-13603. Google Scholar
Hartsough, M. T., and Mulder, K. M. (1995). Transforming growth factor β activation of p44mapk in proliferating cultures of epithelial cells. J. Biol. Chem.270:7117-24. Google Scholar
Orlidge, A., and D'Amore, P. A. (1987). Inhibition of capillary endothelial cell growth by pericytes and smooth muscle cells. J. Cell Biol.105:1455-1462. Google Scholar
Ramsauer, M., Krause, D., and Dermietzel, R. (2002). Angiogenesis of the blood-brain barrier in vitro and the function of cerebral pericytes. FASEB J.16:1274-1276. Google Scholar
Raub, T. J. (1996). Signal transduction and glial cell modulation of cultured brain microvessel endothelial cell tight junctions. Am. J. Physiol.271:C495-C503. Google Scholar
Rubin, L. L., and Staddon, J. M. (1999). The cell biology of the blood-brain barrier. Annu. Rev. Neurosci.22:11-28. Google Scholar
Sato, Y., and Rifkin, D. B. (1989). Inhibition of endothelial cell movement by pericytes and smooth muscle cells: activation of a latent transforming growth factor-β1-like molecular by plasmin during co-culture. J. Cell Biol.109:309-315. Google Scholar
Tatsuta, T., Naito, M., Mikami, K., and Tsuruo, T. (1994). Enhanced expression by the brain matrix of P-glycoprotein in brain capillary endothelial cells. Cell Growth Differ.5:1145-1152. Google Scholar
Tatsuta, T., Naito, M., Oh-hara, T., Sugawara, I., and Tsuruo, T. (1992). Functional involvement of P-glycoprotein in blood-brain barrier. J. Biol. Chem.267:20383-20391. Google Scholar
Utsunomiya, Y., Hasegawa, H., Yanagisawa, K., and Fujita, S. (1997). Enhancement of mdrl gene expression by transforming growth factor-β1 in the new adriamycin-resistant human leukemia cell line ME-F2/ADM. Leukemia11:894-895. Google Scholar
Wang, W., Merrill, M. J., and Borchardt, R. T. (1996). Vascular endothelial growth factor affects permeability of brain microvessel endothelial cells in vitro. Am. J. Physiol.271:C1973-C1980. Google Scholar
Wrana, J. L., Attisano, L., Wieser, R., Ventura, F., and Massagué, J. (1994). Mechanism of activation of the TGF-β receptor. Nature370:341-347. Google Scholar